blob: 895b082f1e48bafe5c7826de6950edf14cff6d23 [file] [log] [blame]
/*
* PowerPC version
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Derived from "arch/m68k/kernel/ptrace.c"
* Copyright (C) 1994 by Hamish Macdonald
* Taken from linux/kernel/ptrace.c and modified for M680x0.
* linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
*
* Modified by Cort Dougan (cort@hq.fsmlabs.com)
* and Paul Mackerras (paulus@samba.org).
*
* This file is subject to the terms and conditions of the GNU General
* Public License. See the file README.legal in the main directory of
* this archive for more details.
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/errno.h>
#include <linux/ptrace.h>
#include <linux/regset.h>
#include <linux/tracehook.h>
#include <linux/elf.h>
#include <linux/user.h>
#include <linux/security.h>
#include <linux/signal.h>
#include <linux/seccomp.h>
#include <linux/audit.h>
#ifdef CONFIG_PPC32
#include <linux/module.h>
#endif
#include <linux/hw_breakpoint.h>
#include <linux/perf_event.h>
#include <asm/uaccess.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/system.h>
/*
* The parameter save area on the stack is used to store arguments being passed
* to callee function and is located at fixed offset from stack pointer.
*/
#ifdef CONFIG_PPC32
#define PARAMETER_SAVE_AREA_OFFSET 24 /* bytes */
#else /* CONFIG_PPC32 */
#define PARAMETER_SAVE_AREA_OFFSET 48 /* bytes */
#endif
struct pt_regs_offset {
const char *name;
int offset;
};
#define STR(s) #s /* convert to string */
#define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
#define GPR_OFFSET_NAME(num) \
{.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
#define REG_OFFSET_END {.name = NULL, .offset = 0}
static const struct pt_regs_offset regoffset_table[] = {
GPR_OFFSET_NAME(0),
GPR_OFFSET_NAME(1),
GPR_OFFSET_NAME(2),
GPR_OFFSET_NAME(3),
GPR_OFFSET_NAME(4),
GPR_OFFSET_NAME(5),
GPR_OFFSET_NAME(6),
GPR_OFFSET_NAME(7),
GPR_OFFSET_NAME(8),
GPR_OFFSET_NAME(9),
GPR_OFFSET_NAME(10),
GPR_OFFSET_NAME(11),
GPR_OFFSET_NAME(12),
GPR_OFFSET_NAME(13),
GPR_OFFSET_NAME(14),
GPR_OFFSET_NAME(15),
GPR_OFFSET_NAME(16),
GPR_OFFSET_NAME(17),
GPR_OFFSET_NAME(18),
GPR_OFFSET_NAME(19),
GPR_OFFSET_NAME(20),
GPR_OFFSET_NAME(21),
GPR_OFFSET_NAME(22),
GPR_OFFSET_NAME(23),
GPR_OFFSET_NAME(24),
GPR_OFFSET_NAME(25),
GPR_OFFSET_NAME(26),
GPR_OFFSET_NAME(27),
GPR_OFFSET_NAME(28),
GPR_OFFSET_NAME(29),
GPR_OFFSET_NAME(30),
GPR_OFFSET_NAME(31),
REG_OFFSET_NAME(nip),
REG_OFFSET_NAME(msr),
REG_OFFSET_NAME(ctr),
REG_OFFSET_NAME(link),
REG_OFFSET_NAME(xer),
REG_OFFSET_NAME(ccr),
#ifdef CONFIG_PPC64
REG_OFFSET_NAME(softe),
#else
REG_OFFSET_NAME(mq),
#endif
REG_OFFSET_NAME(trap),
REG_OFFSET_NAME(dar),
REG_OFFSET_NAME(dsisr),
REG_OFFSET_END,
};
/**
* regs_query_register_offset() - query register offset from its name
* @name: the name of a register
*
* regs_query_register_offset() returns the offset of a register in struct
* pt_regs from its name. If the name is invalid, this returns -EINVAL;
*/
int regs_query_register_offset(const char *name)
{
const struct pt_regs_offset *roff;
for (roff = regoffset_table; roff->name != NULL; roff++)
if (!strcmp(roff->name, name))
return roff->offset;
return -EINVAL;
}
/**
* regs_query_register_name() - query register name from its offset
* @offset: the offset of a register in struct pt_regs.
*
* regs_query_register_name() returns the name of a register from its
* offset in struct pt_regs. If the @offset is invalid, this returns NULL;
*/
const char *regs_query_register_name(unsigned int offset)
{
const struct pt_regs_offset *roff;
for (roff = regoffset_table; roff->name != NULL; roff++)
if (roff->offset == offset)
return roff->name;
return NULL;
}
/*
* does not yet catch signals sent when the child dies.
* in exit.c or in signal.c.
*/
/*
* Set of msr bits that gdb can change on behalf of a process.
*/
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
#define MSR_DEBUGCHANGE 0
#else
#define MSR_DEBUGCHANGE (MSR_SE | MSR_BE)
#endif
/*
* Max register writeable via put_reg
*/
#ifdef CONFIG_PPC32
#define PT_MAX_PUT_REG PT_MQ
#else
#define PT_MAX_PUT_REG PT_CCR
#endif
static unsigned long get_user_msr(struct task_struct *task)
{
return task->thread.regs->msr | task->thread.fpexc_mode;
}
static int set_user_msr(struct task_struct *task, unsigned long msr)
{
task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
return 0;
}
/*
* We prevent mucking around with the reserved area of trap
* which are used internally by the kernel.
*/
static int set_user_trap(struct task_struct *task, unsigned long trap)
{
task->thread.regs->trap = trap & 0xfff0;
return 0;
}
/*
* Get contents of register REGNO in task TASK.
*/
unsigned long ptrace_get_reg(struct task_struct *task, int regno)
{
if (task->thread.regs == NULL)
return -EIO;
if (regno == PT_MSR)
return get_user_msr(task);
if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long)))
return ((unsigned long *)task->thread.regs)[regno];
return -EIO;
}
/*
* Write contents of register REGNO in task TASK.
*/
int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
{
if (task->thread.regs == NULL)
return -EIO;
if (regno == PT_MSR)
return set_user_msr(task, data);
if (regno == PT_TRAP)
return set_user_trap(task, data);
if (regno <= PT_MAX_PUT_REG) {
((unsigned long *)task->thread.regs)[regno] = data;
return 0;
}
return -EIO;
}
static int gpr_get(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
int i, ret;
if (target->thread.regs == NULL)
return -EIO;
if (!FULL_REGS(target->thread.regs)) {
/* We have a partial register set. Fill 14-31 with bogus values */
for (i = 14; i < 32; i++)
target->thread.regs->gpr[i] = NV_REG_POISON;
}
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
target->thread.regs,
0, offsetof(struct pt_regs, msr));
if (!ret) {
unsigned long msr = get_user_msr(target);
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
offsetof(struct pt_regs, msr),
offsetof(struct pt_regs, msr) +
sizeof(msr));
}
BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
offsetof(struct pt_regs, msr) + sizeof(long));
if (!ret)
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
&target->thread.regs->orig_gpr3,
offsetof(struct pt_regs, orig_gpr3),
sizeof(struct pt_regs));
if (!ret)
ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
sizeof(struct pt_regs), -1);
return ret;
}
static int gpr_set(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
unsigned long reg;
int ret;
if (target->thread.regs == NULL)
return -EIO;
CHECK_FULL_REGS(target->thread.regs);
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
target->thread.regs,
0, PT_MSR * sizeof(reg));
if (!ret && count > 0) {
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
PT_MSR * sizeof(reg),
(PT_MSR + 1) * sizeof(reg));
if (!ret)
ret = set_user_msr(target, reg);
}
BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
offsetof(struct pt_regs, msr) + sizeof(long));
if (!ret)
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&target->thread.regs->orig_gpr3,
PT_ORIG_R3 * sizeof(reg),
(PT_MAX_PUT_REG + 1) * sizeof(reg));
if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
ret = user_regset_copyin_ignore(
&pos, &count, &kbuf, &ubuf,
(PT_MAX_PUT_REG + 1) * sizeof(reg),
PT_TRAP * sizeof(reg));
if (!ret && count > 0) {
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
PT_TRAP * sizeof(reg),
(PT_TRAP + 1) * sizeof(reg));
if (!ret)
ret = set_user_trap(target, reg);
}
if (!ret)
ret = user_regset_copyin_ignore(
&pos, &count, &kbuf, &ubuf,
(PT_TRAP + 1) * sizeof(reg), -1);
return ret;
}
static int fpr_get(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
#ifdef CONFIG_VSX
double buf[33];
int i;
#endif
flush_fp_to_thread(target);
#ifdef CONFIG_VSX
/* copy to local buffer then write that out */
for (i = 0; i < 32 ; i++)
buf[i] = target->thread.TS_FPR(i);
memcpy(&buf[32], &target->thread.fpscr, sizeof(double));
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
#else
BUILD_BUG_ON(offsetof(struct thread_struct, fpscr) !=
offsetof(struct thread_struct, TS_FPR(32)));
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
&target->thread.fpr, 0, -1);
#endif
}
static int fpr_set(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
#ifdef CONFIG_VSX
double buf[33];
int i;
#endif
flush_fp_to_thread(target);
#ifdef CONFIG_VSX
/* copy to local buffer then write that out */
i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
if (i)
return i;
for (i = 0; i < 32 ; i++)
target->thread.TS_FPR(i) = buf[i];
memcpy(&target->thread.fpscr, &buf[32], sizeof(double));
return 0;
#else
BUILD_BUG_ON(offsetof(struct thread_struct, fpscr) !=
offsetof(struct thread_struct, TS_FPR(32)));
return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&target->thread.fpr, 0, -1);
#endif
}
#ifdef CONFIG_ALTIVEC
/*
* Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
* The transfer totals 34 quadword. Quadwords 0-31 contain the
* corresponding vector registers. Quadword 32 contains the vscr as the
* last word (offset 12) within that quadword. Quadword 33 contains the
* vrsave as the first word (offset 0) within the quadword.
*
* This definition of the VMX state is compatible with the current PPC32
* ptrace interface. This allows signal handling and ptrace to use the
* same structures. This also simplifies the implementation of a bi-arch
* (combined (32- and 64-bit) gdb.
*/
static int vr_active(struct task_struct *target,
const struct user_regset *regset)
{
flush_altivec_to_thread(target);
return target->thread.used_vr ? regset->n : 0;
}
static int vr_get(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
int ret;
flush_altivec_to_thread(target);
BUILD_BUG_ON(offsetof(struct thread_struct, vscr) !=
offsetof(struct thread_struct, vr[32]));
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
&target->thread.vr, 0,
33 * sizeof(vector128));
if (!ret) {
/*
* Copy out only the low-order word of vrsave.
*/
union {
elf_vrreg_t reg;
u32 word;
} vrsave;
memset(&vrsave, 0, sizeof(vrsave));
vrsave.word = target->thread.vrsave;
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
33 * sizeof(vector128), -1);
}
return ret;
}
static int vr_set(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
int ret;
flush_altivec_to_thread(target);
BUILD_BUG_ON(offsetof(struct thread_struct, vscr) !=
offsetof(struct thread_struct, vr[32]));
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&target->thread.vr, 0, 33 * sizeof(vector128));
if (!ret && count > 0) {
/*
* We use only the first word of vrsave.
*/
union {
elf_vrreg_t reg;
u32 word;
} vrsave;
memset(&vrsave, 0, sizeof(vrsave));
vrsave.word = target->thread.vrsave;
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
33 * sizeof(vector128), -1);
if (!ret)
target->thread.vrsave = vrsave.word;
}
return ret;
}
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_VSX
/*
* Currently to set and and get all the vsx state, you need to call
* the fp and VMX calls aswell. This only get/sets the lower 32
* 128bit VSX registers.
*/
static int vsr_active(struct task_struct *target,
const struct user_regset *regset)
{
flush_vsx_to_thread(target);
return target->thread.used_vsr ? regset->n : 0;
}
static int vsr_get(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
double buf[32];
int ret, i;
flush_vsx_to_thread(target);
for (i = 0; i < 32 ; i++)
buf[i] = target->thread.fpr[i][TS_VSRLOWOFFSET];
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
buf, 0, 32 * sizeof(double));
return ret;
}
static int vsr_set(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
double buf[32];
int ret,i;
flush_vsx_to_thread(target);
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
buf, 0, 32 * sizeof(double));
for (i = 0; i < 32 ; i++)
target->thread.fpr[i][TS_VSRLOWOFFSET] = buf[i];
return ret;
}
#endif /* CONFIG_VSX */
#ifdef CONFIG_SPE
/*
* For get_evrregs/set_evrregs functions 'data' has the following layout:
*
* struct {
* u32 evr[32];
* u64 acc;
* u32 spefscr;
* }
*/
static int evr_active(struct task_struct *target,
const struct user_regset *regset)
{
flush_spe_to_thread(target);
return target->thread.used_spe ? regset->n : 0;
}
static int evr_get(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
int ret;
flush_spe_to_thread(target);
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
&target->thread.evr,
0, sizeof(target->thread.evr));
BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
offsetof(struct thread_struct, spefscr));
if (!ret)
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
&target->thread.acc,
sizeof(target->thread.evr), -1);
return ret;
}
static int evr_set(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
int ret;
flush_spe_to_thread(target);
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&target->thread.evr,
0, sizeof(target->thread.evr));
BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
offsetof(struct thread_struct, spefscr));
if (!ret)
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&target->thread.acc,
sizeof(target->thread.evr), -1);
return ret;
}
#endif /* CONFIG_SPE */
/*
* These are our native regset flavors.
*/
enum powerpc_regset {
REGSET_GPR,
REGSET_FPR,
#ifdef CONFIG_ALTIVEC
REGSET_VMX,
#endif
#ifdef CONFIG_VSX
REGSET_VSX,
#endif
#ifdef CONFIG_SPE
REGSET_SPE,
#endif
};
static const struct user_regset native_regsets[] = {
[REGSET_GPR] = {
.core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
.size = sizeof(long), .align = sizeof(long),
.get = gpr_get, .set = gpr_set
},
[REGSET_FPR] = {
.core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
.size = sizeof(double), .align = sizeof(double),
.get = fpr_get, .set = fpr_set
},
#ifdef CONFIG_ALTIVEC
[REGSET_VMX] = {
.core_note_type = NT_PPC_VMX, .n = 34,
.size = sizeof(vector128), .align = sizeof(vector128),
.active = vr_active, .get = vr_get, .set = vr_set
},
#endif
#ifdef CONFIG_VSX
[REGSET_VSX] = {
.core_note_type = NT_PPC_VSX, .n = 32,
.size = sizeof(double), .align = sizeof(double),
.active = vsr_active, .get = vsr_get, .set = vsr_set
},
#endif
#ifdef CONFIG_SPE
[REGSET_SPE] = {
.n = 35,
.size = sizeof(u32), .align = sizeof(u32),
.active = evr_active, .get = evr_get, .set = evr_set
},
#endif
};
static const struct user_regset_view user_ppc_native_view = {
.name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
.regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
};
#ifdef CONFIG_PPC64
#include <linux/compat.h>
static int gpr32_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
const unsigned long *regs = &target->thread.regs->gpr[0];
compat_ulong_t *k = kbuf;
compat_ulong_t __user *u = ubuf;
compat_ulong_t reg;
int i;
if (target->thread.regs == NULL)
return -EIO;
if (!FULL_REGS(target->thread.regs)) {
/* We have a partial register set. Fill 14-31 with bogus values */
for (i = 14; i < 32; i++)
target->thread.regs->gpr[i] = NV_REG_POISON;
}
pos /= sizeof(reg);
count /= sizeof(reg);
if (kbuf)
for (; count > 0 && pos < PT_MSR; --count)
*k++ = regs[pos++];
else
for (; count > 0 && pos < PT_MSR; --count)
if (__put_user((compat_ulong_t) regs[pos++], u++))
return -EFAULT;
if (count > 0 && pos == PT_MSR) {
reg = get_user_msr(target);
if (kbuf)
*k++ = reg;
else if (__put_user(reg, u++))
return -EFAULT;
++pos;
--count;
}
if (kbuf)
for (; count > 0 && pos < PT_REGS_COUNT; --count)
*k++ = regs[pos++];
else
for (; count > 0 && pos < PT_REGS_COUNT; --count)
if (__put_user((compat_ulong_t) regs[pos++], u++))
return -EFAULT;
kbuf = k;
ubuf = u;
pos *= sizeof(reg);
count *= sizeof(reg);
return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
PT_REGS_COUNT * sizeof(reg), -1);
}
static int gpr32_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
unsigned long *regs = &target->thread.regs->gpr[0];
const compat_ulong_t *k = kbuf;
const compat_ulong_t __user *u = ubuf;
compat_ulong_t reg;
if (target->thread.regs == NULL)
return -EIO;
CHECK_FULL_REGS(target->thread.regs);
pos /= sizeof(reg);
count /= sizeof(reg);
if (kbuf)
for (; count > 0 && pos < PT_MSR; --count)
regs[pos++] = *k++;
else
for (; count > 0 && pos < PT_MSR; --count) {
if (__get_user(reg, u++))
return -EFAULT;
regs[pos++] = reg;
}
if (count > 0 && pos == PT_MSR) {
if (kbuf)
reg = *k++;
else if (__get_user(reg, u++))
return -EFAULT;
set_user_msr(target, reg);
++pos;
--count;
}
if (kbuf) {
for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
regs[pos++] = *k++;
for (; count > 0 && pos < PT_TRAP; --count, ++pos)
++k;
} else {
for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
if (__get_user(reg, u++))
return -EFAULT;
regs[pos++] = reg;
}
for (; count > 0 && pos < PT_TRAP; --count, ++pos)
if (__get_user(reg, u++))
return -EFAULT;
}
if (count > 0 && pos == PT_TRAP) {
if (kbuf)
reg = *k++;
else if (__get_user(reg, u++))
return -EFAULT;
set_user_trap(target, reg);
++pos;
--count;
}
kbuf = k;
ubuf = u;
pos *= sizeof(reg);
count *= sizeof(reg);
return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
(PT_TRAP + 1) * sizeof(reg), -1);
}
/*
* These are the regset flavors matching the CONFIG_PPC32 native set.
*/
static const struct user_regset compat_regsets[] = {
[REGSET_GPR] = {
.core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
.size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
.get = gpr32_get, .set = gpr32_set
},
[REGSET_FPR] = {
.core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
.size = sizeof(double), .align = sizeof(double),
.get = fpr_get, .set = fpr_set
},
#ifdef CONFIG_ALTIVEC
[REGSET_VMX] = {
.core_note_type = NT_PPC_VMX, .n = 34,
.size = sizeof(vector128), .align = sizeof(vector128),
.active = vr_active, .get = vr_get, .set = vr_set
},
#endif
#ifdef CONFIG_SPE
[REGSET_SPE] = {
.core_note_type = NT_PPC_SPE, .n = 35,
.size = sizeof(u32), .align = sizeof(u32),
.active = evr_active, .get = evr_get, .set = evr_set
},
#endif
};
static const struct user_regset_view user_ppc_compat_view = {
.name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
.regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
};
#endif /* CONFIG_PPC64 */
const struct user_regset_view *task_user_regset_view(struct task_struct *task)
{
#ifdef CONFIG_PPC64
if (test_tsk_thread_flag(task, TIF_32BIT))
return &user_ppc_compat_view;
#endif
return &user_ppc_native_view;
}
void user_enable_single_step(struct task_struct *task)
{
struct pt_regs *regs = task->thread.regs;
if (regs != NULL) {
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
task->thread.dbcr0 &= ~DBCR0_BT;
task->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
regs->msr |= MSR_DE;
#else
regs->msr &= ~MSR_BE;
regs->msr |= MSR_SE;
#endif
}
set_tsk_thread_flag(task, TIF_SINGLESTEP);
}
void user_enable_block_step(struct task_struct *task)
{
struct pt_regs *regs = task->thread.regs;
if (regs != NULL) {
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
task->thread.dbcr0 &= ~DBCR0_IC;
task->thread.dbcr0 = DBCR0_IDM | DBCR0_BT;
regs->msr |= MSR_DE;
#else
regs->msr &= ~MSR_SE;
regs->msr |= MSR_BE;
#endif
}
set_tsk_thread_flag(task, TIF_SINGLESTEP);
}
void user_disable_single_step(struct task_struct *task)
{
struct pt_regs *regs = task->thread.regs;
if (regs != NULL) {
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
* The logic to disable single stepping should be as
* simple as turning off the Instruction Complete flag.
* And, after doing so, if all debug flags are off, turn
* off DBCR0(IDM) and MSR(DE) .... Torez
*/
task->thread.dbcr0 &= ~DBCR0_IC;
/*
* Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
*/
if (!DBCR_ACTIVE_EVENTS(task->thread.dbcr0,
task->thread.dbcr1)) {
/*
* All debug events were off.....
*/
task->thread.dbcr0 &= ~DBCR0_IDM;
regs->msr &= ~MSR_DE;
}
#else
regs->msr &= ~(MSR_SE | MSR_BE);
#endif
}
clear_tsk_thread_flag(task, TIF_SINGLESTEP);
}
#ifdef CONFIG_HAVE_HW_BREAKPOINT
void ptrace_triggered(struct perf_event *bp, int nmi,
struct perf_sample_data *data, struct pt_regs *regs)
{
struct perf_event_attr attr;
/*
* Disable the breakpoint request here since ptrace has defined a
* one-shot behaviour for breakpoint exceptions in PPC64.
* The SIGTRAP signal is generated automatically for us in do_dabr().
* We don't have to do anything about that here
*/
attr = bp->attr;
attr.disabled = true;
modify_user_hw_breakpoint(bp, &attr);
}
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
unsigned long data)
{
#ifdef CONFIG_HAVE_HW_BREAKPOINT
int ret;
struct thread_struct *thread = &(task->thread);
struct perf_event *bp;
struct perf_event_attr attr;
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
/* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
* For embedded processors we support one DAC and no IAC's at the
* moment.
*/
if (addr > 0)
return -EINVAL;
/* The bottom 3 bits in dabr are flags */
if ((data & ~0x7UL) >= TASK_SIZE)
return -EIO;
#ifndef CONFIG_PPC_ADV_DEBUG_REGS
/* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
* It was assumed, on previous implementations, that 3 bits were
* passed together with the data address, fitting the design of the
* DABR register, as follows:
*
* bit 0: Read flag
* bit 1: Write flag
* bit 2: Breakpoint translation
*
* Thus, we use them here as so.
*/
/* Ensure breakpoint translation bit is set */
if (data && !(data & DABR_TRANSLATION))
return -EIO;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
bp = thread->ptrace_bps[0];
if ((!data) || !(data & (DABR_DATA_WRITE | DABR_DATA_READ))) {
if (bp) {
unregister_hw_breakpoint(bp);
thread->ptrace_bps[0] = NULL;
}
return 0;
}
if (bp) {
attr = bp->attr;
attr.bp_addr = data & ~HW_BREAKPOINT_ALIGN;
arch_bp_generic_fields(data &
(DABR_DATA_WRITE | DABR_DATA_READ),
&attr.bp_type);
ret = modify_user_hw_breakpoint(bp, &attr);
if (ret)
return ret;
thread->ptrace_bps[0] = bp;
thread->dabr = data;
return 0;
}
/* Create a new breakpoint request if one doesn't exist already */
hw_breakpoint_init(&attr);
attr.bp_addr = data & ~HW_BREAKPOINT_ALIGN;
arch_bp_generic_fields(data & (DABR_DATA_WRITE | DABR_DATA_READ),
&attr.bp_type);
thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
ptrace_triggered, task);
if (IS_ERR(bp)) {
thread->ptrace_bps[0] = NULL;
return PTR_ERR(bp);
}
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
/* Move contents to the DABR register */
task->thread.dabr = data;
#else /* CONFIG_PPC_ADV_DEBUG_REGS */
/* As described above, it was assumed 3 bits were passed with the data
* address, but we will assume only the mode bits will be passed
* as to not cause alignment restrictions for DAC-based processors.
*/
/* DAC's hold the whole address without any mode flags */
task->thread.dac1 = data & ~0x3UL;
if (task->thread.dac1 == 0) {
dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
if (!DBCR_ACTIVE_EVENTS(task->thread.dbcr0,
task->thread.dbcr1)) {
task->thread.regs->msr &= ~MSR_DE;
task->thread.dbcr0 &= ~DBCR0_IDM;
}
return 0;
}
/* Read or Write bits must be set */
if (!(data & 0x3UL))
return -EINVAL;
/* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
register */
task->thread.dbcr0 |= DBCR0_IDM;
/* Check for write and read flags and set DBCR0
accordingly */
dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
if (data & 0x1UL)
dbcr_dac(task) |= DBCR_DAC1R;
if (data & 0x2UL)
dbcr_dac(task) |= DBCR_DAC1W;
task->thread.regs->msr |= MSR_DE;
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
return 0;
}
/*
* Called by kernel/ptrace.c when detaching..
*
* Make sure single step bits etc are not set.
*/
void ptrace_disable(struct task_struct *child)
{
/* make sure the single step bit is not set. */
user_disable_single_step(child);
}
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
static long set_intruction_bp(struct task_struct *child,
struct ppc_hw_breakpoint *bp_info)
{
int slot;
int slot1_in_use = ((child->thread.dbcr0 & DBCR0_IAC1) != 0);
int slot2_in_use = ((child->thread.dbcr0 & DBCR0_IAC2) != 0);
int slot3_in_use = ((child->thread.dbcr0 & DBCR0_IAC3) != 0);
int slot4_in_use = ((child->thread.dbcr0 & DBCR0_IAC4) != 0);
if (dbcr_iac_range(child) & DBCR_IAC12MODE)
slot2_in_use = 1;
if (dbcr_iac_range(child) & DBCR_IAC34MODE)
slot4_in_use = 1;
if (bp_info->addr >= TASK_SIZE)
return -EIO;
if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
/* Make sure range is valid. */
if (bp_info->addr2 >= TASK_SIZE)
return -EIO;
/* We need a pair of IAC regsisters */
if ((!slot1_in_use) && (!slot2_in_use)) {
slot = 1;
child->thread.iac1 = bp_info->addr;
child->thread.iac2 = bp_info->addr2;
child->thread.dbcr0 |= DBCR0_IAC1;
if (bp_info->addr_mode ==
PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
dbcr_iac_range(child) |= DBCR_IAC12X;
else
dbcr_iac_range(child) |= DBCR_IAC12I;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
} else if ((!slot3_in_use) && (!slot4_in_use)) {
slot = 3;
child->thread.iac3 = bp_info->addr;
child->thread.iac4 = bp_info->addr2;
child->thread.dbcr0 |= DBCR0_IAC3;
if (bp_info->addr_mode ==
PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
dbcr_iac_range(child) |= DBCR_IAC34X;
else
dbcr_iac_range(child) |= DBCR_IAC34I;
#endif
} else
return -ENOSPC;
} else {
/* We only need one. If possible leave a pair free in
* case a range is needed later
*/
if (!slot1_in_use) {
/*
* Don't use iac1 if iac1-iac2 are free and either
* iac3 or iac4 (but not both) are free
*/
if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
slot = 1;
child->thread.iac1 = bp_info->addr;
child->thread.dbcr0 |= DBCR0_IAC1;
goto out;
}
}
if (!slot2_in_use) {
slot = 2;
child->thread.iac2 = bp_info->addr;
child->thread.dbcr0 |= DBCR0_IAC2;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
} else if (!slot3_in_use) {
slot = 3;
child->thread.iac3 = bp_info->addr;
child->thread.dbcr0 |= DBCR0_IAC3;
} else if (!slot4_in_use) {
slot = 4;
child->thread.iac4 = bp_info->addr;
child->thread.dbcr0 |= DBCR0_IAC4;
#endif
} else
return -ENOSPC;
}
out:
child->thread.dbcr0 |= DBCR0_IDM;
child->thread.regs->msr |= MSR_DE;
return slot;
}
static int del_instruction_bp(struct task_struct *child, int slot)
{
switch (slot) {
case 1:
if ((child->thread.dbcr0 & DBCR0_IAC1) == 0)
return -ENOENT;
if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
/* address range - clear slots 1 & 2 */
child->thread.iac2 = 0;
dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
}
child->thread.iac1 = 0;
child->thread.dbcr0 &= ~DBCR0_IAC1;
break;
case 2:
if ((child->thread.dbcr0 & DBCR0_IAC2) == 0)
return -ENOENT;
if (dbcr_iac_range(child) & DBCR_IAC12MODE)
/* used in a range */
return -EINVAL;
child->thread.iac2 = 0;
child->thread.dbcr0 &= ~DBCR0_IAC2;
break;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
case 3:
if ((child->thread.dbcr0 & DBCR0_IAC3) == 0)
return -ENOENT;
if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
/* address range - clear slots 3 & 4 */
child->thread.iac4 = 0;
dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
}
child->thread.iac3 = 0;
child->thread.dbcr0 &= ~DBCR0_IAC3;
break;
case 4:
if ((child->thread.dbcr0 & DBCR0_IAC4) == 0)
return -ENOENT;
if (dbcr_iac_range(child) & DBCR_IAC34MODE)
/* Used in a range */
return -EINVAL;
child->thread.iac4 = 0;
child->thread.dbcr0 &= ~DBCR0_IAC4;
break;
#endif
default:
return -EINVAL;
}
return 0;
}
static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
{
int byte_enable =
(bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
& 0xf;
int condition_mode =
bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
int slot;
if (byte_enable && (condition_mode == 0))
return -EINVAL;
if (bp_info->addr >= TASK_SIZE)
return -EIO;
if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
slot = 1;
if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
dbcr_dac(child) |= DBCR_DAC1R;
if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
dbcr_dac(child) |= DBCR_DAC1W;
child->thread.dac1 = (unsigned long)bp_info->addr;
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
if (byte_enable) {
child->thread.dvc1 =
(unsigned long)bp_info->condition_value;
child->thread.dbcr2 |=
((byte_enable << DBCR2_DVC1BE_SHIFT) |
(condition_mode << DBCR2_DVC1M_SHIFT));
}
#endif
#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
} else if (child->thread.dbcr2 & DBCR2_DAC12MODE) {
/* Both dac1 and dac2 are part of a range */
return -ENOSPC;
#endif
} else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
slot = 2;
if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
dbcr_dac(child) |= DBCR_DAC2R;
if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
dbcr_dac(child) |= DBCR_DAC2W;
child->thread.dac2 = (unsigned long)bp_info->addr;
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
if (byte_enable) {
child->thread.dvc2 =
(unsigned long)bp_info->condition_value;
child->thread.dbcr2 |=
((byte_enable << DBCR2_DVC2BE_SHIFT) |
(condition_mode << DBCR2_DVC2M_SHIFT));
}
#endif
} else
return -ENOSPC;
child->thread.dbcr0 |= DBCR0_IDM;
child->thread.regs->msr |= MSR_DE;
return slot + 4;
}
static int del_dac(struct task_struct *child, int slot)
{
if (slot == 1) {
if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
return -ENOENT;
child->thread.dac1 = 0;
dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
if (child->thread.dbcr2 & DBCR2_DAC12MODE) {
child->thread.dac2 = 0;
child->thread.dbcr2 &= ~DBCR2_DAC12MODE;
}
child->thread.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
#endif
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
child->thread.dvc1 = 0;
#endif
} else if (slot == 2) {
if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
return -ENOENT;
#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
if (child->thread.dbcr2 & DBCR2_DAC12MODE)
/* Part of a range */
return -EINVAL;
child->thread.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
#endif
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
child->thread.dvc2 = 0;
#endif
child->thread.dac2 = 0;
dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
} else
return -EINVAL;
return 0;
}
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
static int set_dac_range(struct task_struct *child,
struct ppc_hw_breakpoint *bp_info)
{
int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
/* We don't allow range watchpoints to be used with DVC */
if (bp_info->condition_mode)
return -EINVAL;
/*
* Best effort to verify the address range. The user/supervisor bits
* prevent trapping in kernel space, but let's fail on an obvious bad
* range. The simple test on the mask is not fool-proof, and any
* exclusive range will spill over into kernel space.
*/
if (bp_info->addr >= TASK_SIZE)
return -EIO;
if (mode == PPC_BREAKPOINT_MODE_MASK) {
/*
* dac2 is a bitmask. Don't allow a mask that makes a
* kernel space address from a valid dac1 value
*/
if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
return -EIO;
} else {
/*
* For range breakpoints, addr2 must also be a valid address
*/
if (bp_info->addr2 >= TASK_SIZE)
return -EIO;
}
if (child->thread.dbcr0 &
(DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
return -ENOSPC;
if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
child->thread.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
child->thread.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
child->thread.dac1 = bp_info->addr;
child->thread.dac2 = bp_info->addr2;
if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
child->thread.dbcr2 |= DBCR2_DAC12M;
else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
child->thread.dbcr2 |= DBCR2_DAC12MX;
else /* PPC_BREAKPOINT_MODE_MASK */
child->thread.dbcr2 |= DBCR2_DAC12MM;
child->thread.regs->msr |= MSR_DE;
return 5;
}
#endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
static long ppc_set_hwdebug(struct task_struct *child,
struct ppc_hw_breakpoint *bp_info)
{
#ifndef CONFIG_PPC_ADV_DEBUG_REGS
unsigned long dabr;
#endif
if (bp_info->version != 1)
return -ENOTSUPP;
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
* Check for invalid flags and combinations
*/
if ((bp_info->trigger_type == 0) ||
(bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
PPC_BREAKPOINT_TRIGGER_RW)) ||
(bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
(bp_info->condition_mode &
~(PPC_BREAKPOINT_CONDITION_MODE |
PPC_BREAKPOINT_CONDITION_BE_ALL)))
return -EINVAL;
#if CONFIG_PPC_ADV_DEBUG_DVCS == 0
if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
return -EINVAL;
#endif
if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
(bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
return -EINVAL;
return set_intruction_bp(child, bp_info);
}
if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
return set_dac(child, bp_info);
#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
return set_dac_range(child, bp_info);
#else
return -EINVAL;
#endif
#else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
/*
* We only support one data breakpoint
*/
if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
(bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT ||
bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
return -EINVAL;
if (child->thread.dabr)
return -ENOSPC;
if ((unsigned long)bp_info->addr >= TASK_SIZE)
return -EIO;
dabr = (unsigned long)bp_info->addr & ~7UL;
dabr |= DABR_TRANSLATION;
if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
dabr |= DABR_DATA_READ;
if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
dabr |= DABR_DATA_WRITE;
child->thread.dabr = dabr;
return 1;
#endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
}
static long ppc_del_hwdebug(struct task_struct *child, long addr, long data)
{
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
int rc;
if (data <= 4)
rc = del_instruction_bp(child, (int)data);
else
rc = del_dac(child, (int)data - 4);
if (!rc) {
if (!DBCR_ACTIVE_EVENTS(child->thread.dbcr0,
child->thread.dbcr1)) {
child->thread.dbcr0 &= ~DBCR0_IDM;
child->thread.regs->msr &= ~MSR_DE;
}
}
return rc;
#else
if (data != 1)
return -EINVAL;
if (child->thread.dabr == 0)
return -ENOENT;
child->thread.dabr = 0;
return 0;
#endif
}
/*
* Here are the old "legacy" powerpc specific getregs/setregs ptrace calls,
* we mark them as obsolete now, they will be removed in a future version
*/
static long arch_ptrace_old(struct task_struct *child, long request,
unsigned long addr, unsigned long data)
{
void __user *datavp = (void __user *) data;
switch (request) {
case PPC_PTRACE_GETREGS: /* Get GPRs 0 - 31. */
return copy_regset_to_user(child, &user_ppc_native_view,
REGSET_GPR, 0, 32 * sizeof(long),
datavp);
case PPC_PTRACE_SETREGS: /* Set GPRs 0 - 31. */
return copy_regset_from_user(child, &user_ppc_native_view,
REGSET_GPR, 0, 32 * sizeof(long),
datavp);
case PPC_PTRACE_GETFPREGS: /* Get FPRs 0 - 31. */
return copy_regset_to_user(child, &user_ppc_native_view,
REGSET_FPR, 0, 32 * sizeof(double),
datavp);
case PPC_PTRACE_SETFPREGS: /* Set FPRs 0 - 31. */
return copy_regset_from_user(child, &user_ppc_native_view,
REGSET_FPR, 0, 32 * sizeof(double),
datavp);
}
return -EPERM;
}
long arch_ptrace(struct task_struct *child, long request,
unsigned long addr, unsigned long data)
{
int ret = -EPERM;
void __user *datavp = (void __user *) data;
unsigned long __user *datalp = datavp;
switch (request) {
/* read the word at location addr in the USER area. */
case PTRACE_PEEKUSR: {
unsigned long index, tmp;
ret = -EIO;
/* convert to index and check */
#ifdef CONFIG_PPC32
index = addr >> 2;
if ((addr & 3) || (index > PT_FPSCR)
|| (child->thread.regs == NULL))
#else
index = addr >> 3;
if ((addr & 7) || (index > PT_FPSCR))
#endif
break;
CHECK_FULL_REGS(child->thread.regs);
if (index < PT_FPR0) {
tmp = ptrace_get_reg(child, (int) index);
} else {
flush_fp_to_thread(child);
tmp = ((unsigned long *)child->thread.fpr)
[TS_FPRWIDTH * (index - PT_FPR0)];
}
ret = put_user(tmp, datalp);
break;
}
/* write the word at location addr in the USER area */
case PTRACE_POKEUSR: {
unsigned long index;
ret = -EIO;
/* convert to index and check */
#ifdef CONFIG_PPC32
index = addr >> 2;
if ((addr & 3) || (index > PT_FPSCR)
|| (child->thread.regs == NULL))
#else
index = addr >> 3;
if ((addr & 7) || (index > PT_FPSCR))
#endif
break;
CHECK_FULL_REGS(child->thread.regs);
if (index < PT_FPR0) {
ret = ptrace_put_reg(child, index, data);
} else {
flush_fp_to_thread(child);
((unsigned long *)child->thread.fpr)
[TS_FPRWIDTH * (index - PT_FPR0)] = data;
ret = 0;
}
break;
}
case PPC_PTRACE_GETHWDBGINFO: {
struct ppc_debug_info dbginfo;
dbginfo.version = 1;
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
dbginfo.data_bp_alignment = 4;
dbginfo.sizeof_condition = 4;
dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
PPC_DEBUG_FEATURE_INSN_BP_MASK;
#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
dbginfo.features |=
PPC_DEBUG_FEATURE_DATA_BP_RANGE |
PPC_DEBUG_FEATURE_DATA_BP_MASK;
#endif
#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
dbginfo.num_instruction_bps = 0;
dbginfo.num_data_bps = 1;
dbginfo.num_condition_regs = 0;
#ifdef CONFIG_PPC64
dbginfo.data_bp_alignment = 8;
#else
dbginfo.data_bp_alignment = 4;
#endif
dbginfo.sizeof_condition = 0;
dbginfo.features = 0;
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
if (!access_ok(VERIFY_WRITE, datavp,
sizeof(struct ppc_debug_info)))
return -EFAULT;
ret = __copy_to_user(datavp, &dbginfo,
sizeof(struct ppc_debug_info)) ?
-EFAULT : 0;
break;
}
case PPC_PTRACE_SETHWDEBUG: {
struct ppc_hw_breakpoint bp_info;
if (!access_ok(VERIFY_READ, datavp,
sizeof(struct ppc_hw_breakpoint)))
return -EFAULT;
ret = __copy_from_user(&bp_info, datavp,
sizeof(struct ppc_hw_breakpoint)) ?
-EFAULT : 0;
if (!ret)
ret = ppc_set_hwdebug(child, &bp_info);
break;
}
case PPC_PTRACE_DELHWDEBUG: {
ret = ppc_del_hwdebug(child, addr, data);
break;
}
case PTRACE_GET_DEBUGREG: {
ret = -EINVAL;
/* We only support one DABR and no IABRS at the moment */
if (addr > 0)
break;
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
ret = put_user(child->thread.dac1, datalp);
#else
ret = put_user(child->thread.dabr, datalp);
#endif
break;
}
case PTRACE_SET_DEBUGREG:
ret = ptrace_set_debugreg(child, addr, data);
break;
#ifdef CONFIG_PPC64
case PTRACE_GETREGS64:
#endif
case PTRACE_GETREGS: /* Get all pt_regs from the child. */
return copy_regset_to_user(child, &user_ppc_native_view,
REGSET_GPR,
0, sizeof(struct pt_regs),
datavp);
#ifdef CONFIG_PPC64
case PTRACE_SETREGS64:
#endif
case PTRACE_SETREGS: /* Set all gp regs in the child. */
return copy_regset_from_user(child, &user_ppc_native_view,
REGSET_GPR,
0, sizeof(struct pt_regs),
datavp);
case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
return copy_regset_to_user(child, &user_ppc_native_view,
REGSET_FPR,
0, sizeof(elf_fpregset_t),
datavp);
case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
return copy_regset_from_user(child, &user_ppc_native_view,
REGSET_FPR,
0, sizeof(elf_fpregset_t),
datavp);
#ifdef CONFIG_ALTIVEC
case PTRACE_GETVRREGS:
return copy_regset_to_user(child, &user_ppc_native_view,
REGSET_VMX,
0, (33 * sizeof(vector128) +
sizeof(u32)),
datavp);
case PTRACE_SETVRREGS:
return copy_regset_from_user(child, &user_ppc_native_view,
REGSET_VMX,
0, (33 * sizeof(vector128) +
sizeof(u32)),
datavp);
#endif
#ifdef CONFIG_VSX
case PTRACE_GETVSRREGS:
return copy_regset_to_user(child, &user_ppc_native_view,
REGSET_VSX,
0, 32 * sizeof(double),
datavp);
case PTRACE_SETVSRREGS:
return copy_regset_from_user(child, &user_ppc_native_view,
REGSET_VSX,
0, 32 * sizeof(double),
datavp);
#endif
#ifdef CONFIG_SPE
case PTRACE_GETEVRREGS:
/* Get the child spe register state. */
return copy_regset_to_user(child, &user_ppc_native_view,
REGSET_SPE, 0, 35 * sizeof(u32),
datavp);
case PTRACE_SETEVRREGS:
/* Set the child spe register state. */
return copy_regset_from_user(child, &user_ppc_native_view,
REGSET_SPE, 0, 35 * sizeof(u32),
datavp);
#endif
/* Old reverse args ptrace callss */
case PPC_PTRACE_GETREGS: /* Get GPRs 0 - 31. */
case PPC_PTRACE_SETREGS: /* Set GPRs 0 - 31. */
case PPC_PTRACE_GETFPREGS: /* Get FPRs 0 - 31. */
case PPC_PTRACE_SETFPREGS: /* Get FPRs 0 - 31. */
ret = arch_ptrace_old(child, request, addr, data);
break;
default:
ret = ptrace_request(child, request, addr, data);
break;
}
return ret;
}
/*
* We must return the syscall number to actually look up in the table.
* This can be -1L to skip running any syscall at all.
*/
long do_syscall_trace_enter(struct pt_regs *regs)
{
long ret = 0;
secure_computing(regs->gpr[0]);
if (test_thread_flag(TIF_SYSCALL_TRACE) &&
tracehook_report_syscall_entry(regs))
/*
* Tracing decided this syscall should not happen.
* We'll return a bogus call number to get an ENOSYS
* error, but leave the original number in regs->gpr[0].
*/
ret = -1L;
if (unlikely(current->audit_context)) {
#ifdef CONFIG_PPC64
if (!is_32bit_task())
audit_syscall_entry(AUDIT_ARCH_PPC64,
regs->gpr[0],
regs->gpr[3], regs->gpr[4],
regs->gpr[5], regs->gpr[6]);
else
#endif
audit_syscall_entry(AUDIT_ARCH_PPC,
regs->gpr[0],
regs->gpr[3] & 0xffffffff,
regs->gpr[4] & 0xffffffff,
regs->gpr[5] & 0xffffffff,
regs->gpr[6] & 0xffffffff);
}
return ret ?: regs->gpr[0];
}
void do_syscall_trace_leave(struct pt_regs *regs)
{
int step;
if (unlikely(current->audit_context))
audit_syscall_exit((regs->ccr&0x10000000)?AUDITSC_FAILURE:AUDITSC_SUCCESS,
regs->result);
step = test_thread_flag(TIF_SINGLESTEP);
if (step || test_thread_flag(TIF_SYSCALL_TRACE))
tracehook_report_syscall_exit(regs, step);
}