| #include <linux/string.h> |
| #include <linux/kernel.h> |
| #include <linux/of.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/slab.h> |
| #include <linux/errno.h> |
| #include <linux/irq.h> |
| #include <linux/of_device.h> |
| #include <linux/of_platform.h> |
| |
| void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name) |
| { |
| unsigned long ret = res->start + offset; |
| struct resource *r; |
| |
| if (res->flags & IORESOURCE_MEM) |
| r = request_mem_region(ret, size, name); |
| else |
| r = request_region(ret, size, name); |
| if (!r) |
| ret = 0; |
| |
| return (void __iomem *) ret; |
| } |
| EXPORT_SYMBOL(of_ioremap); |
| |
| void of_iounmap(struct resource *res, void __iomem *base, unsigned long size) |
| { |
| if (res->flags & IORESOURCE_MEM) |
| release_mem_region((unsigned long) base, size); |
| else |
| release_region((unsigned long) base, size); |
| } |
| EXPORT_SYMBOL(of_iounmap); |
| |
| static int node_match(struct device *dev, void *data) |
| { |
| struct of_device *op = to_of_device(dev); |
| struct device_node *dp = data; |
| |
| return (op->node == dp); |
| } |
| |
| struct of_device *of_find_device_by_node(struct device_node *dp) |
| { |
| struct device *dev = bus_find_device(&of_platform_bus_type, NULL, |
| dp, node_match); |
| |
| if (dev) |
| return to_of_device(dev); |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(of_find_device_by_node); |
| |
| unsigned int irq_of_parse_and_map(struct device_node *node, int index) |
| { |
| struct of_device *op = of_find_device_by_node(node); |
| |
| if (!op || index >= op->num_irqs) |
| return 0; |
| |
| return op->irqs[index]; |
| } |
| EXPORT_SYMBOL(irq_of_parse_and_map); |
| |
| /* Take the archdata values for IOMMU, STC, and HOSTDATA found in |
| * BUS and propagate to all child of_device objects. |
| */ |
| void of_propagate_archdata(struct of_device *bus) |
| { |
| struct dev_archdata *bus_sd = &bus->dev.archdata; |
| struct device_node *bus_dp = bus->node; |
| struct device_node *dp; |
| |
| for (dp = bus_dp->child; dp; dp = dp->sibling) { |
| struct of_device *op = of_find_device_by_node(dp); |
| |
| op->dev.archdata.iommu = bus_sd->iommu; |
| op->dev.archdata.stc = bus_sd->stc; |
| op->dev.archdata.host_controller = bus_sd->host_controller; |
| op->dev.archdata.numa_node = bus_sd->numa_node; |
| |
| if (dp->child) |
| of_propagate_archdata(op); |
| } |
| } |
| |
| struct bus_type of_platform_bus_type; |
| EXPORT_SYMBOL(of_platform_bus_type); |
| |
| static inline u64 of_read_addr(const u32 *cell, int size) |
| { |
| u64 r = 0; |
| while (size--) |
| r = (r << 32) | *(cell++); |
| return r; |
| } |
| |
| static void __init get_cells(struct device_node *dp, |
| int *addrc, int *sizec) |
| { |
| if (addrc) |
| *addrc = of_n_addr_cells(dp); |
| if (sizec) |
| *sizec = of_n_size_cells(dp); |
| } |
| |
| /* Max address size we deal with */ |
| #define OF_MAX_ADDR_CELLS 4 |
| |
| struct of_bus { |
| const char *name; |
| const char *addr_prop_name; |
| int (*match)(struct device_node *parent); |
| void (*count_cells)(struct device_node *child, |
| int *addrc, int *sizec); |
| int (*map)(u32 *addr, const u32 *range, |
| int na, int ns, int pna); |
| unsigned long (*get_flags)(const u32 *addr, unsigned long); |
| }; |
| |
| /* |
| * Default translator (generic bus) |
| */ |
| |
| static void of_bus_default_count_cells(struct device_node *dev, |
| int *addrc, int *sizec) |
| { |
| get_cells(dev, addrc, sizec); |
| } |
| |
| /* Make sure the least significant 64-bits are in-range. Even |
| * for 3 or 4 cell values it is a good enough approximation. |
| */ |
| static int of_out_of_range(const u32 *addr, const u32 *base, |
| const u32 *size, int na, int ns) |
| { |
| u64 a = of_read_addr(addr, na); |
| u64 b = of_read_addr(base, na); |
| |
| if (a < b) |
| return 1; |
| |
| b += of_read_addr(size, ns); |
| if (a >= b) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int of_bus_default_map(u32 *addr, const u32 *range, |
| int na, int ns, int pna) |
| { |
| u32 result[OF_MAX_ADDR_CELLS]; |
| int i; |
| |
| if (ns > 2) { |
| printk("of_device: Cannot handle size cells (%d) > 2.", ns); |
| return -EINVAL; |
| } |
| |
| if (of_out_of_range(addr, range, range + na + pna, na, ns)) |
| return -EINVAL; |
| |
| /* Start with the parent range base. */ |
| memcpy(result, range + na, pna * 4); |
| |
| /* Add in the child address offset. */ |
| for (i = 0; i < na; i++) |
| result[pna - 1 - i] += |
| (addr[na - 1 - i] - |
| range[na - 1 - i]); |
| |
| memcpy(addr, result, pna * 4); |
| |
| return 0; |
| } |
| |
| static unsigned long of_bus_default_get_flags(const u32 *addr, unsigned long flags) |
| { |
| if (flags) |
| return flags; |
| return IORESOURCE_MEM; |
| } |
| |
| /* |
| * PCI bus specific translator |
| */ |
| |
| static int of_bus_pci_match(struct device_node *np) |
| { |
| if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) { |
| const char *model = of_get_property(np, "model", NULL); |
| |
| if (model && !strcmp(model, "SUNW,simba")) |
| return 0; |
| |
| /* Do not do PCI specific frobbing if the |
| * PCI bridge lacks a ranges property. We |
| * want to pass it through up to the next |
| * parent as-is, not with the PCI translate |
| * method which chops off the top address cell. |
| */ |
| if (!of_find_property(np, "ranges", NULL)) |
| return 0; |
| |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int of_bus_simba_match(struct device_node *np) |
| { |
| const char *model = of_get_property(np, "model", NULL); |
| |
| if (model && !strcmp(model, "SUNW,simba")) |
| return 1; |
| |
| /* Treat PCI busses lacking ranges property just like |
| * simba. |
| */ |
| if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) { |
| if (!of_find_property(np, "ranges", NULL)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int of_bus_simba_map(u32 *addr, const u32 *range, |
| int na, int ns, int pna) |
| { |
| return 0; |
| } |
| |
| static void of_bus_pci_count_cells(struct device_node *np, |
| int *addrc, int *sizec) |
| { |
| if (addrc) |
| *addrc = 3; |
| if (sizec) |
| *sizec = 2; |
| } |
| |
| static int of_bus_pci_map(u32 *addr, const u32 *range, |
| int na, int ns, int pna) |
| { |
| u32 result[OF_MAX_ADDR_CELLS]; |
| int i; |
| |
| /* Check address type match */ |
| if ((addr[0] ^ range[0]) & 0x03000000) |
| return -EINVAL; |
| |
| if (of_out_of_range(addr + 1, range + 1, range + na + pna, |
| na - 1, ns)) |
| return -EINVAL; |
| |
| /* Start with the parent range base. */ |
| memcpy(result, range + na, pna * 4); |
| |
| /* Add in the child address offset, skipping high cell. */ |
| for (i = 0; i < na - 1; i++) |
| result[pna - 1 - i] += |
| (addr[na - 1 - i] - |
| range[na - 1 - i]); |
| |
| memcpy(addr, result, pna * 4); |
| |
| return 0; |
| } |
| |
| static unsigned long of_bus_pci_get_flags(const u32 *addr, unsigned long flags) |
| { |
| u32 w = addr[0]; |
| |
| /* For PCI, we override whatever child busses may have used. */ |
| flags = 0; |
| switch((w >> 24) & 0x03) { |
| case 0x01: |
| flags |= IORESOURCE_IO; |
| break; |
| |
| case 0x02: /* 32 bits */ |
| case 0x03: /* 64 bits */ |
| flags |= IORESOURCE_MEM; |
| break; |
| } |
| if (w & 0x40000000) |
| flags |= IORESOURCE_PREFETCH; |
| return flags; |
| } |
| |
| /* |
| * SBUS bus specific translator |
| */ |
| |
| static int of_bus_sbus_match(struct device_node *np) |
| { |
| return !strcmp(np->name, "sbus") || |
| !strcmp(np->name, "sbi"); |
| } |
| |
| static void of_bus_sbus_count_cells(struct device_node *child, |
| int *addrc, int *sizec) |
| { |
| if (addrc) |
| *addrc = 2; |
| if (sizec) |
| *sizec = 1; |
| } |
| |
| /* |
| * FHC/Central bus specific translator. |
| * |
| * This is just needed to hard-code the address and size cell |
| * counts. 'fhc' and 'central' nodes lack the #address-cells and |
| * #size-cells properties, and if you walk to the root on such |
| * Enterprise boxes all you'll get is a #size-cells of 2 which is |
| * not what we want to use. |
| */ |
| static int of_bus_fhc_match(struct device_node *np) |
| { |
| return !strcmp(np->name, "fhc") || |
| !strcmp(np->name, "central"); |
| } |
| |
| #define of_bus_fhc_count_cells of_bus_sbus_count_cells |
| |
| /* |
| * Array of bus specific translators |
| */ |
| |
| static struct of_bus of_busses[] = { |
| /* PCI */ |
| { |
| .name = "pci", |
| .addr_prop_name = "assigned-addresses", |
| .match = of_bus_pci_match, |
| .count_cells = of_bus_pci_count_cells, |
| .map = of_bus_pci_map, |
| .get_flags = of_bus_pci_get_flags, |
| }, |
| /* SIMBA */ |
| { |
| .name = "simba", |
| .addr_prop_name = "assigned-addresses", |
| .match = of_bus_simba_match, |
| .count_cells = of_bus_pci_count_cells, |
| .map = of_bus_simba_map, |
| .get_flags = of_bus_pci_get_flags, |
| }, |
| /* SBUS */ |
| { |
| .name = "sbus", |
| .addr_prop_name = "reg", |
| .match = of_bus_sbus_match, |
| .count_cells = of_bus_sbus_count_cells, |
| .map = of_bus_default_map, |
| .get_flags = of_bus_default_get_flags, |
| }, |
| /* FHC */ |
| { |
| .name = "fhc", |
| .addr_prop_name = "reg", |
| .match = of_bus_fhc_match, |
| .count_cells = of_bus_fhc_count_cells, |
| .map = of_bus_default_map, |
| .get_flags = of_bus_default_get_flags, |
| }, |
| /* Default */ |
| { |
| .name = "default", |
| .addr_prop_name = "reg", |
| .match = NULL, |
| .count_cells = of_bus_default_count_cells, |
| .map = of_bus_default_map, |
| .get_flags = of_bus_default_get_flags, |
| }, |
| }; |
| |
| static struct of_bus *of_match_bus(struct device_node *np) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(of_busses); i ++) |
| if (!of_busses[i].match || of_busses[i].match(np)) |
| return &of_busses[i]; |
| BUG(); |
| return NULL; |
| } |
| |
| static int __init build_one_resource(struct device_node *parent, |
| struct of_bus *bus, |
| struct of_bus *pbus, |
| u32 *addr, |
| int na, int ns, int pna) |
| { |
| const u32 *ranges; |
| unsigned int rlen; |
| int rone; |
| |
| ranges = of_get_property(parent, "ranges", &rlen); |
| if (ranges == NULL || rlen == 0) { |
| u32 result[OF_MAX_ADDR_CELLS]; |
| int i; |
| |
| memset(result, 0, pna * 4); |
| for (i = 0; i < na; i++) |
| result[pna - 1 - i] = |
| addr[na - 1 - i]; |
| |
| memcpy(addr, result, pna * 4); |
| return 0; |
| } |
| |
| /* Now walk through the ranges */ |
| rlen /= 4; |
| rone = na + pna + ns; |
| for (; rlen >= rone; rlen -= rone, ranges += rone) { |
| if (!bus->map(addr, ranges, na, ns, pna)) |
| return 0; |
| } |
| |
| /* When we miss an I/O space match on PCI, just pass it up |
| * to the next PCI bridge and/or controller. |
| */ |
| if (!strcmp(bus->name, "pci") && |
| (addr[0] & 0x03000000) == 0x01000000) |
| return 0; |
| |
| return 1; |
| } |
| |
| static int __init use_1to1_mapping(struct device_node *pp) |
| { |
| /* If we have a ranges property in the parent, use it. */ |
| if (of_find_property(pp, "ranges", NULL) != NULL) |
| return 0; |
| |
| /* If the parent is the dma node of an ISA bus, pass |
| * the translation up to the root. |
| * |
| * Some SBUS devices use intermediate nodes to express |
| * hierarchy within the device itself. These aren't |
| * real bus nodes, and don't have a 'ranges' property. |
| * But, we should still pass the translation work up |
| * to the SBUS itself. |
| */ |
| if (!strcmp(pp->name, "dma") || |
| !strcmp(pp->name, "espdma") || |
| !strcmp(pp->name, "ledma") || |
| !strcmp(pp->name, "lebuffer")) |
| return 0; |
| |
| /* Similarly for all PCI bridges, if we get this far |
| * it lacks a ranges property, and this will include |
| * cases like Simba. |
| */ |
| if (!strcmp(pp->type, "pci") || !strcmp(pp->type, "pciex")) |
| return 0; |
| |
| return 1; |
| } |
| |
| static int of_resource_verbose; |
| |
| static void __init build_device_resources(struct of_device *op, |
| struct device *parent) |
| { |
| struct of_device *p_op; |
| struct of_bus *bus; |
| int na, ns; |
| int index, num_reg; |
| const void *preg; |
| |
| if (!parent) |
| return; |
| |
| p_op = to_of_device(parent); |
| bus = of_match_bus(p_op->node); |
| bus->count_cells(op->node, &na, &ns); |
| |
| preg = of_get_property(op->node, bus->addr_prop_name, &num_reg); |
| if (!preg || num_reg == 0) |
| return; |
| |
| /* Convert to num-cells. */ |
| num_reg /= 4; |
| |
| /* Convert to num-entries. */ |
| num_reg /= na + ns; |
| |
| /* Prevent overrunning the op->resources[] array. */ |
| if (num_reg > PROMREG_MAX) { |
| printk(KERN_WARNING "%s: Too many regs (%d), " |
| "limiting to %d.\n", |
| op->node->full_name, num_reg, PROMREG_MAX); |
| num_reg = PROMREG_MAX; |
| } |
| |
| for (index = 0; index < num_reg; index++) { |
| struct resource *r = &op->resource[index]; |
| u32 addr[OF_MAX_ADDR_CELLS]; |
| const u32 *reg = (preg + (index * ((na + ns) * 4))); |
| struct device_node *dp = op->node; |
| struct device_node *pp = p_op->node; |
| struct of_bus *pbus, *dbus; |
| u64 size, result = OF_BAD_ADDR; |
| unsigned long flags; |
| int dna, dns; |
| int pna, pns; |
| |
| size = of_read_addr(reg + na, ns); |
| memcpy(addr, reg, na * 4); |
| |
| flags = bus->get_flags(addr, 0); |
| |
| if (use_1to1_mapping(pp)) { |
| result = of_read_addr(addr, na); |
| goto build_res; |
| } |
| |
| dna = na; |
| dns = ns; |
| dbus = bus; |
| |
| while (1) { |
| dp = pp; |
| pp = dp->parent; |
| if (!pp) { |
| result = of_read_addr(addr, dna); |
| break; |
| } |
| |
| pbus = of_match_bus(pp); |
| pbus->count_cells(dp, &pna, &pns); |
| |
| if (build_one_resource(dp, dbus, pbus, addr, |
| dna, dns, pna)) |
| break; |
| |
| flags = pbus->get_flags(addr, flags); |
| |
| dna = pna; |
| dns = pns; |
| dbus = pbus; |
| } |
| |
| build_res: |
| memset(r, 0, sizeof(*r)); |
| |
| if (of_resource_verbose) |
| printk("%s reg[%d] -> %lx\n", |
| op->node->full_name, index, |
| result); |
| |
| if (result != OF_BAD_ADDR) { |
| if (tlb_type == hypervisor) |
| result &= 0x0fffffffffffffffUL; |
| |
| r->start = result; |
| r->end = result + size - 1; |
| r->flags = flags; |
| } |
| r->name = op->node->name; |
| } |
| } |
| |
| static struct device_node * __init |
| apply_interrupt_map(struct device_node *dp, struct device_node *pp, |
| const u32 *imap, int imlen, const u32 *imask, |
| unsigned int *irq_p) |
| { |
| struct device_node *cp; |
| unsigned int irq = *irq_p; |
| struct of_bus *bus; |
| phandle handle; |
| const u32 *reg; |
| int na, num_reg, i; |
| |
| bus = of_match_bus(pp); |
| bus->count_cells(dp, &na, NULL); |
| |
| reg = of_get_property(dp, "reg", &num_reg); |
| if (!reg || !num_reg) |
| return NULL; |
| |
| imlen /= ((na + 3) * 4); |
| handle = 0; |
| for (i = 0; i < imlen; i++) { |
| int j; |
| |
| for (j = 0; j < na; j++) { |
| if ((reg[j] & imask[j]) != imap[j]) |
| goto next; |
| } |
| if (imap[na] == irq) { |
| handle = imap[na + 1]; |
| irq = imap[na + 2]; |
| break; |
| } |
| |
| next: |
| imap += (na + 3); |
| } |
| if (i == imlen) { |
| /* Psycho and Sabre PCI controllers can have 'interrupt-map' |
| * properties that do not include the on-board device |
| * interrupts. Instead, the device's 'interrupts' property |
| * is already a fully specified INO value. |
| * |
| * Handle this by deciding that, if we didn't get a |
| * match in the parent's 'interrupt-map', and the |
| * parent is an IRQ translater, then use the parent as |
| * our IRQ controller. |
| */ |
| if (pp->irq_trans) |
| return pp; |
| |
| return NULL; |
| } |
| |
| *irq_p = irq; |
| cp = of_find_node_by_phandle(handle); |
| |
| return cp; |
| } |
| |
| static unsigned int __init pci_irq_swizzle(struct device_node *dp, |
| struct device_node *pp, |
| unsigned int irq) |
| { |
| const struct linux_prom_pci_registers *regs; |
| unsigned int bus, devfn, slot, ret; |
| |
| if (irq < 1 || irq > 4) |
| return irq; |
| |
| regs = of_get_property(dp, "reg", NULL); |
| if (!regs) |
| return irq; |
| |
| bus = (regs->phys_hi >> 16) & 0xff; |
| devfn = (regs->phys_hi >> 8) & 0xff; |
| slot = (devfn >> 3) & 0x1f; |
| |
| if (pp->irq_trans) { |
| /* Derived from Table 8-3, U2P User's Manual. This branch |
| * is handling a PCI controller that lacks a proper set of |
| * interrupt-map and interrupt-map-mask properties. The |
| * Ultra-E450 is one example. |
| * |
| * The bit layout is BSSLL, where: |
| * B: 0 on bus A, 1 on bus B |
| * D: 2-bit slot number, derived from PCI device number as |
| * (dev - 1) for bus A, or (dev - 2) for bus B |
| * L: 2-bit line number |
| */ |
| if (bus & 0x80) { |
| /* PBM-A */ |
| bus = 0x00; |
| slot = (slot - 1) << 2; |
| } else { |
| /* PBM-B */ |
| bus = 0x10; |
| slot = (slot - 2) << 2; |
| } |
| irq -= 1; |
| |
| ret = (bus | slot | irq); |
| } else { |
| /* Going through a PCI-PCI bridge that lacks a set of |
| * interrupt-map and interrupt-map-mask properties. |
| */ |
| ret = ((irq - 1 + (slot & 3)) & 3) + 1; |
| } |
| |
| return ret; |
| } |
| |
| static int of_irq_verbose; |
| |
| static unsigned int __init build_one_device_irq(struct of_device *op, |
| struct device *parent, |
| unsigned int irq) |
| { |
| struct device_node *dp = op->node; |
| struct device_node *pp, *ip; |
| unsigned int orig_irq = irq; |
| int nid; |
| |
| if (irq == 0xffffffff) |
| return irq; |
| |
| if (dp->irq_trans) { |
| irq = dp->irq_trans->irq_build(dp, irq, |
| dp->irq_trans->data); |
| |
| if (of_irq_verbose) |
| printk("%s: direct translate %x --> %x\n", |
| dp->full_name, orig_irq, irq); |
| |
| goto out; |
| } |
| |
| /* Something more complicated. Walk up to the root, applying |
| * interrupt-map or bus specific translations, until we hit |
| * an IRQ translator. |
| * |
| * If we hit a bus type or situation we cannot handle, we |
| * stop and assume that the original IRQ number was in a |
| * format which has special meaning to it's immediate parent. |
| */ |
| pp = dp->parent; |
| ip = NULL; |
| while (pp) { |
| const void *imap, *imsk; |
| int imlen; |
| |
| imap = of_get_property(pp, "interrupt-map", &imlen); |
| imsk = of_get_property(pp, "interrupt-map-mask", NULL); |
| if (imap && imsk) { |
| struct device_node *iret; |
| int this_orig_irq = irq; |
| |
| iret = apply_interrupt_map(dp, pp, |
| imap, imlen, imsk, |
| &irq); |
| |
| if (of_irq_verbose) |
| printk("%s: Apply [%s:%x] imap --> [%s:%x]\n", |
| op->node->full_name, |
| pp->full_name, this_orig_irq, |
| (iret ? iret->full_name : "NULL"), irq); |
| |
| if (!iret) |
| break; |
| |
| if (iret->irq_trans) { |
| ip = iret; |
| break; |
| } |
| } else { |
| if (!strcmp(pp->type, "pci") || |
| !strcmp(pp->type, "pciex")) { |
| unsigned int this_orig_irq = irq; |
| |
| irq = pci_irq_swizzle(dp, pp, irq); |
| if (of_irq_verbose) |
| printk("%s: PCI swizzle [%s] " |
| "%x --> %x\n", |
| op->node->full_name, |
| pp->full_name, this_orig_irq, |
| irq); |
| |
| } |
| |
| if (pp->irq_trans) { |
| ip = pp; |
| break; |
| } |
| } |
| dp = pp; |
| pp = pp->parent; |
| } |
| if (!ip) |
| return orig_irq; |
| |
| irq = ip->irq_trans->irq_build(op->node, irq, |
| ip->irq_trans->data); |
| if (of_irq_verbose) |
| printk("%s: Apply IRQ trans [%s] %x --> %x\n", |
| op->node->full_name, ip->full_name, orig_irq, irq); |
| |
| out: |
| nid = of_node_to_nid(dp); |
| if (nid != -1) { |
| cpumask_t numa_mask = node_to_cpumask(nid); |
| |
| irq_set_affinity(irq, numa_mask); |
| } |
| |
| return irq; |
| } |
| |
| static struct of_device * __init scan_one_device(struct device_node *dp, |
| struct device *parent) |
| { |
| struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL); |
| const unsigned int *irq; |
| struct dev_archdata *sd; |
| int len, i; |
| |
| if (!op) |
| return NULL; |
| |
| sd = &op->dev.archdata; |
| sd->prom_node = dp; |
| sd->op = op; |
| |
| op->node = dp; |
| |
| op->clock_freq = of_getintprop_default(dp, "clock-frequency", |
| (25*1000*1000)); |
| op->portid = of_getintprop_default(dp, "upa-portid", -1); |
| if (op->portid == -1) |
| op->portid = of_getintprop_default(dp, "portid", -1); |
| |
| irq = of_get_property(dp, "interrupts", &len); |
| if (irq) { |
| memcpy(op->irqs, irq, len); |
| op->num_irqs = len / 4; |
| } else { |
| op->num_irqs = 0; |
| } |
| |
| /* Prevent overrunning the op->irqs[] array. */ |
| if (op->num_irqs > PROMINTR_MAX) { |
| printk(KERN_WARNING "%s: Too many irqs (%d), " |
| "limiting to %d.\n", |
| dp->full_name, op->num_irqs, PROMINTR_MAX); |
| op->num_irqs = PROMINTR_MAX; |
| } |
| |
| build_device_resources(op, parent); |
| for (i = 0; i < op->num_irqs; i++) |
| op->irqs[i] = build_one_device_irq(op, parent, op->irqs[i]); |
| |
| op->dev.parent = parent; |
| op->dev.bus = &of_platform_bus_type; |
| if (!parent) |
| dev_set_name(&op->dev, "root"); |
| else |
| dev_set_name(&op->dev, "%08x", dp->node); |
| |
| if (of_device_register(op)) { |
| printk("%s: Could not register of device.\n", |
| dp->full_name); |
| kfree(op); |
| op = NULL; |
| } |
| |
| return op; |
| } |
| |
| static void __init scan_tree(struct device_node *dp, struct device *parent) |
| { |
| while (dp) { |
| struct of_device *op = scan_one_device(dp, parent); |
| |
| if (op) |
| scan_tree(dp->child, &op->dev); |
| |
| dp = dp->sibling; |
| } |
| } |
| |
| static void __init scan_of_devices(void) |
| { |
| struct device_node *root = of_find_node_by_path("/"); |
| struct of_device *parent; |
| |
| parent = scan_one_device(root, NULL); |
| if (!parent) |
| return; |
| |
| scan_tree(root->child, &parent->dev); |
| } |
| |
| static int __init of_bus_driver_init(void) |
| { |
| int err; |
| |
| err = of_bus_type_init(&of_platform_bus_type, "of"); |
| if (!err) |
| scan_of_devices(); |
| |
| return err; |
| } |
| |
| postcore_initcall(of_bus_driver_init); |
| |
| static int __init of_debug(char *str) |
| { |
| int val = 0; |
| |
| get_option(&str, &val); |
| if (val & 1) |
| of_resource_verbose = 1; |
| if (val & 2) |
| of_irq_verbose = 1; |
| return 1; |
| } |
| |
| __setup("of_debug=", of_debug); |