| /* |
| * Machine specific setup for xen |
| * |
| * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/pm.h> |
| #include <linux/memblock.h> |
| #include <linux/cpuidle.h> |
| #include <linux/cpufreq.h> |
| |
| #include <asm/elf.h> |
| #include <asm/vdso.h> |
| #include <asm/e820.h> |
| #include <asm/setup.h> |
| #include <asm/acpi.h> |
| #include <asm/numa.h> |
| #include <asm/xen/hypervisor.h> |
| #include <asm/xen/hypercall.h> |
| |
| #include <xen/xen.h> |
| #include <xen/page.h> |
| #include <xen/interface/callback.h> |
| #include <xen/interface/memory.h> |
| #include <xen/interface/physdev.h> |
| #include <xen/features.h> |
| #include <xen/hvc-console.h> |
| #include "xen-ops.h" |
| #include "vdso.h" |
| #include "mmu.h" |
| |
| #define GB(x) ((uint64_t)(x) * 1024 * 1024 * 1024) |
| |
| /* Amount of extra memory space we add to the e820 ranges */ |
| struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata; |
| |
| /* Number of pages released from the initial allocation. */ |
| unsigned long xen_released_pages; |
| |
| /* E820 map used during setting up memory. */ |
| static struct e820entry xen_e820_map[E820_X_MAX] __initdata; |
| static u32 xen_e820_map_entries __initdata; |
| |
| /* |
| * Buffer used to remap identity mapped pages. We only need the virtual space. |
| * The physical page behind this address is remapped as needed to different |
| * buffer pages. |
| */ |
| #define REMAP_SIZE (P2M_PER_PAGE - 3) |
| static struct { |
| unsigned long next_area_mfn; |
| unsigned long target_pfn; |
| unsigned long size; |
| unsigned long mfns[REMAP_SIZE]; |
| } xen_remap_buf __initdata __aligned(PAGE_SIZE); |
| static unsigned long xen_remap_mfn __initdata = INVALID_P2M_ENTRY; |
| |
| /* |
| * The maximum amount of extra memory compared to the base size. The |
| * main scaling factor is the size of struct page. At extreme ratios |
| * of base:extra, all the base memory can be filled with page |
| * structures for the extra memory, leaving no space for anything |
| * else. |
| * |
| * 10x seems like a reasonable balance between scaling flexibility and |
| * leaving a practically usable system. |
| */ |
| #define EXTRA_MEM_RATIO (10) |
| |
| static bool xen_512gb_limit __initdata = IS_ENABLED(CONFIG_XEN_512GB); |
| |
| static void __init xen_parse_512gb(void) |
| { |
| bool val = false; |
| char *arg; |
| |
| arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit"); |
| if (!arg) |
| return; |
| |
| arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit="); |
| if (!arg) |
| val = true; |
| else if (strtobool(arg + strlen("xen_512gb_limit="), &val)) |
| return; |
| |
| xen_512gb_limit = val; |
| } |
| |
| static void __init xen_add_extra_mem(unsigned long start_pfn, |
| unsigned long n_pfns) |
| { |
| int i; |
| |
| /* |
| * No need to check for zero size, should happen rarely and will only |
| * write a new entry regarded to be unused due to zero size. |
| */ |
| for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { |
| /* Add new region. */ |
| if (xen_extra_mem[i].n_pfns == 0) { |
| xen_extra_mem[i].start_pfn = start_pfn; |
| xen_extra_mem[i].n_pfns = n_pfns; |
| break; |
| } |
| /* Append to existing region. */ |
| if (xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns == |
| start_pfn) { |
| xen_extra_mem[i].n_pfns += n_pfns; |
| break; |
| } |
| } |
| if (i == XEN_EXTRA_MEM_MAX_REGIONS) |
| printk(KERN_WARNING "Warning: not enough extra memory regions\n"); |
| |
| memblock_reserve(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns)); |
| } |
| |
| static void __init xen_del_extra_mem(unsigned long start_pfn, |
| unsigned long n_pfns) |
| { |
| int i; |
| unsigned long start_r, size_r; |
| |
| for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { |
| start_r = xen_extra_mem[i].start_pfn; |
| size_r = xen_extra_mem[i].n_pfns; |
| |
| /* Start of region. */ |
| if (start_r == start_pfn) { |
| BUG_ON(n_pfns > size_r); |
| xen_extra_mem[i].start_pfn += n_pfns; |
| xen_extra_mem[i].n_pfns -= n_pfns; |
| break; |
| } |
| /* End of region. */ |
| if (start_r + size_r == start_pfn + n_pfns) { |
| BUG_ON(n_pfns > size_r); |
| xen_extra_mem[i].n_pfns -= n_pfns; |
| break; |
| } |
| /* Mid of region. */ |
| if (start_pfn > start_r && start_pfn < start_r + size_r) { |
| BUG_ON(start_pfn + n_pfns > start_r + size_r); |
| xen_extra_mem[i].n_pfns = start_pfn - start_r; |
| /* Calling memblock_reserve() again is okay. */ |
| xen_add_extra_mem(start_pfn + n_pfns, start_r + size_r - |
| (start_pfn + n_pfns)); |
| break; |
| } |
| } |
| memblock_free(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns)); |
| } |
| |
| /* |
| * Called during boot before the p2m list can take entries beyond the |
| * hypervisor supplied p2m list. Entries in extra mem are to be regarded as |
| * invalid. |
| */ |
| unsigned long __ref xen_chk_extra_mem(unsigned long pfn) |
| { |
| int i; |
| |
| for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { |
| if (pfn >= xen_extra_mem[i].start_pfn && |
| pfn < xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns) |
| return INVALID_P2M_ENTRY; |
| } |
| |
| return IDENTITY_FRAME(pfn); |
| } |
| |
| /* |
| * Mark all pfns of extra mem as invalid in p2m list. |
| */ |
| void __init xen_inv_extra_mem(void) |
| { |
| unsigned long pfn, pfn_s, pfn_e; |
| int i; |
| |
| for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { |
| if (!xen_extra_mem[i].n_pfns) |
| continue; |
| pfn_s = xen_extra_mem[i].start_pfn; |
| pfn_e = pfn_s + xen_extra_mem[i].n_pfns; |
| for (pfn = pfn_s; pfn < pfn_e; pfn++) |
| set_phys_to_machine(pfn, INVALID_P2M_ENTRY); |
| } |
| } |
| |
| /* |
| * Finds the next RAM pfn available in the E820 map after min_pfn. |
| * This function updates min_pfn with the pfn found and returns |
| * the size of that range or zero if not found. |
| */ |
| static unsigned long __init xen_find_pfn_range(unsigned long *min_pfn) |
| { |
| const struct e820entry *entry = xen_e820_map; |
| unsigned int i; |
| unsigned long done = 0; |
| |
| for (i = 0; i < xen_e820_map_entries; i++, entry++) { |
| unsigned long s_pfn; |
| unsigned long e_pfn; |
| |
| if (entry->type != E820_RAM) |
| continue; |
| |
| e_pfn = PFN_DOWN(entry->addr + entry->size); |
| |
| /* We only care about E820 after this */ |
| if (e_pfn <= *min_pfn) |
| continue; |
| |
| s_pfn = PFN_UP(entry->addr); |
| |
| /* If min_pfn falls within the E820 entry, we want to start |
| * at the min_pfn PFN. |
| */ |
| if (s_pfn <= *min_pfn) { |
| done = e_pfn - *min_pfn; |
| } else { |
| done = e_pfn - s_pfn; |
| *min_pfn = s_pfn; |
| } |
| break; |
| } |
| |
| return done; |
| } |
| |
| static int __init xen_free_mfn(unsigned long mfn) |
| { |
| struct xen_memory_reservation reservation = { |
| .address_bits = 0, |
| .extent_order = 0, |
| .domid = DOMID_SELF |
| }; |
| |
| set_xen_guest_handle(reservation.extent_start, &mfn); |
| reservation.nr_extents = 1; |
| |
| return HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation); |
| } |
| |
| /* |
| * This releases a chunk of memory and then does the identity map. It's used |
| * as a fallback if the remapping fails. |
| */ |
| static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn, |
| unsigned long end_pfn, unsigned long nr_pages) |
| { |
| unsigned long pfn, end; |
| int ret; |
| |
| WARN_ON(start_pfn > end_pfn); |
| |
| /* Release pages first. */ |
| end = min(end_pfn, nr_pages); |
| for (pfn = start_pfn; pfn < end; pfn++) { |
| unsigned long mfn = pfn_to_mfn(pfn); |
| |
| /* Make sure pfn exists to start with */ |
| if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn) |
| continue; |
| |
| ret = xen_free_mfn(mfn); |
| WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret); |
| |
| if (ret == 1) { |
| xen_released_pages++; |
| if (!__set_phys_to_machine(pfn, INVALID_P2M_ENTRY)) |
| break; |
| } else |
| break; |
| } |
| |
| set_phys_range_identity(start_pfn, end_pfn); |
| } |
| |
| /* |
| * Helper function to update the p2m and m2p tables and kernel mapping. |
| */ |
| static void __init xen_update_mem_tables(unsigned long pfn, unsigned long mfn) |
| { |
| struct mmu_update update = { |
| .ptr = ((uint64_t)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE, |
| .val = pfn |
| }; |
| |
| /* Update p2m */ |
| if (!set_phys_to_machine(pfn, mfn)) { |
| WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n", |
| pfn, mfn); |
| BUG(); |
| } |
| |
| /* Update m2p */ |
| if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) { |
| WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n", |
| mfn, pfn); |
| BUG(); |
| } |
| |
| /* Update kernel mapping, but not for highmem. */ |
| if (pfn >= PFN_UP(__pa(high_memory - 1))) |
| return; |
| |
| if (HYPERVISOR_update_va_mapping((unsigned long)__va(pfn << PAGE_SHIFT), |
| mfn_pte(mfn, PAGE_KERNEL), 0)) { |
| WARN(1, "Failed to update kernel mapping for mfn=%ld pfn=%ld\n", |
| mfn, pfn); |
| BUG(); |
| } |
| } |
| |
| /* |
| * This function updates the p2m and m2p tables with an identity map from |
| * start_pfn to start_pfn+size and prepares remapping the underlying RAM of the |
| * original allocation at remap_pfn. The information needed for remapping is |
| * saved in the memory itself to avoid the need for allocating buffers. The |
| * complete remap information is contained in a list of MFNs each containing |
| * up to REMAP_SIZE MFNs and the start target PFN for doing the remap. |
| * This enables us to preserve the original mfn sequence while doing the |
| * remapping at a time when the memory management is capable of allocating |
| * virtual and physical memory in arbitrary amounts, see 'xen_remap_memory' and |
| * its callers. |
| */ |
| static void __init xen_do_set_identity_and_remap_chunk( |
| unsigned long start_pfn, unsigned long size, unsigned long remap_pfn) |
| { |
| unsigned long buf = (unsigned long)&xen_remap_buf; |
| unsigned long mfn_save, mfn; |
| unsigned long ident_pfn_iter, remap_pfn_iter; |
| unsigned long ident_end_pfn = start_pfn + size; |
| unsigned long left = size; |
| unsigned int i, chunk; |
| |
| WARN_ON(size == 0); |
| |
| BUG_ON(xen_feature(XENFEAT_auto_translated_physmap)); |
| |
| mfn_save = virt_to_mfn(buf); |
| |
| for (ident_pfn_iter = start_pfn, remap_pfn_iter = remap_pfn; |
| ident_pfn_iter < ident_end_pfn; |
| ident_pfn_iter += REMAP_SIZE, remap_pfn_iter += REMAP_SIZE) { |
| chunk = (left < REMAP_SIZE) ? left : REMAP_SIZE; |
| |
| /* Map first pfn to xen_remap_buf */ |
| mfn = pfn_to_mfn(ident_pfn_iter); |
| set_pte_mfn(buf, mfn, PAGE_KERNEL); |
| |
| /* Save mapping information in page */ |
| xen_remap_buf.next_area_mfn = xen_remap_mfn; |
| xen_remap_buf.target_pfn = remap_pfn_iter; |
| xen_remap_buf.size = chunk; |
| for (i = 0; i < chunk; i++) |
| xen_remap_buf.mfns[i] = pfn_to_mfn(ident_pfn_iter + i); |
| |
| /* Put remap buf into list. */ |
| xen_remap_mfn = mfn; |
| |
| /* Set identity map */ |
| set_phys_range_identity(ident_pfn_iter, ident_pfn_iter + chunk); |
| |
| left -= chunk; |
| } |
| |
| /* Restore old xen_remap_buf mapping */ |
| set_pte_mfn(buf, mfn_save, PAGE_KERNEL); |
| } |
| |
| /* |
| * This function takes a contiguous pfn range that needs to be identity mapped |
| * and: |
| * |
| * 1) Finds a new range of pfns to use to remap based on E820 and remap_pfn. |
| * 2) Calls the do_ function to actually do the mapping/remapping work. |
| * |
| * The goal is to not allocate additional memory but to remap the existing |
| * pages. In the case of an error the underlying memory is simply released back |
| * to Xen and not remapped. |
| */ |
| static unsigned long __init xen_set_identity_and_remap_chunk( |
| unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages, |
| unsigned long remap_pfn) |
| { |
| unsigned long pfn; |
| unsigned long i = 0; |
| unsigned long n = end_pfn - start_pfn; |
| |
| if (remap_pfn == 0) |
| remap_pfn = nr_pages; |
| |
| while (i < n) { |
| unsigned long cur_pfn = start_pfn + i; |
| unsigned long left = n - i; |
| unsigned long size = left; |
| unsigned long remap_range_size; |
| |
| /* Do not remap pages beyond the current allocation */ |
| if (cur_pfn >= nr_pages) { |
| /* Identity map remaining pages */ |
| set_phys_range_identity(cur_pfn, cur_pfn + size); |
| break; |
| } |
| if (cur_pfn + size > nr_pages) |
| size = nr_pages - cur_pfn; |
| |
| remap_range_size = xen_find_pfn_range(&remap_pfn); |
| if (!remap_range_size) { |
| pr_warning("Unable to find available pfn range, not remapping identity pages\n"); |
| xen_set_identity_and_release_chunk(cur_pfn, |
| cur_pfn + left, nr_pages); |
| break; |
| } |
| /* Adjust size to fit in current e820 RAM region */ |
| if (size > remap_range_size) |
| size = remap_range_size; |
| |
| xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn); |
| |
| /* Update variables to reflect new mappings. */ |
| i += size; |
| remap_pfn += size; |
| } |
| |
| /* |
| * If the PFNs are currently mapped, the VA mapping also needs |
| * to be updated to be 1:1. |
| */ |
| for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++) |
| (void)HYPERVISOR_update_va_mapping( |
| (unsigned long)__va(pfn << PAGE_SHIFT), |
| mfn_pte(pfn, PAGE_KERNEL_IO), 0); |
| |
| return remap_pfn; |
| } |
| |
| static unsigned long __init xen_count_remap_pages( |
| unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages, |
| unsigned long remap_pages) |
| { |
| if (start_pfn >= nr_pages) |
| return remap_pages; |
| |
| return remap_pages + min(end_pfn, nr_pages) - start_pfn; |
| } |
| |
| static unsigned long __init xen_foreach_remap_area(unsigned long nr_pages, |
| unsigned long (*func)(unsigned long start_pfn, unsigned long end_pfn, |
| unsigned long nr_pages, unsigned long last_val)) |
| { |
| phys_addr_t start = 0; |
| unsigned long ret_val = 0; |
| const struct e820entry *entry = xen_e820_map; |
| int i; |
| |
| /* |
| * Combine non-RAM regions and gaps until a RAM region (or the |
| * end of the map) is reached, then call the provided function |
| * to perform its duty on the non-RAM region. |
| * |
| * The combined non-RAM regions are rounded to a whole number |
| * of pages so any partial pages are accessible via the 1:1 |
| * mapping. This is needed for some BIOSes that put (for |
| * example) the DMI tables in a reserved region that begins on |
| * a non-page boundary. |
| */ |
| for (i = 0; i < xen_e820_map_entries; i++, entry++) { |
| phys_addr_t end = entry->addr + entry->size; |
| if (entry->type == E820_RAM || i == xen_e820_map_entries - 1) { |
| unsigned long start_pfn = PFN_DOWN(start); |
| unsigned long end_pfn = PFN_UP(end); |
| |
| if (entry->type == E820_RAM) |
| end_pfn = PFN_UP(entry->addr); |
| |
| if (start_pfn < end_pfn) |
| ret_val = func(start_pfn, end_pfn, nr_pages, |
| ret_val); |
| start = end; |
| } |
| } |
| |
| return ret_val; |
| } |
| |
| /* |
| * Remap the memory prepared in xen_do_set_identity_and_remap_chunk(). |
| * The remap information (which mfn remap to which pfn) is contained in the |
| * to be remapped memory itself in a linked list anchored at xen_remap_mfn. |
| * This scheme allows to remap the different chunks in arbitrary order while |
| * the resulting mapping will be independant from the order. |
| */ |
| void __init xen_remap_memory(void) |
| { |
| unsigned long buf = (unsigned long)&xen_remap_buf; |
| unsigned long mfn_save, mfn, pfn; |
| unsigned long remapped = 0; |
| unsigned int i; |
| unsigned long pfn_s = ~0UL; |
| unsigned long len = 0; |
| |
| mfn_save = virt_to_mfn(buf); |
| |
| while (xen_remap_mfn != INVALID_P2M_ENTRY) { |
| /* Map the remap information */ |
| set_pte_mfn(buf, xen_remap_mfn, PAGE_KERNEL); |
| |
| BUG_ON(xen_remap_mfn != xen_remap_buf.mfns[0]); |
| |
| pfn = xen_remap_buf.target_pfn; |
| for (i = 0; i < xen_remap_buf.size; i++) { |
| mfn = xen_remap_buf.mfns[i]; |
| xen_update_mem_tables(pfn, mfn); |
| remapped++; |
| pfn++; |
| } |
| if (pfn_s == ~0UL || pfn == pfn_s) { |
| pfn_s = xen_remap_buf.target_pfn; |
| len += xen_remap_buf.size; |
| } else if (pfn_s + len == xen_remap_buf.target_pfn) { |
| len += xen_remap_buf.size; |
| } else { |
| xen_del_extra_mem(pfn_s, len); |
| pfn_s = xen_remap_buf.target_pfn; |
| len = xen_remap_buf.size; |
| } |
| |
| mfn = xen_remap_mfn; |
| xen_remap_mfn = xen_remap_buf.next_area_mfn; |
| } |
| |
| if (pfn_s != ~0UL && len) |
| xen_del_extra_mem(pfn_s, len); |
| |
| set_pte_mfn(buf, mfn_save, PAGE_KERNEL); |
| |
| pr_info("Remapped %ld page(s)\n", remapped); |
| } |
| |
| static unsigned long __init xen_get_pages_limit(void) |
| { |
| unsigned long limit; |
| |
| #ifdef CONFIG_X86_32 |
| limit = GB(64) / PAGE_SIZE; |
| #else |
| limit = MAXMEM / PAGE_SIZE; |
| if (!xen_initial_domain() && xen_512gb_limit) |
| limit = GB(512) / PAGE_SIZE; |
| #endif |
| return limit; |
| } |
| |
| static unsigned long __init xen_get_max_pages(void) |
| { |
| unsigned long max_pages, limit; |
| domid_t domid = DOMID_SELF; |
| long ret; |
| |
| limit = xen_get_pages_limit(); |
| max_pages = limit; |
| |
| /* |
| * For the initial domain we use the maximum reservation as |
| * the maximum page. |
| * |
| * For guest domains the current maximum reservation reflects |
| * the current maximum rather than the static maximum. In this |
| * case the e820 map provided to us will cover the static |
| * maximum region. |
| */ |
| if (xen_initial_domain()) { |
| ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid); |
| if (ret > 0) |
| max_pages = ret; |
| } |
| |
| return min(max_pages, limit); |
| } |
| |
| static void __init xen_align_and_add_e820_region(phys_addr_t start, |
| phys_addr_t size, int type) |
| { |
| phys_addr_t end = start + size; |
| |
| /* Align RAM regions to page boundaries. */ |
| if (type == E820_RAM) { |
| start = PAGE_ALIGN(start); |
| end &= ~((phys_addr_t)PAGE_SIZE - 1); |
| } |
| |
| e820_add_region(start, end - start, type); |
| } |
| |
| static void __init xen_ignore_unusable(void) |
| { |
| struct e820entry *entry = xen_e820_map; |
| unsigned int i; |
| |
| for (i = 0; i < xen_e820_map_entries; i++, entry++) { |
| if (entry->type == E820_UNUSABLE) |
| entry->type = E820_RAM; |
| } |
| } |
| |
| bool __init xen_is_e820_reserved(phys_addr_t start, phys_addr_t size) |
| { |
| struct e820entry *entry; |
| unsigned mapcnt; |
| phys_addr_t end; |
| |
| if (!size) |
| return false; |
| |
| end = start + size; |
| entry = xen_e820_map; |
| |
| for (mapcnt = 0; mapcnt < xen_e820_map_entries; mapcnt++) { |
| if (entry->type == E820_RAM && entry->addr <= start && |
| (entry->addr + entry->size) >= end) |
| return false; |
| |
| entry++; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Find a free area in physical memory not yet reserved and compliant with |
| * E820 map. |
| * Used to relocate pre-allocated areas like initrd or p2m list which are in |
| * conflict with the to be used E820 map. |
| * In case no area is found, return 0. Otherwise return the physical address |
| * of the area which is already reserved for convenience. |
| */ |
| phys_addr_t __init xen_find_free_area(phys_addr_t size) |
| { |
| unsigned mapcnt; |
| phys_addr_t addr, start; |
| struct e820entry *entry = xen_e820_map; |
| |
| for (mapcnt = 0; mapcnt < xen_e820_map_entries; mapcnt++, entry++) { |
| if (entry->type != E820_RAM || entry->size < size) |
| continue; |
| start = entry->addr; |
| for (addr = start; addr < start + size; addr += PAGE_SIZE) { |
| if (!memblock_is_reserved(addr)) |
| continue; |
| start = addr + PAGE_SIZE; |
| if (start + size > entry->addr + entry->size) |
| break; |
| } |
| if (addr >= start + size) { |
| memblock_reserve(start, size); |
| return start; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Like memcpy, but with physical addresses for dest and src. |
| */ |
| static void __init xen_phys_memcpy(phys_addr_t dest, phys_addr_t src, |
| phys_addr_t n) |
| { |
| phys_addr_t dest_off, src_off, dest_len, src_len, len; |
| void *from, *to; |
| |
| while (n) { |
| dest_off = dest & ~PAGE_MASK; |
| src_off = src & ~PAGE_MASK; |
| dest_len = n; |
| if (dest_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off) |
| dest_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off; |
| src_len = n; |
| if (src_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off) |
| src_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off; |
| len = min(dest_len, src_len); |
| to = early_memremap(dest - dest_off, dest_len + dest_off); |
| from = early_memremap(src - src_off, src_len + src_off); |
| memcpy(to, from, len); |
| early_memunmap(to, dest_len + dest_off); |
| early_memunmap(from, src_len + src_off); |
| n -= len; |
| dest += len; |
| src += len; |
| } |
| } |
| |
| /* |
| * Reserve Xen mfn_list. |
| */ |
| static void __init xen_reserve_xen_mfnlist(void) |
| { |
| phys_addr_t start, size; |
| |
| if (xen_start_info->mfn_list >= __START_KERNEL_map) { |
| start = __pa(xen_start_info->mfn_list); |
| size = PFN_ALIGN(xen_start_info->nr_pages * |
| sizeof(unsigned long)); |
| } else { |
| start = PFN_PHYS(xen_start_info->first_p2m_pfn); |
| size = PFN_PHYS(xen_start_info->nr_p2m_frames); |
| } |
| |
| memblock_reserve(start, size); |
| if (!xen_is_e820_reserved(start, size)) |
| return; |
| |
| #ifdef CONFIG_X86_32 |
| /* |
| * Relocating the p2m on 32 bit system to an arbitrary virtual address |
| * is not supported, so just give up. |
| */ |
| xen_raw_console_write("Xen hypervisor allocated p2m list conflicts with E820 map\n"); |
| BUG(); |
| #else |
| xen_relocate_p2m(); |
| memblock_free(start, size); |
| #endif |
| } |
| |
| /** |
| * machine_specific_memory_setup - Hook for machine specific memory setup. |
| **/ |
| char * __init xen_memory_setup(void) |
| { |
| unsigned long max_pfn, pfn_s, n_pfns; |
| phys_addr_t mem_end, addr, size, chunk_size; |
| u32 type; |
| int rc; |
| struct xen_memory_map memmap; |
| unsigned long max_pages; |
| unsigned long extra_pages = 0; |
| int i; |
| int op; |
| |
| xen_parse_512gb(); |
| max_pfn = xen_get_pages_limit(); |
| max_pfn = min(max_pfn, xen_start_info->nr_pages); |
| mem_end = PFN_PHYS(max_pfn); |
| |
| memmap.nr_entries = ARRAY_SIZE(xen_e820_map); |
| set_xen_guest_handle(memmap.buffer, xen_e820_map); |
| |
| op = xen_initial_domain() ? |
| XENMEM_machine_memory_map : |
| XENMEM_memory_map; |
| rc = HYPERVISOR_memory_op(op, &memmap); |
| if (rc == -ENOSYS) { |
| BUG_ON(xen_initial_domain()); |
| memmap.nr_entries = 1; |
| xen_e820_map[0].addr = 0ULL; |
| xen_e820_map[0].size = mem_end; |
| /* 8MB slack (to balance backend allocations). */ |
| xen_e820_map[0].size += 8ULL << 20; |
| xen_e820_map[0].type = E820_RAM; |
| rc = 0; |
| } |
| BUG_ON(rc); |
| BUG_ON(memmap.nr_entries == 0); |
| xen_e820_map_entries = memmap.nr_entries; |
| |
| /* |
| * Xen won't allow a 1:1 mapping to be created to UNUSABLE |
| * regions, so if we're using the machine memory map leave the |
| * region as RAM as it is in the pseudo-physical map. |
| * |
| * UNUSABLE regions in domUs are not handled and will need |
| * a patch in the future. |
| */ |
| if (xen_initial_domain()) |
| xen_ignore_unusable(); |
| |
| /* Make sure the Xen-supplied memory map is well-ordered. */ |
| sanitize_e820_map(xen_e820_map, ARRAY_SIZE(xen_e820_map), |
| &xen_e820_map_entries); |
| |
| max_pages = xen_get_max_pages(); |
| |
| /* How many extra pages do we need due to remapping? */ |
| max_pages += xen_foreach_remap_area(max_pfn, xen_count_remap_pages); |
| |
| if (max_pages > max_pfn) |
| extra_pages += max_pages - max_pfn; |
| |
| /* |
| * Clamp the amount of extra memory to a EXTRA_MEM_RATIO |
| * factor the base size. On non-highmem systems, the base |
| * size is the full initial memory allocation; on highmem it |
| * is limited to the max size of lowmem, so that it doesn't |
| * get completely filled. |
| * |
| * Make sure we have no memory above max_pages, as this area |
| * isn't handled by the p2m management. |
| * |
| * In principle there could be a problem in lowmem systems if |
| * the initial memory is also very large with respect to |
| * lowmem, but we won't try to deal with that here. |
| */ |
| extra_pages = min3(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)), |
| extra_pages, max_pages - max_pfn); |
| i = 0; |
| addr = xen_e820_map[0].addr; |
| size = xen_e820_map[0].size; |
| while (i < xen_e820_map_entries) { |
| bool discard = false; |
| |
| chunk_size = size; |
| type = xen_e820_map[i].type; |
| |
| if (type == E820_RAM) { |
| if (addr < mem_end) { |
| chunk_size = min(size, mem_end - addr); |
| } else if (extra_pages) { |
| chunk_size = min(size, PFN_PHYS(extra_pages)); |
| pfn_s = PFN_UP(addr); |
| n_pfns = PFN_DOWN(addr + chunk_size) - pfn_s; |
| extra_pages -= n_pfns; |
| xen_add_extra_mem(pfn_s, n_pfns); |
| xen_max_p2m_pfn = pfn_s + n_pfns; |
| } else |
| discard = true; |
| } |
| |
| if (!discard) |
| xen_align_and_add_e820_region(addr, chunk_size, type); |
| |
| addr += chunk_size; |
| size -= chunk_size; |
| if (size == 0) { |
| i++; |
| if (i < xen_e820_map_entries) { |
| addr = xen_e820_map[i].addr; |
| size = xen_e820_map[i].size; |
| } |
| } |
| } |
| |
| /* |
| * Set the rest as identity mapped, in case PCI BARs are |
| * located here. |
| */ |
| set_phys_range_identity(addr / PAGE_SIZE, ~0ul); |
| |
| /* |
| * In domU, the ISA region is normal, usable memory, but we |
| * reserve ISA memory anyway because too many things poke |
| * about in there. |
| */ |
| e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS, |
| E820_RESERVED); |
| |
| sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map); |
| |
| /* |
| * Check whether the kernel itself conflicts with the target E820 map. |
| * Failing now is better than running into weird problems later due |
| * to relocating (and even reusing) pages with kernel text or data. |
| */ |
| if (xen_is_e820_reserved(__pa_symbol(_text), |
| __pa_symbol(__bss_stop) - __pa_symbol(_text))) { |
| xen_raw_console_write("Xen hypervisor allocated kernel memory conflicts with E820 map\n"); |
| BUG(); |
| } |
| |
| /* |
| * Check for a conflict of the hypervisor supplied page tables with |
| * the target E820 map. |
| */ |
| xen_pt_check_e820(); |
| |
| xen_reserve_xen_mfnlist(); |
| |
| /* Check for a conflict of the initrd with the target E820 map. */ |
| if (xen_is_e820_reserved(boot_params.hdr.ramdisk_image, |
| boot_params.hdr.ramdisk_size)) { |
| phys_addr_t new_area, start, size; |
| |
| new_area = xen_find_free_area(boot_params.hdr.ramdisk_size); |
| if (!new_area) { |
| xen_raw_console_write("Can't find new memory area for initrd needed due to E820 map conflict\n"); |
| BUG(); |
| } |
| |
| start = boot_params.hdr.ramdisk_image; |
| size = boot_params.hdr.ramdisk_size; |
| xen_phys_memcpy(new_area, start, size); |
| pr_info("initrd moved from [mem %#010llx-%#010llx] to [mem %#010llx-%#010llx]\n", |
| start, start + size, new_area, new_area + size); |
| memblock_free(start, size); |
| boot_params.hdr.ramdisk_image = new_area; |
| boot_params.ext_ramdisk_image = new_area >> 32; |
| } |
| |
| /* |
| * Set identity map on non-RAM pages and prepare remapping the |
| * underlying RAM. |
| */ |
| xen_foreach_remap_area(max_pfn, xen_set_identity_and_remap_chunk); |
| |
| pr_info("Released %ld page(s)\n", xen_released_pages); |
| |
| return "Xen"; |
| } |
| |
| /* |
| * Set the bit indicating "nosegneg" library variants should be used. |
| * We only need to bother in pure 32-bit mode; compat 32-bit processes |
| * can have un-truncated segments, so wrapping around is allowed. |
| */ |
| static void __init fiddle_vdso(void) |
| { |
| #ifdef CONFIG_X86_32 |
| u32 *mask = vdso_image_32.data + |
| vdso_image_32.sym_VDSO32_NOTE_MASK; |
| *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT; |
| #endif |
| } |
| |
| static int register_callback(unsigned type, const void *func) |
| { |
| struct callback_register callback = { |
| .type = type, |
| .address = XEN_CALLBACK(__KERNEL_CS, func), |
| .flags = CALLBACKF_mask_events, |
| }; |
| |
| return HYPERVISOR_callback_op(CALLBACKOP_register, &callback); |
| } |
| |
| void xen_enable_sysenter(void) |
| { |
| int ret; |
| unsigned sysenter_feature; |
| |
| #ifdef CONFIG_X86_32 |
| sysenter_feature = X86_FEATURE_SEP; |
| #else |
| sysenter_feature = X86_FEATURE_SYSENTER32; |
| #endif |
| |
| if (!boot_cpu_has(sysenter_feature)) |
| return; |
| |
| ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target); |
| if(ret != 0) |
| setup_clear_cpu_cap(sysenter_feature); |
| } |
| |
| void xen_enable_syscall(void) |
| { |
| #ifdef CONFIG_X86_64 |
| int ret; |
| |
| ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target); |
| if (ret != 0) { |
| printk(KERN_ERR "Failed to set syscall callback: %d\n", ret); |
| /* Pretty fatal; 64-bit userspace has no other |
| mechanism for syscalls. */ |
| } |
| |
| if (boot_cpu_has(X86_FEATURE_SYSCALL32)) { |
| ret = register_callback(CALLBACKTYPE_syscall32, |
| xen_syscall32_target); |
| if (ret != 0) |
| setup_clear_cpu_cap(X86_FEATURE_SYSCALL32); |
| } |
| #endif /* CONFIG_X86_64 */ |
| } |
| |
| void __init xen_pvmmu_arch_setup(void) |
| { |
| HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments); |
| HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables); |
| |
| HYPERVISOR_vm_assist(VMASST_CMD_enable, |
| VMASST_TYPE_pae_extended_cr3); |
| |
| if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) || |
| register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback)) |
| BUG(); |
| |
| xen_enable_sysenter(); |
| xen_enable_syscall(); |
| } |
| |
| /* This function is not called for HVM domains */ |
| void __init xen_arch_setup(void) |
| { |
| xen_panic_handler_init(); |
| |
| xen_pvmmu_arch_setup(); |
| |
| #ifdef CONFIG_ACPI |
| if (!(xen_start_info->flags & SIF_INITDOMAIN)) { |
| printk(KERN_INFO "ACPI in unprivileged domain disabled\n"); |
| disable_acpi(); |
| } |
| #endif |
| |
| memcpy(boot_command_line, xen_start_info->cmd_line, |
| MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ? |
| COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE); |
| |
| /* Set up idle, making sure it calls safe_halt() pvop */ |
| disable_cpuidle(); |
| disable_cpufreq(); |
| WARN_ON(xen_set_default_idle()); |
| fiddle_vdso(); |
| #ifdef CONFIG_NUMA |
| numa_off = 1; |
| #endif |
| } |