blob: b358f0702a44fab313811594390f91fbd91aa7dc [file] [log] [blame]
/*
* Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
* August 2002: added remote node KVA remap - Martin J. Bligh
*
* Copyright (C) 2002, IBM Corp.
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/config.h>
#include <linux/mm.h>
#include <linux/bootmem.h>
#include <linux/mmzone.h>
#include <linux/highmem.h>
#include <linux/initrd.h>
#include <linux/nodemask.h>
#include <linux/module.h>
#include <linux/kexec.h>
#include <asm/e820.h>
#include <asm/setup.h>
#include <asm/mmzone.h>
#include <bios_ebda.h>
struct pglist_data *node_data[MAX_NUMNODES];
EXPORT_SYMBOL(node_data);
bootmem_data_t node0_bdata;
/*
* numa interface - we expect the numa architecture specfic code to have
* populated the following initialisation.
*
* 1) node_online_map - the map of all nodes configured (online) in the system
* 2) node_start_pfn - the starting page frame number for a node
* 3) node_end_pfn - the ending page fram number for a node
*/
unsigned long node_start_pfn[MAX_NUMNODES];
unsigned long node_end_pfn[MAX_NUMNODES];
#ifdef CONFIG_DISCONTIGMEM
/*
* 4) physnode_map - the mapping between a pfn and owning node
* physnode_map keeps track of the physical memory layout of a generic
* numa node on a 256Mb break (each element of the array will
* represent 256Mb of memory and will be marked by the node id. so,
* if the first gig is on node 0, and the second gig is on node 1
* physnode_map will contain:
*
* physnode_map[0-3] = 0;
* physnode_map[4-7] = 1;
* physnode_map[8- ] = -1;
*/
s8 physnode_map[MAX_ELEMENTS] = { [0 ... (MAX_ELEMENTS - 1)] = -1};
EXPORT_SYMBOL(physnode_map);
void memory_present(int nid, unsigned long start, unsigned long end)
{
unsigned long pfn;
printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n",
nid, start, end);
printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
printk(KERN_DEBUG " ");
for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
printk("%ld ", pfn);
}
printk("\n");
}
unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long nr_pages = end_pfn - start_pfn;
if (!nr_pages)
return 0;
return (nr_pages + 1) * sizeof(struct page);
}
#endif
extern unsigned long find_max_low_pfn(void);
extern void find_max_pfn(void);
extern void one_highpage_init(struct page *, int, int);
extern struct e820map e820;
extern unsigned long init_pg_tables_end;
extern unsigned long highend_pfn, highstart_pfn;
extern unsigned long max_low_pfn;
extern unsigned long totalram_pages;
extern unsigned long totalhigh_pages;
#define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
unsigned long node_remap_start_pfn[MAX_NUMNODES];
unsigned long node_remap_size[MAX_NUMNODES];
unsigned long node_remap_offset[MAX_NUMNODES];
void *node_remap_start_vaddr[MAX_NUMNODES];
void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
void *node_remap_end_vaddr[MAX_NUMNODES];
void *node_remap_alloc_vaddr[MAX_NUMNODES];
/*
* FLAT - support for basic PC memory model with discontig enabled, essentially
* a single node with all available processors in it with a flat
* memory map.
*/
int __init get_memcfg_numa_flat(void)
{
printk("NUMA - single node, flat memory mode\n");
/* Run the memory configuration and find the top of memory. */
find_max_pfn();
node_start_pfn[0] = 0;
node_end_pfn[0] = max_pfn;
memory_present(0, 0, max_pfn);
/* Indicate there is one node available. */
nodes_clear(node_online_map);
node_set_online(0);
return 1;
}
/*
* Find the highest page frame number we have available for the node
*/
static void __init find_max_pfn_node(int nid)
{
if (node_end_pfn[nid] > max_pfn)
node_end_pfn[nid] = max_pfn;
/*
* if a user has given mem=XXXX, then we need to make sure
* that the node _starts_ before that, too, not just ends
*/
if (node_start_pfn[nid] > max_pfn)
node_start_pfn[nid] = max_pfn;
if (node_start_pfn[nid] > node_end_pfn[nid])
BUG();
}
/* Find the owning node for a pfn. */
int early_pfn_to_nid(unsigned long pfn)
{
int nid;
for_each_node(nid) {
if (node_end_pfn[nid] == 0)
break;
if (node_start_pfn[nid] <= pfn && node_end_pfn[nid] >= pfn)
return nid;
}
return 0;
}
/*
* Allocate memory for the pg_data_t for this node via a crude pre-bootmem
* method. For node zero take this from the bottom of memory, for
* subsequent nodes place them at node_remap_start_vaddr which contains
* node local data in physically node local memory. See setup_memory()
* for details.
*/
static void __init allocate_pgdat(int nid)
{
if (nid && node_has_online_mem(nid))
NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
else {
NODE_DATA(nid) = (pg_data_t *)(__va(min_low_pfn << PAGE_SHIFT));
min_low_pfn += PFN_UP(sizeof(pg_data_t));
}
}
void *alloc_remap(int nid, unsigned long size)
{
void *allocation = node_remap_alloc_vaddr[nid];
size = ALIGN(size, L1_CACHE_BYTES);
if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid])
return 0;
node_remap_alloc_vaddr[nid] += size;
memset(allocation, 0, size);
return allocation;
}
void __init remap_numa_kva(void)
{
void *vaddr;
unsigned long pfn;
int node;
for_each_online_node(node) {
for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
set_pmd_pfn((ulong) vaddr,
node_remap_start_pfn[node] + pfn,
PAGE_KERNEL_LARGE);
}
}
}
static unsigned long calculate_numa_remap_pages(void)
{
int nid;
unsigned long size, reserve_pages = 0;
unsigned long pfn;
for_each_online_node(nid) {
/*
* The acpi/srat node info can show hot-add memroy zones
* where memory could be added but not currently present.
*/
if (node_start_pfn[nid] > max_pfn)
continue;
if (node_end_pfn[nid] > max_pfn)
node_end_pfn[nid] = max_pfn;
/* ensure the remap includes space for the pgdat. */
size = node_remap_size[nid] + sizeof(pg_data_t);
/* convert size to large (pmd size) pages, rounding up */
size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
/* now the roundup is correct, convert to PAGE_SIZE pages */
size = size * PTRS_PER_PTE;
/*
* Validate the region we are allocating only contains valid
* pages.
*/
for (pfn = node_end_pfn[nid] - size;
pfn < node_end_pfn[nid]; pfn++)
if (!page_is_ram(pfn))
break;
if (pfn != node_end_pfn[nid])
size = 0;
printk("Reserving %ld pages of KVA for lmem_map of node %d\n",
size, nid);
node_remap_size[nid] = size;
node_remap_offset[nid] = reserve_pages;
reserve_pages += size;
printk("Shrinking node %d from %ld pages to %ld pages\n",
nid, node_end_pfn[nid], node_end_pfn[nid] - size);
node_end_pfn[nid] -= size;
node_remap_start_pfn[nid] = node_end_pfn[nid];
}
printk("Reserving total of %ld pages for numa KVA remap\n",
reserve_pages);
return reserve_pages;
}
extern void setup_bootmem_allocator(void);
unsigned long __init setup_memory(void)
{
int nid;
unsigned long system_start_pfn, system_max_low_pfn;
unsigned long reserve_pages;
/*
* When mapping a NUMA machine we allocate the node_mem_map arrays
* from node local memory. They are then mapped directly into KVA
* between zone normal and vmalloc space. Calculate the size of
* this space and use it to adjust the boundry between ZONE_NORMAL
* and ZONE_HIGHMEM.
*/
find_max_pfn();
get_memcfg_numa();
reserve_pages = calculate_numa_remap_pages();
/* partially used pages are not usable - thus round upwards */
system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end);
system_max_low_pfn = max_low_pfn = find_max_low_pfn() - reserve_pages;
printk("reserve_pages = %ld find_max_low_pfn() ~ %ld\n",
reserve_pages, max_low_pfn + reserve_pages);
printk("max_pfn = %ld\n", max_pfn);
#ifdef CONFIG_HIGHMEM
highstart_pfn = highend_pfn = max_pfn;
if (max_pfn > system_max_low_pfn)
highstart_pfn = system_max_low_pfn;
printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
pages_to_mb(highend_pfn - highstart_pfn));
#endif
printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
pages_to_mb(system_max_low_pfn));
printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n",
min_low_pfn, max_low_pfn, highstart_pfn);
printk("Low memory ends at vaddr %08lx\n",
(ulong) pfn_to_kaddr(max_low_pfn));
for_each_online_node(nid) {
node_remap_start_vaddr[nid] = pfn_to_kaddr(
highstart_pfn + node_remap_offset[nid]);
/* Init the node remap allocator */
node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] +
(node_remap_size[nid] * PAGE_SIZE);
node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +
ALIGN(sizeof(pg_data_t), PAGE_SIZE);
allocate_pgdat(nid);
printk ("node %d will remap to vaddr %08lx - %08lx\n", nid,
(ulong) node_remap_start_vaddr[nid],
(ulong) pfn_to_kaddr(highstart_pfn
+ node_remap_offset[nid] + node_remap_size[nid]));
}
printk("High memory starts at vaddr %08lx\n",
(ulong) pfn_to_kaddr(highstart_pfn));
vmalloc_earlyreserve = reserve_pages * PAGE_SIZE;
for_each_online_node(nid)
find_max_pfn_node(nid);
memset(NODE_DATA(0), 0, sizeof(struct pglist_data));
NODE_DATA(0)->bdata = &node0_bdata;
setup_bootmem_allocator();
return max_low_pfn;
}
void __init zone_sizes_init(void)
{
int nid;
/*
* Insert nodes into pgdat_list backward so they appear in order.
* Clobber node 0's links and NULL out pgdat_list before starting.
*/
pgdat_list = NULL;
for (nid = MAX_NUMNODES - 1; nid >= 0; nid--) {
if (!node_online(nid))
continue;
NODE_DATA(nid)->pgdat_next = pgdat_list;
pgdat_list = NODE_DATA(nid);
}
for_each_online_node(nid) {
unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0};
unsigned long *zholes_size;
unsigned int max_dma;
unsigned long low = max_low_pfn;
unsigned long start = node_start_pfn[nid];
unsigned long high = node_end_pfn[nid];
max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
if (node_has_online_mem(nid)){
if (start > low) {
#ifdef CONFIG_HIGHMEM
BUG_ON(start > high);
zones_size[ZONE_HIGHMEM] = high - start;
#endif
} else {
if (low < max_dma)
zones_size[ZONE_DMA] = low;
else {
BUG_ON(max_dma > low);
BUG_ON(low > high);
zones_size[ZONE_DMA] = max_dma;
zones_size[ZONE_NORMAL] = low - max_dma;
#ifdef CONFIG_HIGHMEM
zones_size[ZONE_HIGHMEM] = high - low;
#endif
}
}
}
zholes_size = get_zholes_size(nid);
free_area_init_node(nid, NODE_DATA(nid), zones_size, start,
zholes_size);
}
return;
}
void __init set_highmem_pages_init(int bad_ppro)
{
#ifdef CONFIG_HIGHMEM
struct zone *zone;
struct page *page;
for_each_zone(zone) {
unsigned long node_pfn, zone_start_pfn, zone_end_pfn;
if (!is_highmem(zone))
continue;
zone_start_pfn = zone->zone_start_pfn;
zone_end_pfn = zone_start_pfn + zone->spanned_pages;
printk("Initializing %s for node %d (%08lx:%08lx)\n",
zone->name, zone->zone_pgdat->node_id,
zone_start_pfn, zone_end_pfn);
for (node_pfn = zone_start_pfn; node_pfn < zone_end_pfn; node_pfn++) {
if (!pfn_valid(node_pfn))
continue;
page = pfn_to_page(node_pfn);
one_highpage_init(page, node_pfn, bad_ppro);
}
}
totalram_pages += totalhigh_pages;
#endif
}