| /* |
| * Copyright 2005-2006 Erik Waling |
| * Copyright 2006 Stephane Marchesin |
| * Copyright 2007-2009 Stuart Bennett |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, |
| * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF |
| * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <subdev/bios.h> |
| |
| #include <drm/drmP.h> |
| |
| #include "nouveau_drm.h" |
| #include "nouveau_reg.h" |
| #include "dispnv04/hw.h" |
| #include "nouveau_encoder.h" |
| |
| #include <linux/io-mapping.h> |
| #include <linux/firmware.h> |
| |
| /* these defines are made up */ |
| #define NV_CIO_CRE_44_HEADA 0x0 |
| #define NV_CIO_CRE_44_HEADB 0x3 |
| #define FEATURE_MOBILE 0x10 /* also FEATURE_QUADRO for BMP */ |
| |
| #define EDID1_LEN 128 |
| |
| #define BIOSLOG(sip, fmt, arg...) NV_DEBUG(sip->dev, fmt, ##arg) |
| #define LOG_OLD_VALUE(x) |
| |
| struct init_exec { |
| bool execute; |
| bool repeat; |
| }; |
| |
| static bool nv_cksum(const uint8_t *data, unsigned int length) |
| { |
| /* |
| * There's a few checksums in the BIOS, so here's a generic checking |
| * function. |
| */ |
| int i; |
| uint8_t sum = 0; |
| |
| for (i = 0; i < length; i++) |
| sum += data[i]; |
| |
| if (sum) |
| return true; |
| |
| return false; |
| } |
| |
| static uint16_t clkcmptable(struct nvbios *bios, uint16_t clktable, int pxclk) |
| { |
| int compare_record_len, i = 0; |
| uint16_t compareclk, scriptptr = 0; |
| |
| if (bios->major_version < 5) /* pre BIT */ |
| compare_record_len = 3; |
| else |
| compare_record_len = 4; |
| |
| do { |
| compareclk = ROM16(bios->data[clktable + compare_record_len * i]); |
| if (pxclk >= compareclk * 10) { |
| if (bios->major_version < 5) { |
| uint8_t tmdssub = bios->data[clktable + 2 + compare_record_len * i]; |
| scriptptr = ROM16(bios->data[bios->init_script_tbls_ptr + tmdssub * 2]); |
| } else |
| scriptptr = ROM16(bios->data[clktable + 2 + compare_record_len * i]); |
| break; |
| } |
| i++; |
| } while (compareclk); |
| |
| return scriptptr; |
| } |
| |
| static void |
| run_digital_op_script(struct drm_device *dev, uint16_t scriptptr, |
| struct dcb_output *dcbent, int head, bool dl) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| |
| NV_INFO(drm, "0x%04X: Parsing digital output script table\n", |
| scriptptr); |
| NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_44, head ? NV_CIO_CRE_44_HEADB : |
| NV_CIO_CRE_44_HEADA); |
| nouveau_bios_run_init_table(dev, scriptptr, dcbent, head); |
| |
| nv04_dfp_bind_head(dev, dcbent, head, dl); |
| } |
| |
| static int call_lvds_manufacturer_script(struct drm_device *dev, struct dcb_output *dcbent, int head, enum LVDS_script script) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| struct nvbios *bios = &drm->vbios; |
| uint8_t sub = bios->data[bios->fp.xlated_entry + script] + (bios->fp.link_c_increment && dcbent->or & DCB_OUTPUT_C ? 1 : 0); |
| uint16_t scriptofs = ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]); |
| |
| if (!bios->fp.xlated_entry || !sub || !scriptofs) |
| return -EINVAL; |
| |
| run_digital_op_script(dev, scriptofs, dcbent, head, bios->fp.dual_link); |
| |
| if (script == LVDS_PANEL_OFF) { |
| /* off-on delay in ms */ |
| mdelay(ROM16(bios->data[bios->fp.xlated_entry + 7])); |
| } |
| #ifdef __powerpc__ |
| /* Powerbook specific quirks */ |
| if (script == LVDS_RESET && |
| (dev->pdev->device == 0x0179 || dev->pdev->device == 0x0189 || |
| dev->pdev->device == 0x0329)) |
| nv_write_tmds(dev, dcbent->or, 0, 0x02, 0x72); |
| #endif |
| |
| return 0; |
| } |
| |
| static int run_lvds_table(struct drm_device *dev, struct dcb_output *dcbent, int head, enum LVDS_script script, int pxclk) |
| { |
| /* |
| * The BIT LVDS table's header has the information to setup the |
| * necessary registers. Following the standard 4 byte header are: |
| * A bitmask byte and a dual-link transition pxclk value for use in |
| * selecting the init script when not using straps; 4 script pointers |
| * for panel power, selected by output and on/off; and 8 table pointers |
| * for panel init, the needed one determined by output, and bits in the |
| * conf byte. These tables are similar to the TMDS tables, consisting |
| * of a list of pxclks and script pointers. |
| */ |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| struct nvbios *bios = &drm->vbios; |
| unsigned int outputset = (dcbent->or == 4) ? 1 : 0; |
| uint16_t scriptptr = 0, clktable; |
| |
| /* |
| * For now we assume version 3.0 table - g80 support will need some |
| * changes |
| */ |
| |
| switch (script) { |
| case LVDS_INIT: |
| return -ENOSYS; |
| case LVDS_BACKLIGHT_ON: |
| case LVDS_PANEL_ON: |
| scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 7 + outputset * 2]); |
| break; |
| case LVDS_BACKLIGHT_OFF: |
| case LVDS_PANEL_OFF: |
| scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 11 + outputset * 2]); |
| break; |
| case LVDS_RESET: |
| clktable = bios->fp.lvdsmanufacturerpointer + 15; |
| if (dcbent->or == 4) |
| clktable += 8; |
| |
| if (dcbent->lvdsconf.use_straps_for_mode) { |
| if (bios->fp.dual_link) |
| clktable += 4; |
| if (bios->fp.if_is_24bit) |
| clktable += 2; |
| } else { |
| /* using EDID */ |
| int cmpval_24bit = (dcbent->or == 4) ? 4 : 1; |
| |
| if (bios->fp.dual_link) { |
| clktable += 4; |
| cmpval_24bit <<= 1; |
| } |
| |
| if (bios->fp.strapless_is_24bit & cmpval_24bit) |
| clktable += 2; |
| } |
| |
| clktable = ROM16(bios->data[clktable]); |
| if (!clktable) { |
| NV_ERROR(drm, "Pixel clock comparison table not found\n"); |
| return -ENOENT; |
| } |
| scriptptr = clkcmptable(bios, clktable, pxclk); |
| } |
| |
| if (!scriptptr) { |
| NV_ERROR(drm, "LVDS output init script not found\n"); |
| return -ENOENT; |
| } |
| run_digital_op_script(dev, scriptptr, dcbent, head, bios->fp.dual_link); |
| |
| return 0; |
| } |
| |
| int call_lvds_script(struct drm_device *dev, struct dcb_output *dcbent, int head, enum LVDS_script script, int pxclk) |
| { |
| /* |
| * LVDS operations are multiplexed in an effort to present a single API |
| * which works with two vastly differing underlying structures. |
| * This acts as the demux |
| */ |
| |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| struct nouveau_object *device = drm->device; |
| struct nvbios *bios = &drm->vbios; |
| uint8_t lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer]; |
| uint32_t sel_clk_binding, sel_clk; |
| int ret; |
| |
| if (bios->fp.last_script_invoc == (script << 1 | head) || !lvds_ver || |
| (lvds_ver >= 0x30 && script == LVDS_INIT)) |
| return 0; |
| |
| if (!bios->fp.lvds_init_run) { |
| bios->fp.lvds_init_run = true; |
| call_lvds_script(dev, dcbent, head, LVDS_INIT, pxclk); |
| } |
| |
| if (script == LVDS_PANEL_ON && bios->fp.reset_after_pclk_change) |
| call_lvds_script(dev, dcbent, head, LVDS_RESET, pxclk); |
| if (script == LVDS_RESET && bios->fp.power_off_for_reset) |
| call_lvds_script(dev, dcbent, head, LVDS_PANEL_OFF, pxclk); |
| |
| NV_INFO(drm, "Calling LVDS script %d:\n", script); |
| |
| /* don't let script change pll->head binding */ |
| sel_clk_binding = nvif_rd32(device, NV_PRAMDAC_SEL_CLK) & 0x50000; |
| |
| if (lvds_ver < 0x30) |
| ret = call_lvds_manufacturer_script(dev, dcbent, head, script); |
| else |
| ret = run_lvds_table(dev, dcbent, head, script, pxclk); |
| |
| bios->fp.last_script_invoc = (script << 1 | head); |
| |
| sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000; |
| NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding); |
| /* some scripts set a value in NV_PBUS_POWERCTRL_2 and break video overlay */ |
| nvif_wr32(device, NV_PBUS_POWERCTRL_2, 0); |
| |
| return ret; |
| } |
| |
| struct lvdstableheader { |
| uint8_t lvds_ver, headerlen, recordlen; |
| }; |
| |
| static int parse_lvds_manufacturer_table_header(struct drm_device *dev, struct nvbios *bios, struct lvdstableheader *lth) |
| { |
| /* |
| * BMP version (0xa) LVDS table has a simple header of version and |
| * record length. The BIT LVDS table has the typical BIT table header: |
| * version byte, header length byte, record length byte, and a byte for |
| * the maximum number of records that can be held in the table. |
| */ |
| |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| uint8_t lvds_ver, headerlen, recordlen; |
| |
| memset(lth, 0, sizeof(struct lvdstableheader)); |
| |
| if (bios->fp.lvdsmanufacturerpointer == 0x0) { |
| NV_ERROR(drm, "Pointer to LVDS manufacturer table invalid\n"); |
| return -EINVAL; |
| } |
| |
| lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer]; |
| |
| switch (lvds_ver) { |
| case 0x0a: /* pre NV40 */ |
| headerlen = 2; |
| recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1]; |
| break; |
| case 0x30: /* NV4x */ |
| headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1]; |
| if (headerlen < 0x1f) { |
| NV_ERROR(drm, "LVDS table header not understood\n"); |
| return -EINVAL; |
| } |
| recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2]; |
| break; |
| case 0x40: /* G80/G90 */ |
| headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1]; |
| if (headerlen < 0x7) { |
| NV_ERROR(drm, "LVDS table header not understood\n"); |
| return -EINVAL; |
| } |
| recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2]; |
| break; |
| default: |
| NV_ERROR(drm, |
| "LVDS table revision %d.%d not currently supported\n", |
| lvds_ver >> 4, lvds_ver & 0xf); |
| return -ENOSYS; |
| } |
| |
| lth->lvds_ver = lvds_ver; |
| lth->headerlen = headerlen; |
| lth->recordlen = recordlen; |
| |
| return 0; |
| } |
| |
| static int |
| get_fp_strap(struct drm_device *dev, struct nvbios *bios) |
| { |
| struct nouveau_object *device = nouveau_drm(dev)->device; |
| |
| /* |
| * The fp strap is normally dictated by the "User Strap" in |
| * PEXTDEV_BOOT_0[20:16], but on BMP cards when bit 2 of the |
| * Internal_Flags struct at 0x48 is set, the user strap gets overriden |
| * by the PCI subsystem ID during POST, but not before the previous user |
| * strap has been committed to CR58 for CR57=0xf on head A, which may be |
| * read and used instead |
| */ |
| |
| if (bios->major_version < 5 && bios->data[0x48] & 0x4) |
| return NVReadVgaCrtc5758(dev, 0, 0xf) & 0xf; |
| |
| if (nv_device(device)->card_type >= NV_50) |
| return (nvif_rd32(device, NV_PEXTDEV_BOOT_0) >> 24) & 0xf; |
| else |
| return (nvif_rd32(device, NV_PEXTDEV_BOOT_0) >> 16) & 0xf; |
| } |
| |
| static int parse_fp_mode_table(struct drm_device *dev, struct nvbios *bios) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| uint8_t *fptable; |
| uint8_t fptable_ver, headerlen = 0, recordlen, fpentries = 0xf, fpindex; |
| int ret, ofs, fpstrapping; |
| struct lvdstableheader lth; |
| |
| if (bios->fp.fptablepointer == 0x0) { |
| /* Apple cards don't have the fp table; the laptops use DDC */ |
| /* The table is also missing on some x86 IGPs */ |
| #ifndef __powerpc__ |
| NV_ERROR(drm, "Pointer to flat panel table invalid\n"); |
| #endif |
| bios->digital_min_front_porch = 0x4b; |
| return 0; |
| } |
| |
| fptable = &bios->data[bios->fp.fptablepointer]; |
| fptable_ver = fptable[0]; |
| |
| switch (fptable_ver) { |
| /* |
| * BMP version 0x5.0x11 BIOSen have version 1 like tables, but no |
| * version field, and miss one of the spread spectrum/PWM bytes. |
| * This could affect early GF2Go parts (not seen any appropriate ROMs |
| * though). Here we assume that a version of 0x05 matches this case |
| * (combining with a BMP version check would be better), as the |
| * common case for the panel type field is 0x0005, and that is in |
| * fact what we are reading the first byte of. |
| */ |
| case 0x05: /* some NV10, 11, 15, 16 */ |
| recordlen = 42; |
| ofs = -1; |
| break; |
| case 0x10: /* some NV15/16, and NV11+ */ |
| recordlen = 44; |
| ofs = 0; |
| break; |
| case 0x20: /* NV40+ */ |
| headerlen = fptable[1]; |
| recordlen = fptable[2]; |
| fpentries = fptable[3]; |
| /* |
| * fptable[4] is the minimum |
| * RAMDAC_FP_HCRTC -> RAMDAC_FP_HSYNC_START gap |
| */ |
| bios->digital_min_front_porch = fptable[4]; |
| ofs = -7; |
| break; |
| default: |
| NV_ERROR(drm, |
| "FP table revision %d.%d not currently supported\n", |
| fptable_ver >> 4, fptable_ver & 0xf); |
| return -ENOSYS; |
| } |
| |
| if (!bios->is_mobile) /* !mobile only needs digital_min_front_porch */ |
| return 0; |
| |
| ret = parse_lvds_manufacturer_table_header(dev, bios, <h); |
| if (ret) |
| return ret; |
| |
| if (lth.lvds_ver == 0x30 || lth.lvds_ver == 0x40) { |
| bios->fp.fpxlatetableptr = bios->fp.lvdsmanufacturerpointer + |
| lth.headerlen + 1; |
| bios->fp.xlatwidth = lth.recordlen; |
| } |
| if (bios->fp.fpxlatetableptr == 0x0) { |
| NV_ERROR(drm, "Pointer to flat panel xlat table invalid\n"); |
| return -EINVAL; |
| } |
| |
| fpstrapping = get_fp_strap(dev, bios); |
| |
| fpindex = bios->data[bios->fp.fpxlatetableptr + |
| fpstrapping * bios->fp.xlatwidth]; |
| |
| if (fpindex > fpentries) { |
| NV_ERROR(drm, "Bad flat panel table index\n"); |
| return -ENOENT; |
| } |
| |
| /* nv4x cards need both a strap value and fpindex of 0xf to use DDC */ |
| if (lth.lvds_ver > 0x10) |
| bios->fp_no_ddc = fpstrapping != 0xf || fpindex != 0xf; |
| |
| /* |
| * If either the strap or xlated fpindex value are 0xf there is no |
| * panel using a strap-derived bios mode present. this condition |
| * includes, but is different from, the DDC panel indicator above |
| */ |
| if (fpstrapping == 0xf || fpindex == 0xf) |
| return 0; |
| |
| bios->fp.mode_ptr = bios->fp.fptablepointer + headerlen + |
| recordlen * fpindex + ofs; |
| |
| NV_INFO(drm, "BIOS FP mode: %dx%d (%dkHz pixel clock)\n", |
| ROM16(bios->data[bios->fp.mode_ptr + 11]) + 1, |
| ROM16(bios->data[bios->fp.mode_ptr + 25]) + 1, |
| ROM16(bios->data[bios->fp.mode_ptr + 7]) * 10); |
| |
| return 0; |
| } |
| |
| bool nouveau_bios_fp_mode(struct drm_device *dev, struct drm_display_mode *mode) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| struct nvbios *bios = &drm->vbios; |
| uint8_t *mode_entry = &bios->data[bios->fp.mode_ptr]; |
| |
| if (!mode) /* just checking whether we can produce a mode */ |
| return bios->fp.mode_ptr; |
| |
| memset(mode, 0, sizeof(struct drm_display_mode)); |
| /* |
| * For version 1.0 (version in byte 0): |
| * bytes 1-2 are "panel type", including bits on whether Colour/mono, |
| * single/dual link, and type (TFT etc.) |
| * bytes 3-6 are bits per colour in RGBX |
| */ |
| mode->clock = ROM16(mode_entry[7]) * 10; |
| /* bytes 9-10 is HActive */ |
| mode->hdisplay = ROM16(mode_entry[11]) + 1; |
| /* |
| * bytes 13-14 is HValid Start |
| * bytes 15-16 is HValid End |
| */ |
| mode->hsync_start = ROM16(mode_entry[17]) + 1; |
| mode->hsync_end = ROM16(mode_entry[19]) + 1; |
| mode->htotal = ROM16(mode_entry[21]) + 1; |
| /* bytes 23-24, 27-30 similarly, but vertical */ |
| mode->vdisplay = ROM16(mode_entry[25]) + 1; |
| mode->vsync_start = ROM16(mode_entry[31]) + 1; |
| mode->vsync_end = ROM16(mode_entry[33]) + 1; |
| mode->vtotal = ROM16(mode_entry[35]) + 1; |
| mode->flags |= (mode_entry[37] & 0x10) ? |
| DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC; |
| mode->flags |= (mode_entry[37] & 0x1) ? |
| DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC; |
| /* |
| * bytes 38-39 relate to spread spectrum settings |
| * bytes 40-43 are something to do with PWM |
| */ |
| |
| mode->status = MODE_OK; |
| mode->type = DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED; |
| drm_mode_set_name(mode); |
| return bios->fp.mode_ptr; |
| } |
| |
| int nouveau_bios_parse_lvds_table(struct drm_device *dev, int pxclk, bool *dl, bool *if_is_24bit) |
| { |
| /* |
| * The LVDS table header is (mostly) described in |
| * parse_lvds_manufacturer_table_header(): the BIT header additionally |
| * contains the dual-link transition pxclk (in 10s kHz), at byte 5 - if |
| * straps are not being used for the panel, this specifies the frequency |
| * at which modes should be set up in the dual link style. |
| * |
| * Following the header, the BMP (ver 0xa) table has several records, |
| * indexed by a separate xlat table, indexed in turn by the fp strap in |
| * EXTDEV_BOOT. Each record had a config byte, followed by 6 script |
| * numbers for use by INIT_SUB which controlled panel init and power, |
| * and finally a dword of ms to sleep between power off and on |
| * operations. |
| * |
| * In the BIT versions, the table following the header serves as an |
| * integrated config and xlat table: the records in the table are |
| * indexed by the FP strap nibble in EXTDEV_BOOT, and each record has |
| * two bytes - the first as a config byte, the second for indexing the |
| * fp mode table pointed to by the BIT 'D' table |
| * |
| * DDC is not used until after card init, so selecting the correct table |
| * entry and setting the dual link flag for EDID equipped panels, |
| * requiring tests against the native-mode pixel clock, cannot be done |
| * until later, when this function should be called with non-zero pxclk |
| */ |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| struct nvbios *bios = &drm->vbios; |
| int fpstrapping = get_fp_strap(dev, bios), lvdsmanufacturerindex = 0; |
| struct lvdstableheader lth; |
| uint16_t lvdsofs; |
| int ret, chip_version = bios->chip_version; |
| |
| ret = parse_lvds_manufacturer_table_header(dev, bios, <h); |
| if (ret) |
| return ret; |
| |
| switch (lth.lvds_ver) { |
| case 0x0a: /* pre NV40 */ |
| lvdsmanufacturerindex = bios->data[ |
| bios->fp.fpxlatemanufacturertableptr + |
| fpstrapping]; |
| |
| /* we're done if this isn't the EDID panel case */ |
| if (!pxclk) |
| break; |
| |
| if (chip_version < 0x25) { |
| /* nv17 behaviour |
| * |
| * It seems the old style lvds script pointer is reused |
| * to select 18/24 bit colour depth for EDID panels. |
| */ |
| lvdsmanufacturerindex = |
| (bios->legacy.lvds_single_a_script_ptr & 1) ? |
| 2 : 0; |
| if (pxclk >= bios->fp.duallink_transition_clk) |
| lvdsmanufacturerindex++; |
| } else if (chip_version < 0x30) { |
| /* nv28 behaviour (off-chip encoder) |
| * |
| * nv28 does a complex dance of first using byte 121 of |
| * the EDID to choose the lvdsmanufacturerindex, then |
| * later attempting to match the EDID manufacturer and |
| * product IDs in a table (signature 'pidt' (panel id |
| * table?)), setting an lvdsmanufacturerindex of 0 and |
| * an fp strap of the match index (or 0xf if none) |
| */ |
| lvdsmanufacturerindex = 0; |
| } else { |
| /* nv31, nv34 behaviour */ |
| lvdsmanufacturerindex = 0; |
| if (pxclk >= bios->fp.duallink_transition_clk) |
| lvdsmanufacturerindex = 2; |
| if (pxclk >= 140000) |
| lvdsmanufacturerindex = 3; |
| } |
| |
| /* |
| * nvidia set the high nibble of (cr57=f, cr58) to |
| * lvdsmanufacturerindex in this case; we don't |
| */ |
| break; |
| case 0x30: /* NV4x */ |
| case 0x40: /* G80/G90 */ |
| lvdsmanufacturerindex = fpstrapping; |
| break; |
| default: |
| NV_ERROR(drm, "LVDS table revision not currently supported\n"); |
| return -ENOSYS; |
| } |
| |
| lvdsofs = bios->fp.xlated_entry = bios->fp.lvdsmanufacturerpointer + lth.headerlen + lth.recordlen * lvdsmanufacturerindex; |
| switch (lth.lvds_ver) { |
| case 0x0a: |
| bios->fp.power_off_for_reset = bios->data[lvdsofs] & 1; |
| bios->fp.reset_after_pclk_change = bios->data[lvdsofs] & 2; |
| bios->fp.dual_link = bios->data[lvdsofs] & 4; |
| bios->fp.link_c_increment = bios->data[lvdsofs] & 8; |
| *if_is_24bit = bios->data[lvdsofs] & 16; |
| break; |
| case 0x30: |
| case 0x40: |
| /* |
| * No sign of the "power off for reset" or "reset for panel |
| * on" bits, but it's safer to assume we should |
| */ |
| bios->fp.power_off_for_reset = true; |
| bios->fp.reset_after_pclk_change = true; |
| |
| /* |
| * It's ok lvdsofs is wrong for nv4x edid case; dual_link is |
| * over-written, and if_is_24bit isn't used |
| */ |
| bios->fp.dual_link = bios->data[lvdsofs] & 1; |
| bios->fp.if_is_24bit = bios->data[lvdsofs] & 2; |
| bios->fp.strapless_is_24bit = bios->data[bios->fp.lvdsmanufacturerpointer + 4]; |
| bios->fp.duallink_transition_clk = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 5]) * 10; |
| break; |
| } |
| |
| /* set dual_link flag for EDID case */ |
| if (pxclk && (chip_version < 0x25 || chip_version > 0x28)) |
| bios->fp.dual_link = (pxclk >= bios->fp.duallink_transition_clk); |
| |
| *dl = bios->fp.dual_link; |
| |
| return 0; |
| } |
| |
| int run_tmds_table(struct drm_device *dev, struct dcb_output *dcbent, int head, int pxclk) |
| { |
| /* |
| * the pxclk parameter is in kHz |
| * |
| * This runs the TMDS regs setting code found on BIT bios cards |
| * |
| * For ffs(or) == 1 use the first table, for ffs(or) == 2 and |
| * ffs(or) == 3, use the second. |
| */ |
| |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| struct nouveau_object *device = drm->device; |
| struct nvbios *bios = &drm->vbios; |
| int cv = bios->chip_version; |
| uint16_t clktable = 0, scriptptr; |
| uint32_t sel_clk_binding, sel_clk; |
| |
| /* pre-nv17 off-chip tmds uses scripts, post nv17 doesn't */ |
| if (cv >= 0x17 && cv != 0x1a && cv != 0x20 && |
| dcbent->location != DCB_LOC_ON_CHIP) |
| return 0; |
| |
| switch (ffs(dcbent->or)) { |
| case 1: |
| clktable = bios->tmds.output0_script_ptr; |
| break; |
| case 2: |
| case 3: |
| clktable = bios->tmds.output1_script_ptr; |
| break; |
| } |
| |
| if (!clktable) { |
| NV_ERROR(drm, "Pixel clock comparison table not found\n"); |
| return -EINVAL; |
| } |
| |
| scriptptr = clkcmptable(bios, clktable, pxclk); |
| |
| if (!scriptptr) { |
| NV_ERROR(drm, "TMDS output init script not found\n"); |
| return -ENOENT; |
| } |
| |
| /* don't let script change pll->head binding */ |
| sel_clk_binding = nvif_rd32(device, NV_PRAMDAC_SEL_CLK) & 0x50000; |
| run_digital_op_script(dev, scriptptr, dcbent, head, pxclk >= 165000); |
| sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000; |
| NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding); |
| |
| return 0; |
| } |
| |
| static void parse_script_table_pointers(struct nvbios *bios, uint16_t offset) |
| { |
| /* |
| * Parses the init table segment for pointers used in script execution. |
| * |
| * offset + 0 (16 bits): init script tables pointer |
| * offset + 2 (16 bits): macro index table pointer |
| * offset + 4 (16 bits): macro table pointer |
| * offset + 6 (16 bits): condition table pointer |
| * offset + 8 (16 bits): io condition table pointer |
| * offset + 10 (16 bits): io flag condition table pointer |
| * offset + 12 (16 bits): init function table pointer |
| */ |
| |
| bios->init_script_tbls_ptr = ROM16(bios->data[offset]); |
| } |
| |
| static int parse_bit_A_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) |
| { |
| /* |
| * Parses the load detect values for g80 cards. |
| * |
| * offset + 0 (16 bits): loadval table pointer |
| */ |
| |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| uint16_t load_table_ptr; |
| uint8_t version, headerlen, entrylen, num_entries; |
| |
| if (bitentry->length != 3) { |
| NV_ERROR(drm, "Do not understand BIT A table\n"); |
| return -EINVAL; |
| } |
| |
| load_table_ptr = ROM16(bios->data[bitentry->offset]); |
| |
| if (load_table_ptr == 0x0) { |
| NV_DEBUG(drm, "Pointer to BIT loadval table invalid\n"); |
| return -EINVAL; |
| } |
| |
| version = bios->data[load_table_ptr]; |
| |
| if (version != 0x10) { |
| NV_ERROR(drm, "BIT loadval table version %d.%d not supported\n", |
| version >> 4, version & 0xF); |
| return -ENOSYS; |
| } |
| |
| headerlen = bios->data[load_table_ptr + 1]; |
| entrylen = bios->data[load_table_ptr + 2]; |
| num_entries = bios->data[load_table_ptr + 3]; |
| |
| if (headerlen != 4 || entrylen != 4 || num_entries != 2) { |
| NV_ERROR(drm, "Do not understand BIT loadval table\n"); |
| return -EINVAL; |
| } |
| |
| /* First entry is normal dac, 2nd tv-out perhaps? */ |
| bios->dactestval = ROM32(bios->data[load_table_ptr + headerlen]) & 0x3ff; |
| |
| return 0; |
| } |
| |
| static int parse_bit_display_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) |
| { |
| /* |
| * Parses the flat panel table segment that the bit entry points to. |
| * Starting at bitentry->offset: |
| * |
| * offset + 0 (16 bits): ??? table pointer - seems to have 18 byte |
| * records beginning with a freq. |
| * offset + 2 (16 bits): mode table pointer |
| */ |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| |
| if (bitentry->length != 4) { |
| NV_ERROR(drm, "Do not understand BIT display table\n"); |
| return -EINVAL; |
| } |
| |
| bios->fp.fptablepointer = ROM16(bios->data[bitentry->offset + 2]); |
| |
| return 0; |
| } |
| |
| static int parse_bit_init_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) |
| { |
| /* |
| * Parses the init table segment that the bit entry points to. |
| * |
| * See parse_script_table_pointers for layout |
| */ |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| |
| if (bitentry->length < 14) { |
| NV_ERROR(drm, "Do not understand init table\n"); |
| return -EINVAL; |
| } |
| |
| parse_script_table_pointers(bios, bitentry->offset); |
| return 0; |
| } |
| |
| static int parse_bit_i_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) |
| { |
| /* |
| * BIT 'i' (info?) table |
| * |
| * offset + 0 (32 bits): BIOS version dword (as in B table) |
| * offset + 5 (8 bits): BIOS feature byte (same as for BMP?) |
| * offset + 13 (16 bits): pointer to table containing DAC load |
| * detection comparison values |
| * |
| * There's other things in the table, purpose unknown |
| */ |
| |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| uint16_t daccmpoffset; |
| uint8_t dacver, dacheaderlen; |
| |
| if (bitentry->length < 6) { |
| NV_ERROR(drm, "BIT i table too short for needed information\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * bit 4 seems to indicate a mobile bios (doesn't suffer from BMP's |
| * Quadro identity crisis), other bits possibly as for BMP feature byte |
| */ |
| bios->feature_byte = bios->data[bitentry->offset + 5]; |
| bios->is_mobile = bios->feature_byte & FEATURE_MOBILE; |
| |
| if (bitentry->length < 15) { |
| NV_WARN(drm, "BIT i table not long enough for DAC load " |
| "detection comparison table\n"); |
| return -EINVAL; |
| } |
| |
| daccmpoffset = ROM16(bios->data[bitentry->offset + 13]); |
| |
| /* doesn't exist on g80 */ |
| if (!daccmpoffset) |
| return 0; |
| |
| /* |
| * The first value in the table, following the header, is the |
| * comparison value, the second entry is a comparison value for |
| * TV load detection. |
| */ |
| |
| dacver = bios->data[daccmpoffset]; |
| dacheaderlen = bios->data[daccmpoffset + 1]; |
| |
| if (dacver != 0x00 && dacver != 0x10) { |
| NV_WARN(drm, "DAC load detection comparison table version " |
| "%d.%d not known\n", dacver >> 4, dacver & 0xf); |
| return -ENOSYS; |
| } |
| |
| bios->dactestval = ROM32(bios->data[daccmpoffset + dacheaderlen]); |
| bios->tvdactestval = ROM32(bios->data[daccmpoffset + dacheaderlen + 4]); |
| |
| return 0; |
| } |
| |
| static int parse_bit_lvds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) |
| { |
| /* |
| * Parses the LVDS table segment that the bit entry points to. |
| * Starting at bitentry->offset: |
| * |
| * offset + 0 (16 bits): LVDS strap xlate table pointer |
| */ |
| |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| |
| if (bitentry->length != 2) { |
| NV_ERROR(drm, "Do not understand BIT LVDS table\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * No idea if it's still called the LVDS manufacturer table, but |
| * the concept's close enough. |
| */ |
| bios->fp.lvdsmanufacturerpointer = ROM16(bios->data[bitentry->offset]); |
| |
| return 0; |
| } |
| |
| static int |
| parse_bit_M_tbl_entry(struct drm_device *dev, struct nvbios *bios, |
| struct bit_entry *bitentry) |
| { |
| /* |
| * offset + 2 (8 bits): number of options in an |
| * INIT_RAM_RESTRICT_ZM_REG_GROUP opcode option set |
| * offset + 3 (16 bits): pointer to strap xlate table for RAM |
| * restrict option selection |
| * |
| * There's a bunch of bits in this table other than the RAM restrict |
| * stuff that we don't use - their use currently unknown |
| */ |
| |
| /* |
| * Older bios versions don't have a sufficiently long table for |
| * what we want |
| */ |
| if (bitentry->length < 0x5) |
| return 0; |
| |
| if (bitentry->version < 2) { |
| bios->ram_restrict_group_count = bios->data[bitentry->offset + 2]; |
| bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 3]); |
| } else { |
| bios->ram_restrict_group_count = bios->data[bitentry->offset + 0]; |
| bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 1]); |
| } |
| |
| return 0; |
| } |
| |
| static int parse_bit_tmds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) |
| { |
| /* |
| * Parses the pointer to the TMDS table |
| * |
| * Starting at bitentry->offset: |
| * |
| * offset + 0 (16 bits): TMDS table pointer |
| * |
| * The TMDS table is typically found just before the DCB table, with a |
| * characteristic signature of 0x11,0x13 (1.1 being version, 0x13 being |
| * length?) |
| * |
| * At offset +7 is a pointer to a script, which I don't know how to |
| * run yet. |
| * At offset +9 is a pointer to another script, likewise |
| * Offset +11 has a pointer to a table where the first word is a pxclk |
| * frequency and the second word a pointer to a script, which should be |
| * run if the comparison pxclk frequency is less than the pxclk desired. |
| * This repeats for decreasing comparison frequencies |
| * Offset +13 has a pointer to a similar table |
| * The selection of table (and possibly +7/+9 script) is dictated by |
| * "or" from the DCB. |
| */ |
| |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| uint16_t tmdstableptr, script1, script2; |
| |
| if (bitentry->length != 2) { |
| NV_ERROR(drm, "Do not understand BIT TMDS table\n"); |
| return -EINVAL; |
| } |
| |
| tmdstableptr = ROM16(bios->data[bitentry->offset]); |
| if (!tmdstableptr) { |
| NV_ERROR(drm, "Pointer to TMDS table invalid\n"); |
| return -EINVAL; |
| } |
| |
| NV_INFO(drm, "TMDS table version %d.%d\n", |
| bios->data[tmdstableptr] >> 4, bios->data[tmdstableptr] & 0xf); |
| |
| /* nv50+ has v2.0, but we don't parse it atm */ |
| if (bios->data[tmdstableptr] != 0x11) |
| return -ENOSYS; |
| |
| /* |
| * These two scripts are odd: they don't seem to get run even when |
| * they are not stubbed. |
| */ |
| script1 = ROM16(bios->data[tmdstableptr + 7]); |
| script2 = ROM16(bios->data[tmdstableptr + 9]); |
| if (bios->data[script1] != 'q' || bios->data[script2] != 'q') |
| NV_WARN(drm, "TMDS table script pointers not stubbed\n"); |
| |
| bios->tmds.output0_script_ptr = ROM16(bios->data[tmdstableptr + 11]); |
| bios->tmds.output1_script_ptr = ROM16(bios->data[tmdstableptr + 13]); |
| |
| return 0; |
| } |
| |
| struct bit_table { |
| const char id; |
| int (* const parse_fn)(struct drm_device *, struct nvbios *, struct bit_entry *); |
| }; |
| |
| #define BIT_TABLE(id, funcid) ((struct bit_table){ id, parse_bit_##funcid##_tbl_entry }) |
| |
| int |
| bit_table(struct drm_device *dev, u8 id, struct bit_entry *bit) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| struct nvbios *bios = &drm->vbios; |
| u8 entries, *entry; |
| |
| if (bios->type != NVBIOS_BIT) |
| return -ENODEV; |
| |
| entries = bios->data[bios->offset + 10]; |
| entry = &bios->data[bios->offset + 12]; |
| while (entries--) { |
| if (entry[0] == id) { |
| bit->id = entry[0]; |
| bit->version = entry[1]; |
| bit->length = ROM16(entry[2]); |
| bit->offset = ROM16(entry[4]); |
| bit->data = ROMPTR(dev, entry[4]); |
| return 0; |
| } |
| |
| entry += bios->data[bios->offset + 9]; |
| } |
| |
| return -ENOENT; |
| } |
| |
| static int |
| parse_bit_table(struct nvbios *bios, const uint16_t bitoffset, |
| struct bit_table *table) |
| { |
| struct drm_device *dev = bios->dev; |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| struct bit_entry bitentry; |
| |
| if (bit_table(dev, table->id, &bitentry) == 0) |
| return table->parse_fn(dev, bios, &bitentry); |
| |
| NV_INFO(drm, "BIT table '%c' not found\n", table->id); |
| return -ENOSYS; |
| } |
| |
| static int |
| parse_bit_structure(struct nvbios *bios, const uint16_t bitoffset) |
| { |
| int ret; |
| |
| /* |
| * The only restriction on parsing order currently is having 'i' first |
| * for use of bios->*_version or bios->feature_byte while parsing; |
| * functions shouldn't be actually *doing* anything apart from pulling |
| * data from the image into the bios struct, thus no interdependencies |
| */ |
| ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('i', i)); |
| if (ret) /* info? */ |
| return ret; |
| if (bios->major_version >= 0x60) /* g80+ */ |
| parse_bit_table(bios, bitoffset, &BIT_TABLE('A', A)); |
| parse_bit_table(bios, bitoffset, &BIT_TABLE('D', display)); |
| ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('I', init)); |
| if (ret) |
| return ret; |
| parse_bit_table(bios, bitoffset, &BIT_TABLE('M', M)); /* memory? */ |
| parse_bit_table(bios, bitoffset, &BIT_TABLE('L', lvds)); |
| parse_bit_table(bios, bitoffset, &BIT_TABLE('T', tmds)); |
| |
| return 0; |
| } |
| |
| static int parse_bmp_structure(struct drm_device *dev, struct nvbios *bios, unsigned int offset) |
| { |
| /* |
| * Parses the BMP structure for useful things, but does not act on them |
| * |
| * offset + 5: BMP major version |
| * offset + 6: BMP minor version |
| * offset + 9: BMP feature byte |
| * offset + 10: BCD encoded BIOS version |
| * |
| * offset + 18: init script table pointer (for bios versions < 5.10h) |
| * offset + 20: extra init script table pointer (for bios |
| * versions < 5.10h) |
| * |
| * offset + 24: memory init table pointer (used on early bios versions) |
| * offset + 26: SDR memory sequencing setup data table |
| * offset + 28: DDR memory sequencing setup data table |
| * |
| * offset + 54: index of I2C CRTC pair to use for CRT output |
| * offset + 55: index of I2C CRTC pair to use for TV output |
| * offset + 56: index of I2C CRTC pair to use for flat panel output |
| * offset + 58: write CRTC index for I2C pair 0 |
| * offset + 59: read CRTC index for I2C pair 0 |
| * offset + 60: write CRTC index for I2C pair 1 |
| * offset + 61: read CRTC index for I2C pair 1 |
| * |
| * offset + 67: maximum internal PLL frequency (single stage PLL) |
| * offset + 71: minimum internal PLL frequency (single stage PLL) |
| * |
| * offset + 75: script table pointers, as described in |
| * parse_script_table_pointers |
| * |
| * offset + 89: TMDS single link output A table pointer |
| * offset + 91: TMDS single link output B table pointer |
| * offset + 95: LVDS single link output A table pointer |
| * offset + 105: flat panel timings table pointer |
| * offset + 107: flat panel strapping translation table pointer |
| * offset + 117: LVDS manufacturer panel config table pointer |
| * offset + 119: LVDS manufacturer strapping translation table pointer |
| * |
| * offset + 142: PLL limits table pointer |
| * |
| * offset + 156: minimum pixel clock for LVDS dual link |
| */ |
| |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| uint8_t *bmp = &bios->data[offset], bmp_version_major, bmp_version_minor; |
| uint16_t bmplength; |
| uint16_t legacy_scripts_offset, legacy_i2c_offset; |
| |
| /* load needed defaults in case we can't parse this info */ |
| bios->digital_min_front_porch = 0x4b; |
| bios->fmaxvco = 256000; |
| bios->fminvco = 128000; |
| bios->fp.duallink_transition_clk = 90000; |
| |
| bmp_version_major = bmp[5]; |
| bmp_version_minor = bmp[6]; |
| |
| NV_INFO(drm, "BMP version %d.%d\n", |
| bmp_version_major, bmp_version_minor); |
| |
| /* |
| * Make sure that 0x36 is blank and can't be mistaken for a DCB |
| * pointer on early versions |
| */ |
| if (bmp_version_major < 5) |
| *(uint16_t *)&bios->data[0x36] = 0; |
| |
| /* |
| * Seems that the minor version was 1 for all major versions prior |
| * to 5. Version 6 could theoretically exist, but I suspect BIT |
| * happened instead. |
| */ |
| if ((bmp_version_major < 5 && bmp_version_minor != 1) || bmp_version_major > 5) { |
| NV_ERROR(drm, "You have an unsupported BMP version. " |
| "Please send in your bios\n"); |
| return -ENOSYS; |
| } |
| |
| if (bmp_version_major == 0) |
| /* nothing that's currently useful in this version */ |
| return 0; |
| else if (bmp_version_major == 1) |
| bmplength = 44; /* exact for 1.01 */ |
| else if (bmp_version_major == 2) |
| bmplength = 48; /* exact for 2.01 */ |
| else if (bmp_version_major == 3) |
| bmplength = 54; |
| /* guessed - mem init tables added in this version */ |
| else if (bmp_version_major == 4 || bmp_version_minor < 0x1) |
| /* don't know if 5.0 exists... */ |
| bmplength = 62; |
| /* guessed - BMP I2C indices added in version 4*/ |
| else if (bmp_version_minor < 0x6) |
| bmplength = 67; /* exact for 5.01 */ |
| else if (bmp_version_minor < 0x10) |
| bmplength = 75; /* exact for 5.06 */ |
| else if (bmp_version_minor == 0x10) |
| bmplength = 89; /* exact for 5.10h */ |
| else if (bmp_version_minor < 0x14) |
| bmplength = 118; /* exact for 5.11h */ |
| else if (bmp_version_minor < 0x24) |
| /* |
| * Not sure of version where pll limits came in; |
| * certainly exist by 0x24 though. |
| */ |
| /* length not exact: this is long enough to get lvds members */ |
| bmplength = 123; |
| else if (bmp_version_minor < 0x27) |
| /* |
| * Length not exact: this is long enough to get pll limit |
| * member |
| */ |
| bmplength = 144; |
| else |
| /* |
| * Length not exact: this is long enough to get dual link |
| * transition clock. |
| */ |
| bmplength = 158; |
| |
| /* checksum */ |
| if (nv_cksum(bmp, 8)) { |
| NV_ERROR(drm, "Bad BMP checksum\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * Bit 4 seems to indicate either a mobile bios or a quadro card -- |
| * mobile behaviour consistent (nv11+), quadro only seen nv18gl-nv36gl |
| * (not nv10gl), bit 5 that the flat panel tables are present, and |
| * bit 6 a tv bios. |
| */ |
| bios->feature_byte = bmp[9]; |
| |
| if (bmp_version_major < 5 || bmp_version_minor < 0x10) |
| bios->old_style_init = true; |
| legacy_scripts_offset = 18; |
| if (bmp_version_major < 2) |
| legacy_scripts_offset -= 4; |
| bios->init_script_tbls_ptr = ROM16(bmp[legacy_scripts_offset]); |
| bios->extra_init_script_tbl_ptr = ROM16(bmp[legacy_scripts_offset + 2]); |
| |
| if (bmp_version_major > 2) { /* appears in BMP 3 */ |
| bios->legacy.mem_init_tbl_ptr = ROM16(bmp[24]); |
| bios->legacy.sdr_seq_tbl_ptr = ROM16(bmp[26]); |
| bios->legacy.ddr_seq_tbl_ptr = ROM16(bmp[28]); |
| } |
| |
| legacy_i2c_offset = 0x48; /* BMP version 2 & 3 */ |
| if (bmplength > 61) |
| legacy_i2c_offset = offset + 54; |
| bios->legacy.i2c_indices.crt = bios->data[legacy_i2c_offset]; |
| bios->legacy.i2c_indices.tv = bios->data[legacy_i2c_offset + 1]; |
| bios->legacy.i2c_indices.panel = bios->data[legacy_i2c_offset + 2]; |
| |
| if (bmplength > 74) { |
| bios->fmaxvco = ROM32(bmp[67]); |
| bios->fminvco = ROM32(bmp[71]); |
| } |
| if (bmplength > 88) |
| parse_script_table_pointers(bios, offset + 75); |
| if (bmplength > 94) { |
| bios->tmds.output0_script_ptr = ROM16(bmp[89]); |
| bios->tmds.output1_script_ptr = ROM16(bmp[91]); |
| /* |
| * Never observed in use with lvds scripts, but is reused for |
| * 18/24 bit panel interface default for EDID equipped panels |
| * (if_is_24bit not set directly to avoid any oscillation). |
| */ |
| bios->legacy.lvds_single_a_script_ptr = ROM16(bmp[95]); |
| } |
| if (bmplength > 108) { |
| bios->fp.fptablepointer = ROM16(bmp[105]); |
| bios->fp.fpxlatetableptr = ROM16(bmp[107]); |
| bios->fp.xlatwidth = 1; |
| } |
| if (bmplength > 120) { |
| bios->fp.lvdsmanufacturerpointer = ROM16(bmp[117]); |
| bios->fp.fpxlatemanufacturertableptr = ROM16(bmp[119]); |
| } |
| #if 0 |
| if (bmplength > 143) |
| bios->pll_limit_tbl_ptr = ROM16(bmp[142]); |
| #endif |
| |
| if (bmplength > 157) |
| bios->fp.duallink_transition_clk = ROM16(bmp[156]) * 10; |
| |
| return 0; |
| } |
| |
| static uint16_t findstr(uint8_t *data, int n, const uint8_t *str, int len) |
| { |
| int i, j; |
| |
| for (i = 0; i <= (n - len); i++) { |
| for (j = 0; j < len; j++) |
| if (data[i + j] != str[j]) |
| break; |
| if (j == len) |
| return i; |
| } |
| |
| return 0; |
| } |
| |
| void * |
| olddcb_table(struct drm_device *dev) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| u8 *dcb = NULL; |
| |
| if (nv_device(drm->device)->card_type > NV_04) |
| dcb = ROMPTR(dev, drm->vbios.data[0x36]); |
| if (!dcb) { |
| NV_WARN(drm, "No DCB data found in VBIOS\n"); |
| return NULL; |
| } |
| |
| if (dcb[0] >= 0x41) { |
| NV_WARN(drm, "DCB version 0x%02x unknown\n", dcb[0]); |
| return NULL; |
| } else |
| if (dcb[0] >= 0x30) { |
| if (ROM32(dcb[6]) == 0x4edcbdcb) |
| return dcb; |
| } else |
| if (dcb[0] >= 0x20) { |
| if (ROM32(dcb[4]) == 0x4edcbdcb) |
| return dcb; |
| } else |
| if (dcb[0] >= 0x15) { |
| if (!memcmp(&dcb[-7], "DEV_REC", 7)) |
| return dcb; |
| } else { |
| /* |
| * v1.4 (some NV15/16, NV11+) seems the same as v1.5, but |
| * always has the same single (crt) entry, even when tv-out |
| * present, so the conclusion is this version cannot really |
| * be used. |
| * |
| * v1.2 tables (some NV6/10, and NV15+) normally have the |
| * same 5 entries, which are not specific to the card and so |
| * no use. |
| * |
| * v1.2 does have an I2C table that read_dcb_i2c_table can |
| * handle, but cards exist (nv11 in #14821) with a bad i2c |
| * table pointer, so use the indices parsed in |
| * parse_bmp_structure. |
| * |
| * v1.1 (NV5+, maybe some NV4) is entirely unhelpful |
| */ |
| NV_WARN(drm, "No useful DCB data in VBIOS\n"); |
| return NULL; |
| } |
| |
| NV_WARN(drm, "DCB header validation failed\n"); |
| return NULL; |
| } |
| |
| void * |
| olddcb_outp(struct drm_device *dev, u8 idx) |
| { |
| u8 *dcb = olddcb_table(dev); |
| if (dcb && dcb[0] >= 0x30) { |
| if (idx < dcb[2]) |
| return dcb + dcb[1] + (idx * dcb[3]); |
| } else |
| if (dcb && dcb[0] >= 0x20) { |
| u8 *i2c = ROMPTR(dev, dcb[2]); |
| u8 *ent = dcb + 8 + (idx * 8); |
| if (i2c && ent < i2c) |
| return ent; |
| } else |
| if (dcb && dcb[0] >= 0x15) { |
| u8 *i2c = ROMPTR(dev, dcb[2]); |
| u8 *ent = dcb + 4 + (idx * 10); |
| if (i2c && ent < i2c) |
| return ent; |
| } |
| |
| return NULL; |
| } |
| |
| int |
| olddcb_outp_foreach(struct drm_device *dev, void *data, |
| int (*exec)(struct drm_device *, void *, int idx, u8 *outp)) |
| { |
| int ret, idx = -1; |
| u8 *outp = NULL; |
| while ((outp = olddcb_outp(dev, ++idx))) { |
| if (ROM32(outp[0]) == 0x00000000) |
| break; /* seen on an NV11 with DCB v1.5 */ |
| if (ROM32(outp[0]) == 0xffffffff) |
| break; /* seen on an NV17 with DCB v2.0 */ |
| |
| if ((outp[0] & 0x0f) == DCB_OUTPUT_UNUSED) |
| continue; |
| if ((outp[0] & 0x0f) == DCB_OUTPUT_EOL) |
| break; |
| |
| ret = exec(dev, data, idx, outp); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| u8 * |
| olddcb_conntab(struct drm_device *dev) |
| { |
| u8 *dcb = olddcb_table(dev); |
| if (dcb && dcb[0] >= 0x30 && dcb[1] >= 0x16) { |
| u8 *conntab = ROMPTR(dev, dcb[0x14]); |
| if (conntab && conntab[0] >= 0x30 && conntab[0] <= 0x40) |
| return conntab; |
| } |
| return NULL; |
| } |
| |
| u8 * |
| olddcb_conn(struct drm_device *dev, u8 idx) |
| { |
| u8 *conntab = olddcb_conntab(dev); |
| if (conntab && idx < conntab[2]) |
| return conntab + conntab[1] + (idx * conntab[3]); |
| return NULL; |
| } |
| |
| static struct dcb_output *new_dcb_entry(struct dcb_table *dcb) |
| { |
| struct dcb_output *entry = &dcb->entry[dcb->entries]; |
| |
| memset(entry, 0, sizeof(struct dcb_output)); |
| entry->index = dcb->entries++; |
| |
| return entry; |
| } |
| |
| static void fabricate_dcb_output(struct dcb_table *dcb, int type, int i2c, |
| int heads, int or) |
| { |
| struct dcb_output *entry = new_dcb_entry(dcb); |
| |
| entry->type = type; |
| entry->i2c_index = i2c; |
| entry->heads = heads; |
| if (type != DCB_OUTPUT_ANALOG) |
| entry->location = !DCB_LOC_ON_CHIP; /* ie OFF CHIP */ |
| entry->or = or; |
| } |
| |
| static bool |
| parse_dcb20_entry(struct drm_device *dev, struct dcb_table *dcb, |
| uint32_t conn, uint32_t conf, struct dcb_output *entry) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| |
| entry->type = conn & 0xf; |
| entry->i2c_index = (conn >> 4) & 0xf; |
| entry->heads = (conn >> 8) & 0xf; |
| entry->connector = (conn >> 12) & 0xf; |
| entry->bus = (conn >> 16) & 0xf; |
| entry->location = (conn >> 20) & 0x3; |
| entry->or = (conn >> 24) & 0xf; |
| |
| switch (entry->type) { |
| case DCB_OUTPUT_ANALOG: |
| /* |
| * Although the rest of a CRT conf dword is usually |
| * zeros, mac biosen have stuff there so we must mask |
| */ |
| entry->crtconf.maxfreq = (dcb->version < 0x30) ? |
| (conf & 0xffff) * 10 : |
| (conf & 0xff) * 10000; |
| break; |
| case DCB_OUTPUT_LVDS: |
| { |
| uint32_t mask; |
| if (conf & 0x1) |
| entry->lvdsconf.use_straps_for_mode = true; |
| if (dcb->version < 0x22) { |
| mask = ~0xd; |
| /* |
| * The laptop in bug 14567 lies and claims to not use |
| * straps when it does, so assume all DCB 2.0 laptops |
| * use straps, until a broken EDID using one is produced |
| */ |
| entry->lvdsconf.use_straps_for_mode = true; |
| /* |
| * Both 0x4 and 0x8 show up in v2.0 tables; assume they |
| * mean the same thing (probably wrong, but might work) |
| */ |
| if (conf & 0x4 || conf & 0x8) |
| entry->lvdsconf.use_power_scripts = true; |
| } else { |
| mask = ~0x7; |
| if (conf & 0x2) |
| entry->lvdsconf.use_acpi_for_edid = true; |
| if (conf & 0x4) |
| entry->lvdsconf.use_power_scripts = true; |
| entry->lvdsconf.sor.link = (conf & 0x00000030) >> 4; |
| } |
| if (conf & mask) { |
| /* |
| * Until we even try to use these on G8x, it's |
| * useless reporting unknown bits. They all are. |
| */ |
| if (dcb->version >= 0x40) |
| break; |
| |
| NV_ERROR(drm, "Unknown LVDS configuration bits, " |
| "please report\n"); |
| } |
| break; |
| } |
| case DCB_OUTPUT_TV: |
| { |
| if (dcb->version >= 0x30) |
| entry->tvconf.has_component_output = conf & (0x8 << 4); |
| else |
| entry->tvconf.has_component_output = false; |
| |
| break; |
| } |
| case DCB_OUTPUT_DP: |
| entry->dpconf.sor.link = (conf & 0x00000030) >> 4; |
| entry->extdev = (conf & 0x0000ff00) >> 8; |
| switch ((conf & 0x00e00000) >> 21) { |
| case 0: |
| entry->dpconf.link_bw = 162000; |
| break; |
| case 1: |
| entry->dpconf.link_bw = 270000; |
| break; |
| default: |
| entry->dpconf.link_bw = 540000; |
| break; |
| } |
| switch ((conf & 0x0f000000) >> 24) { |
| case 0xf: |
| entry->dpconf.link_nr = 4; |
| break; |
| case 0x3: |
| entry->dpconf.link_nr = 2; |
| break; |
| default: |
| entry->dpconf.link_nr = 1; |
| break; |
| } |
| break; |
| case DCB_OUTPUT_TMDS: |
| if (dcb->version >= 0x40) { |
| entry->tmdsconf.sor.link = (conf & 0x00000030) >> 4; |
| entry->extdev = (conf & 0x0000ff00) >> 8; |
| } |
| else if (dcb->version >= 0x30) |
| entry->tmdsconf.slave_addr = (conf & 0x00000700) >> 8; |
| else if (dcb->version >= 0x22) |
| entry->tmdsconf.slave_addr = (conf & 0x00000070) >> 4; |
| |
| break; |
| case DCB_OUTPUT_EOL: |
| /* weird g80 mobile type that "nv" treats as a terminator */ |
| dcb->entries--; |
| return false; |
| default: |
| break; |
| } |
| |
| if (dcb->version < 0x40) { |
| /* Normal entries consist of a single bit, but dual link has |
| * the next most significant bit set too |
| */ |
| entry->duallink_possible = |
| ((1 << (ffs(entry->or) - 1)) * 3 == entry->or); |
| } else { |
| entry->duallink_possible = (entry->sorconf.link == 3); |
| } |
| |
| /* unsure what DCB version introduces this, 3.0? */ |
| if (conf & 0x100000) |
| entry->i2c_upper_default = true; |
| |
| return true; |
| } |
| |
| static bool |
| parse_dcb15_entry(struct drm_device *dev, struct dcb_table *dcb, |
| uint32_t conn, uint32_t conf, struct dcb_output *entry) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| |
| switch (conn & 0x0000000f) { |
| case 0: |
| entry->type = DCB_OUTPUT_ANALOG; |
| break; |
| case 1: |
| entry->type = DCB_OUTPUT_TV; |
| break; |
| case 2: |
| case 4: |
| if (conn & 0x10) |
| entry->type = DCB_OUTPUT_LVDS; |
| else |
| entry->type = DCB_OUTPUT_TMDS; |
| break; |
| case 3: |
| entry->type = DCB_OUTPUT_LVDS; |
| break; |
| default: |
| NV_ERROR(drm, "Unknown DCB type %d\n", conn & 0x0000000f); |
| return false; |
| } |
| |
| entry->i2c_index = (conn & 0x0003c000) >> 14; |
| entry->heads = ((conn & 0x001c0000) >> 18) + 1; |
| entry->or = entry->heads; /* same as heads, hopefully safe enough */ |
| entry->location = (conn & 0x01e00000) >> 21; |
| entry->bus = (conn & 0x0e000000) >> 25; |
| entry->duallink_possible = false; |
| |
| switch (entry->type) { |
| case DCB_OUTPUT_ANALOG: |
| entry->crtconf.maxfreq = (conf & 0xffff) * 10; |
| break; |
| case DCB_OUTPUT_TV: |
| entry->tvconf.has_component_output = false; |
| break; |
| case DCB_OUTPUT_LVDS: |
| if ((conn & 0x00003f00) >> 8 != 0x10) |
| entry->lvdsconf.use_straps_for_mode = true; |
| entry->lvdsconf.use_power_scripts = true; |
| break; |
| default: |
| break; |
| } |
| |
| return true; |
| } |
| |
| static |
| void merge_like_dcb_entries(struct drm_device *dev, struct dcb_table *dcb) |
| { |
| /* |
| * DCB v2.0 lists each output combination separately. |
| * Here we merge compatible entries to have fewer outputs, with |
| * more options |
| */ |
| |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| int i, newentries = 0; |
| |
| for (i = 0; i < dcb->entries; i++) { |
| struct dcb_output *ient = &dcb->entry[i]; |
| int j; |
| |
| for (j = i + 1; j < dcb->entries; j++) { |
| struct dcb_output *jent = &dcb->entry[j]; |
| |
| if (jent->type == 100) /* already merged entry */ |
| continue; |
| |
| /* merge heads field when all other fields the same */ |
| if (jent->i2c_index == ient->i2c_index && |
| jent->type == ient->type && |
| jent->location == ient->location && |
| jent->or == ient->or) { |
| NV_INFO(drm, "Merging DCB entries %d and %d\n", |
| i, j); |
| ient->heads |= jent->heads; |
| jent->type = 100; /* dummy value */ |
| } |
| } |
| } |
| |
| /* Compact entries merged into others out of dcb */ |
| for (i = 0; i < dcb->entries; i++) { |
| if (dcb->entry[i].type == 100) |
| continue; |
| |
| if (newentries != i) { |
| dcb->entry[newentries] = dcb->entry[i]; |
| dcb->entry[newentries].index = newentries; |
| } |
| newentries++; |
| } |
| |
| dcb->entries = newentries; |
| } |
| |
| static bool |
| apply_dcb_encoder_quirks(struct drm_device *dev, int idx, u32 *conn, u32 *conf) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| struct dcb_table *dcb = &drm->vbios.dcb; |
| |
| /* Dell Precision M6300 |
| * DCB entry 2: 02025312 00000010 |
| * DCB entry 3: 02026312 00000020 |
| * |
| * Identical, except apparently a different connector on a |
| * different SOR link. Not a clue how we're supposed to know |
| * which one is in use if it even shares an i2c line... |
| * |
| * Ignore the connector on the second SOR link to prevent |
| * nasty problems until this is sorted (assuming it's not a |
| * VBIOS bug). |
| */ |
| if (nv_match_device(dev, 0x040d, 0x1028, 0x019b)) { |
| if (*conn == 0x02026312 && *conf == 0x00000020) |
| return false; |
| } |
| |
| /* GeForce3 Ti 200 |
| * |
| * DCB reports an LVDS output that should be TMDS: |
| * DCB entry 1: f2005014 ffffffff |
| */ |
| if (nv_match_device(dev, 0x0201, 0x1462, 0x8851)) { |
| if (*conn == 0xf2005014 && *conf == 0xffffffff) { |
| fabricate_dcb_output(dcb, DCB_OUTPUT_TMDS, 1, 1, 1); |
| return false; |
| } |
| } |
| |
| /* XFX GT-240X-YA |
| * |
| * So many things wrong here, replace the entire encoder table.. |
| */ |
| if (nv_match_device(dev, 0x0ca3, 0x1682, 0x3003)) { |
| if (idx == 0) { |
| *conn = 0x02001300; /* VGA, connector 1 */ |
| *conf = 0x00000028; |
| } else |
| if (idx == 1) { |
| *conn = 0x01010312; /* DVI, connector 0 */ |
| *conf = 0x00020030; |
| } else |
| if (idx == 2) { |
| *conn = 0x01010310; /* VGA, connector 0 */ |
| *conf = 0x00000028; |
| } else |
| if (idx == 3) { |
| *conn = 0x02022362; /* HDMI, connector 2 */ |
| *conf = 0x00020010; |
| } else { |
| *conn = 0x0000000e; /* EOL */ |
| *conf = 0x00000000; |
| } |
| } |
| |
| /* Some other twisted XFX board (rhbz#694914) |
| * |
| * The DVI/VGA encoder combo that's supposed to represent the |
| * DVI-I connector actually point at two different ones, and |
| * the HDMI connector ends up paired with the VGA instead. |
| * |
| * Connector table is missing anything for VGA at all, pointing it |
| * an invalid conntab entry 2 so we figure it out ourself. |
| */ |
| if (nv_match_device(dev, 0x0615, 0x1682, 0x2605)) { |
| if (idx == 0) { |
| *conn = 0x02002300; /* VGA, connector 2 */ |
| *conf = 0x00000028; |
| } else |
| if (idx == 1) { |
| *conn = 0x01010312; /* DVI, connector 0 */ |
| *conf = 0x00020030; |
| } else |
| if (idx == 2) { |
| *conn = 0x04020310; /* VGA, connector 0 */ |
| *conf = 0x00000028; |
| } else |
| if (idx == 3) { |
| *conn = 0x02021322; /* HDMI, connector 1 */ |
| *conf = 0x00020010; |
| } else { |
| *conn = 0x0000000e; /* EOL */ |
| *conf = 0x00000000; |
| } |
| } |
| |
| /* fdo#50830: connector indices for VGA and DVI-I are backwards */ |
| if (nv_match_device(dev, 0x0421, 0x3842, 0xc793)) { |
| if (idx == 0 && *conn == 0x02000300) |
| *conn = 0x02011300; |
| else |
| if (idx == 1 && *conn == 0x04011310) |
| *conn = 0x04000310; |
| else |
| if (idx == 2 && *conn == 0x02011312) |
| *conn = 0x02000312; |
| } |
| |
| return true; |
| } |
| |
| static void |
| fabricate_dcb_encoder_table(struct drm_device *dev, struct nvbios *bios) |
| { |
| struct dcb_table *dcb = &bios->dcb; |
| int all_heads = (nv_two_heads(dev) ? 3 : 1); |
| |
| #ifdef __powerpc__ |
| /* Apple iMac G4 NV17 */ |
| if (of_machine_is_compatible("PowerMac4,5")) { |
| fabricate_dcb_output(dcb, DCB_OUTPUT_TMDS, 0, all_heads, 1); |
| fabricate_dcb_output(dcb, DCB_OUTPUT_ANALOG, 1, all_heads, 2); |
| return; |
| } |
| #endif |
| |
| /* Make up some sane defaults */ |
| fabricate_dcb_output(dcb, DCB_OUTPUT_ANALOG, |
| bios->legacy.i2c_indices.crt, 1, 1); |
| |
| if (nv04_tv_identify(dev, bios->legacy.i2c_indices.tv) >= 0) |
| fabricate_dcb_output(dcb, DCB_OUTPUT_TV, |
| bios->legacy.i2c_indices.tv, |
| all_heads, 0); |
| |
| else if (bios->tmds.output0_script_ptr || |
| bios->tmds.output1_script_ptr) |
| fabricate_dcb_output(dcb, DCB_OUTPUT_TMDS, |
| bios->legacy.i2c_indices.panel, |
| all_heads, 1); |
| } |
| |
| static int |
| parse_dcb_entry(struct drm_device *dev, void *data, int idx, u8 *outp) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| struct dcb_table *dcb = &drm->vbios.dcb; |
| u32 conf = (dcb->version >= 0x20) ? ROM32(outp[4]) : ROM32(outp[6]); |
| u32 conn = ROM32(outp[0]); |
| bool ret; |
| |
| if (apply_dcb_encoder_quirks(dev, idx, &conn, &conf)) { |
| struct dcb_output *entry = new_dcb_entry(dcb); |
| |
| NV_INFO(drm, "DCB outp %02d: %08x %08x\n", idx, conn, conf); |
| |
| if (dcb->version >= 0x20) |
| ret = parse_dcb20_entry(dev, dcb, conn, conf, entry); |
| else |
| ret = parse_dcb15_entry(dev, dcb, conn, conf, entry); |
| if (!ret) |
| return 1; /* stop parsing */ |
| |
| /* Ignore the I2C index for on-chip TV-out, as there |
| * are cards with bogus values (nv31m in bug 23212), |
| * and it's otherwise useless. |
| */ |
| if (entry->type == DCB_OUTPUT_TV && |
| entry->location == DCB_LOC_ON_CHIP) |
| entry->i2c_index = 0x0f; |
| } |
| |
| return 0; |
| } |
| |
| static void |
| dcb_fake_connectors(struct nvbios *bios) |
| { |
| struct dcb_table *dcbt = &bios->dcb; |
| u8 map[16] = { }; |
| int i, idx = 0; |
| |
| /* heuristic: if we ever get a non-zero connector field, assume |
| * that all the indices are valid and we don't need fake them. |
| * |
| * and, as usual, a blacklist of boards with bad bios data.. |
| */ |
| if (!nv_match_device(bios->dev, 0x0392, 0x107d, 0x20a2)) { |
| for (i = 0; i < dcbt->entries; i++) { |
| if (dcbt->entry[i].connector) |
| return; |
| } |
| } |
| |
| /* no useful connector info available, we need to make it up |
| * ourselves. the rule here is: anything on the same i2c bus |
| * is considered to be on the same connector. any output |
| * without an associated i2c bus is assigned its own unique |
| * connector index. |
| */ |
| for (i = 0; i < dcbt->entries; i++) { |
| u8 i2c = dcbt->entry[i].i2c_index; |
| if (i2c == 0x0f) { |
| dcbt->entry[i].connector = idx++; |
| } else { |
| if (!map[i2c]) |
| map[i2c] = ++idx; |
| dcbt->entry[i].connector = map[i2c] - 1; |
| } |
| } |
| |
| /* if we created more than one connector, destroy the connector |
| * table - just in case it has random, rather than stub, entries. |
| */ |
| if (i > 1) { |
| u8 *conntab = olddcb_conntab(bios->dev); |
| if (conntab) |
| conntab[0] = 0x00; |
| } |
| } |
| |
| static int |
| parse_dcb_table(struct drm_device *dev, struct nvbios *bios) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| struct dcb_table *dcb = &bios->dcb; |
| u8 *dcbt, *conn; |
| int idx; |
| |
| dcbt = olddcb_table(dev); |
| if (!dcbt) { |
| /* handle pre-DCB boards */ |
| if (bios->type == NVBIOS_BMP) { |
| fabricate_dcb_encoder_table(dev, bios); |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| NV_INFO(drm, "DCB version %d.%d\n", dcbt[0] >> 4, dcbt[0] & 0xf); |
| |
| dcb->version = dcbt[0]; |
| olddcb_outp_foreach(dev, NULL, parse_dcb_entry); |
| |
| /* |
| * apart for v2.1+ not being known for requiring merging, this |
| * guarantees dcbent->index is the index of the entry in the rom image |
| */ |
| if (dcb->version < 0x21) |
| merge_like_dcb_entries(dev, dcb); |
| |
| /* dump connector table entries to log, if any exist */ |
| idx = -1; |
| while ((conn = olddcb_conn(dev, ++idx))) { |
| if (conn[0] != 0xff) { |
| NV_INFO(drm, "DCB conn %02d: ", idx); |
| if (olddcb_conntab(dev)[3] < 4) |
| pr_cont("%04x\n", ROM16(conn[0])); |
| else |
| pr_cont("%08x\n", ROM32(conn[0])); |
| } |
| } |
| dcb_fake_connectors(bios); |
| return 0; |
| } |
| |
| static int load_nv17_hwsq_ucode_entry(struct drm_device *dev, struct nvbios *bios, uint16_t hwsq_offset, int entry) |
| { |
| /* |
| * The header following the "HWSQ" signature has the number of entries, |
| * and the entry size |
| * |
| * An entry consists of a dword to write to the sequencer control reg |
| * (0x00001304), followed by the ucode bytes, written sequentially, |
| * starting at reg 0x00001400 |
| */ |
| |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| struct nouveau_object *device = drm->device; |
| uint8_t bytes_to_write; |
| uint16_t hwsq_entry_offset; |
| int i; |
| |
| if (bios->data[hwsq_offset] <= entry) { |
| NV_ERROR(drm, "Too few entries in HW sequencer table for " |
| "requested entry\n"); |
| return -ENOENT; |
| } |
| |
| bytes_to_write = bios->data[hwsq_offset + 1]; |
| |
| if (bytes_to_write != 36) { |
| NV_ERROR(drm, "Unknown HW sequencer entry size\n"); |
| return -EINVAL; |
| } |
| |
| NV_INFO(drm, "Loading NV17 power sequencing microcode\n"); |
| |
| hwsq_entry_offset = hwsq_offset + 2 + entry * bytes_to_write; |
| |
| /* set sequencer control */ |
| nvif_wr32(device, 0x00001304, ROM32(bios->data[hwsq_entry_offset])); |
| bytes_to_write -= 4; |
| |
| /* write ucode */ |
| for (i = 0; i < bytes_to_write; i += 4) |
| nvif_wr32(device, 0x00001400 + i, ROM32(bios->data[hwsq_entry_offset + i + 4])); |
| |
| /* twiddle NV_PBUS_DEBUG_4 */ |
| nvif_wr32(device, NV_PBUS_DEBUG_4, nvif_rd32(device, NV_PBUS_DEBUG_4) | 0x18); |
| |
| return 0; |
| } |
| |
| static int load_nv17_hw_sequencer_ucode(struct drm_device *dev, |
| struct nvbios *bios) |
| { |
| /* |
| * BMP based cards, from NV17, need a microcode loading to correctly |
| * control the GPIO etc for LVDS panels |
| * |
| * BIT based cards seem to do this directly in the init scripts |
| * |
| * The microcode entries are found by the "HWSQ" signature. |
| */ |
| |
| const uint8_t hwsq_signature[] = { 'H', 'W', 'S', 'Q' }; |
| const int sz = sizeof(hwsq_signature); |
| int hwsq_offset; |
| |
| hwsq_offset = findstr(bios->data, bios->length, hwsq_signature, sz); |
| if (!hwsq_offset) |
| return 0; |
| |
| /* always use entry 0? */ |
| return load_nv17_hwsq_ucode_entry(dev, bios, hwsq_offset + sz, 0); |
| } |
| |
| uint8_t *nouveau_bios_embedded_edid(struct drm_device *dev) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| struct nvbios *bios = &drm->vbios; |
| const uint8_t edid_sig[] = { |
| 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 }; |
| uint16_t offset = 0; |
| uint16_t newoffset; |
| int searchlen = NV_PROM_SIZE; |
| |
| if (bios->fp.edid) |
| return bios->fp.edid; |
| |
| while (searchlen) { |
| newoffset = findstr(&bios->data[offset], searchlen, |
| edid_sig, 8); |
| if (!newoffset) |
| return NULL; |
| offset += newoffset; |
| if (!nv_cksum(&bios->data[offset], EDID1_LEN)) |
| break; |
| |
| searchlen -= offset; |
| offset++; |
| } |
| |
| NV_INFO(drm, "Found EDID in BIOS\n"); |
| |
| return bios->fp.edid = &bios->data[offset]; |
| } |
| |
| static bool NVInitVBIOS(struct drm_device *dev) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| struct nouveau_bios *bios = nouveau_bios(drm->device); |
| struct nvbios *legacy = &drm->vbios; |
| |
| memset(legacy, 0, sizeof(struct nvbios)); |
| spin_lock_init(&legacy->lock); |
| legacy->dev = dev; |
| |
| legacy->data = bios->data; |
| legacy->length = bios->size; |
| legacy->major_version = bios->version.major; |
| legacy->chip_version = bios->version.chip; |
| if (bios->bit_offset) { |
| legacy->type = NVBIOS_BIT; |
| legacy->offset = bios->bit_offset; |
| return !parse_bit_structure(legacy, legacy->offset + 6); |
| } else |
| if (bios->bmp_offset) { |
| legacy->type = NVBIOS_BMP; |
| legacy->offset = bios->bmp_offset; |
| return !parse_bmp_structure(dev, legacy, legacy->offset); |
| } |
| |
| return false; |
| } |
| |
| int |
| nouveau_run_vbios_init(struct drm_device *dev) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| struct nvbios *bios = &drm->vbios; |
| int ret = 0; |
| |
| /* Reset the BIOS head to 0. */ |
| bios->state.crtchead = 0; |
| |
| if (bios->major_version < 5) /* BMP only */ |
| load_nv17_hw_sequencer_ucode(dev, bios); |
| |
| if (bios->execute) { |
| bios->fp.last_script_invoc = 0; |
| bios->fp.lvds_init_run = false; |
| } |
| |
| return ret; |
| } |
| |
| static bool |
| nouveau_bios_posted(struct drm_device *dev) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| unsigned htotal; |
| |
| if (nv_device(drm->device)->card_type >= NV_50) |
| return true; |
| |
| htotal = NVReadVgaCrtc(dev, 0, 0x06); |
| htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x01) << 8; |
| htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x20) << 4; |
| htotal |= (NVReadVgaCrtc(dev, 0, 0x25) & 0x01) << 10; |
| htotal |= (NVReadVgaCrtc(dev, 0, 0x41) & 0x01) << 11; |
| return (htotal != 0); |
| } |
| |
| int |
| nouveau_bios_init(struct drm_device *dev) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| struct nvbios *bios = &drm->vbios; |
| int ret; |
| |
| /* only relevant for PCI devices */ |
| if (!dev->pdev) |
| return 0; |
| |
| if (!NVInitVBIOS(dev)) |
| return -ENODEV; |
| |
| ret = parse_dcb_table(dev, bios); |
| if (ret) |
| return ret; |
| |
| if (!bios->major_version) /* we don't run version 0 bios */ |
| return 0; |
| |
| /* init script execution disabled */ |
| bios->execute = false; |
| |
| /* ... unless card isn't POSTed already */ |
| if (!nouveau_bios_posted(dev)) { |
| NV_INFO(drm, "Adaptor not initialised, " |
| "running VBIOS init tables.\n"); |
| bios->execute = true; |
| } |
| |
| ret = nouveau_run_vbios_init(dev); |
| if (ret) |
| return ret; |
| |
| /* feature_byte on BMP is poor, but init always sets CR4B */ |
| if (bios->major_version < 5) |
| bios->is_mobile = NVReadVgaCrtc(dev, 0, NV_CIO_CRE_4B) & 0x40; |
| |
| /* all BIT systems need p_f_m_t for digital_min_front_porch */ |
| if (bios->is_mobile || bios->major_version >= 5) |
| ret = parse_fp_mode_table(dev, bios); |
| |
| /* allow subsequent scripts to execute */ |
| bios->execute = true; |
| |
| return 0; |
| } |
| |
| void |
| nouveau_bios_takedown(struct drm_device *dev) |
| { |
| } |