| /* |
| * Copyright 2002 Andi Kleen, SuSE Labs. |
| * Thanks to Ben LaHaise for precious feedback. |
| */ |
| #include <linux/highmem.h> |
| #include <linux/bootmem.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| |
| #include <asm/e820.h> |
| #include <asm/processor.h> |
| #include <asm/tlbflush.h> |
| #include <asm/sections.h> |
| #include <asm/uaccess.h> |
| #include <asm/pgalloc.h> |
| |
| static inline int |
| within(unsigned long addr, unsigned long start, unsigned long end) |
| { |
| return addr >= start && addr < end; |
| } |
| |
| /* |
| * Flushing functions |
| */ |
| |
| /** |
| * clflush_cache_range - flush a cache range with clflush |
| * @addr: virtual start address |
| * @size: number of bytes to flush |
| * |
| * clflush is an unordered instruction which needs fencing with mfence |
| * to avoid ordering issues. |
| */ |
| void clflush_cache_range(void *vaddr, unsigned int size) |
| { |
| void *vend = vaddr + size - 1; |
| |
| mb(); |
| |
| for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size) |
| clflush(vaddr); |
| /* |
| * Flush any possible final partial cacheline: |
| */ |
| clflush(vend); |
| |
| mb(); |
| } |
| |
| static void __cpa_flush_all(void *arg) |
| { |
| /* |
| * Flush all to work around Errata in early athlons regarding |
| * large page flushing. |
| */ |
| __flush_tlb_all(); |
| |
| if (boot_cpu_data.x86_model >= 4) |
| wbinvd(); |
| } |
| |
| static void cpa_flush_all(void) |
| { |
| BUG_ON(irqs_disabled()); |
| |
| on_each_cpu(__cpa_flush_all, NULL, 1, 1); |
| } |
| |
| static void __cpa_flush_range(void *arg) |
| { |
| /* |
| * We could optimize that further and do individual per page |
| * tlb invalidates for a low number of pages. Caveat: we must |
| * flush the high aliases on 64bit as well. |
| */ |
| __flush_tlb_all(); |
| } |
| |
| static void cpa_flush_range(unsigned long start, int numpages) |
| { |
| unsigned int i, level; |
| unsigned long addr; |
| |
| BUG_ON(irqs_disabled()); |
| WARN_ON(PAGE_ALIGN(start) != start); |
| |
| on_each_cpu(__cpa_flush_range, NULL, 1, 1); |
| |
| /* |
| * We only need to flush on one CPU, |
| * clflush is a MESI-coherent instruction that |
| * will cause all other CPUs to flush the same |
| * cachelines: |
| */ |
| for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) { |
| pte_t *pte = lookup_address(addr, &level); |
| |
| /* |
| * Only flush present addresses: |
| */ |
| if (pte && pte_present(*pte)) |
| clflush_cache_range((void *) addr, PAGE_SIZE); |
| } |
| } |
| |
| /* |
| * Certain areas of memory on x86 require very specific protection flags, |
| * for example the BIOS area or kernel text. Callers don't always get this |
| * right (again, ioremap() on BIOS memory is not uncommon) so this function |
| * checks and fixes these known static required protection bits. |
| */ |
| static inline pgprot_t static_protections(pgprot_t prot, unsigned long address) |
| { |
| pgprot_t forbidden = __pgprot(0); |
| |
| /* |
| * The BIOS area between 640k and 1Mb needs to be executable for |
| * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support. |
| */ |
| if (within(__pa(address), BIOS_BEGIN, BIOS_END)) |
| pgprot_val(forbidden) |= _PAGE_NX; |
| |
| /* |
| * The kernel text needs to be executable for obvious reasons |
| * Does not cover __inittext since that is gone later on |
| */ |
| if (within(address, (unsigned long)_text, (unsigned long)_etext)) |
| pgprot_val(forbidden) |= _PAGE_NX; |
| |
| #ifdef CONFIG_DEBUG_RODATA |
| /* The .rodata section needs to be read-only */ |
| if (within(address, (unsigned long)__start_rodata, |
| (unsigned long)__end_rodata)) |
| pgprot_val(forbidden) |= _PAGE_RW; |
| #endif |
| |
| prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden)); |
| |
| return prot; |
| } |
| |
| pte_t *lookup_address(unsigned long address, int *level) |
| { |
| pgd_t *pgd = pgd_offset_k(address); |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| *level = PG_LEVEL_NONE; |
| |
| if (pgd_none(*pgd)) |
| return NULL; |
| pud = pud_offset(pgd, address); |
| if (pud_none(*pud)) |
| return NULL; |
| pmd = pmd_offset(pud, address); |
| if (pmd_none(*pmd)) |
| return NULL; |
| |
| *level = PG_LEVEL_2M; |
| if (pmd_large(*pmd)) |
| return (pte_t *)pmd; |
| |
| *level = PG_LEVEL_4K; |
| return pte_offset_kernel(pmd, address); |
| } |
| |
| static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte) |
| { |
| /* change init_mm */ |
| set_pte_atomic(kpte, pte); |
| #ifdef CONFIG_X86_32 |
| if (!SHARED_KERNEL_PMD) { |
| struct page *page; |
| |
| list_for_each_entry(page, &pgd_list, lru) { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| pgd = (pgd_t *)page_address(page) + pgd_index(address); |
| pud = pud_offset(pgd, address); |
| pmd = pmd_offset(pud, address); |
| set_pte_atomic((pte_t *)pmd, pte); |
| } |
| } |
| #endif |
| } |
| |
| static int split_large_page(pte_t *kpte, unsigned long address) |
| { |
| pgprot_t ref_prot = pte_pgprot(pte_clrhuge(*kpte)); |
| gfp_t gfp_flags = GFP_KERNEL; |
| unsigned long flags; |
| unsigned long addr; |
| pte_t *pbase, *tmp; |
| struct page *base; |
| unsigned int i, level; |
| |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| gfp_flags = __GFP_HIGH | __GFP_NOFAIL | __GFP_NOWARN; |
| gfp_flags = GFP_ATOMIC | __GFP_NOWARN; |
| #endif |
| base = alloc_pages(gfp_flags, 0); |
| if (!base) |
| return -ENOMEM; |
| |
| spin_lock_irqsave(&pgd_lock, flags); |
| /* |
| * Check for races, another CPU might have split this page |
| * up for us already: |
| */ |
| tmp = lookup_address(address, &level); |
| if (tmp != kpte) { |
| WARN_ON_ONCE(1); |
| goto out_unlock; |
| } |
| |
| address = __pa(address); |
| addr = address & LARGE_PAGE_MASK; |
| pbase = (pte_t *)page_address(base); |
| #ifdef CONFIG_X86_32 |
| paravirt_alloc_pt(&init_mm, page_to_pfn(base)); |
| #endif |
| |
| pgprot_val(ref_prot) &= ~_PAGE_NX; |
| for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) |
| set_pte(&pbase[i], pfn_pte(addr >> PAGE_SHIFT, ref_prot)); |
| |
| /* |
| * Install the new, split up pagetable. Important detail here: |
| * |
| * On Intel the NX bit of all levels must be cleared to make a |
| * page executable. See section 4.13.2 of Intel 64 and IA-32 |
| * Architectures Software Developer's Manual). |
| */ |
| ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte))); |
| __set_pmd_pte(kpte, address, mk_pte(base, ref_prot)); |
| base = NULL; |
| |
| out_unlock: |
| spin_unlock_irqrestore(&pgd_lock, flags); |
| |
| if (base) |
| __free_pages(base, 0); |
| |
| return 0; |
| } |
| |
| static int |
| __change_page_attr(unsigned long address, unsigned long pfn, |
| pgprot_t mask_set, pgprot_t mask_clr) |
| { |
| struct page *kpte_page; |
| int level, err = 0; |
| pte_t *kpte; |
| |
| #ifdef CONFIG_X86_32 |
| BUG_ON(pfn > max_low_pfn); |
| #endif |
| |
| repeat: |
| kpte = lookup_address(address, &level); |
| if (!kpte) |
| return -EINVAL; |
| |
| kpte_page = virt_to_page(kpte); |
| BUG_ON(PageLRU(kpte_page)); |
| BUG_ON(PageCompound(kpte_page)); |
| |
| if (level == PG_LEVEL_4K) { |
| pgprot_t new_prot = pte_pgprot(*kpte); |
| pte_t new_pte, old_pte = *kpte; |
| |
| pgprot_val(new_prot) &= ~pgprot_val(mask_clr); |
| pgprot_val(new_prot) |= pgprot_val(mask_set); |
| |
| new_prot = static_protections(new_prot, address); |
| |
| new_pte = pfn_pte(pfn, canon_pgprot(new_prot)); |
| BUG_ON(pte_pfn(new_pte) != pte_pfn(old_pte)); |
| |
| set_pte_atomic(kpte, new_pte); |
| } else { |
| err = split_large_page(kpte, address); |
| if (!err) |
| goto repeat; |
| } |
| return err; |
| } |
| |
| /** |
| * change_page_attr_addr - Change page table attributes in linear mapping |
| * @address: Virtual address in linear mapping. |
| * @prot: New page table attribute (PAGE_*) |
| * |
| * Change page attributes of a page in the direct mapping. This is a variant |
| * of change_page_attr() that also works on memory holes that do not have |
| * mem_map entry (pfn_valid() is false). |
| * |
| * See change_page_attr() documentation for more details. |
| * |
| * Modules and drivers should use the set_memory_* APIs instead. |
| */ |
| |
| #define HIGH_MAP_START __START_KERNEL_map |
| #define HIGH_MAP_END (__START_KERNEL_map + KERNEL_TEXT_SIZE) |
| |
| static int |
| change_page_attr_addr(unsigned long address, pgprot_t mask_set, |
| pgprot_t mask_clr) |
| { |
| unsigned long phys_addr = __pa(address); |
| unsigned long pfn = phys_addr >> PAGE_SHIFT; |
| int err; |
| |
| #ifdef CONFIG_X86_64 |
| /* |
| * If we are inside the high mapped kernel range, then we |
| * fixup the low mapping first. __va() returns the virtual |
| * address in the linear mapping: |
| */ |
| if (within(address, HIGH_MAP_START, HIGH_MAP_END)) |
| address = (unsigned long) __va(phys_addr); |
| #endif |
| |
| err = __change_page_attr(address, pfn, mask_set, mask_clr); |
| if (err) |
| return err; |
| |
| #ifdef CONFIG_X86_64 |
| /* |
| * If the physical address is inside the kernel map, we need |
| * to touch the high mapped kernel as well: |
| */ |
| if (within(phys_addr, 0, KERNEL_TEXT_SIZE)) { |
| /* |
| * Calc the high mapping address. See __phys_addr() |
| * for the non obvious details. |
| */ |
| address = phys_addr + HIGH_MAP_START - phys_base; |
| /* Make sure the kernel mappings stay executable */ |
| pgprot_val(mask_clr) |= _PAGE_NX; |
| |
| /* |
| * Our high aliases are imprecise, because we check |
| * everything between 0 and KERNEL_TEXT_SIZE, so do |
| * not propagate lookup failures back to users: |
| */ |
| __change_page_attr(address, pfn, mask_set, mask_clr); |
| } |
| #endif |
| return err; |
| } |
| |
| static int __change_page_attr_set_clr(unsigned long addr, int numpages, |
| pgprot_t mask_set, pgprot_t mask_clr) |
| { |
| unsigned int i; |
| int ret; |
| |
| for (i = 0; i < numpages ; i++, addr += PAGE_SIZE) { |
| ret = change_page_attr_addr(addr, mask_set, mask_clr); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int change_page_attr_set_clr(unsigned long addr, int numpages, |
| pgprot_t mask_set, pgprot_t mask_clr) |
| { |
| int ret = __change_page_attr_set_clr(addr, numpages, mask_set, |
| mask_clr); |
| |
| /* |
| * On success we use clflush, when the CPU supports it to |
| * avoid the wbindv. If the CPU does not support it and in the |
| * error case we fall back to cpa_flush_all (which uses |
| * wbindv): |
| */ |
| if (!ret && cpu_has_clflush) |
| cpa_flush_range(addr, numpages); |
| else |
| cpa_flush_all(); |
| |
| return ret; |
| } |
| |
| static inline int change_page_attr_set(unsigned long addr, int numpages, |
| pgprot_t mask) |
| { |
| return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0)); |
| } |
| |
| static inline int change_page_attr_clear(unsigned long addr, int numpages, |
| pgprot_t mask) |
| { |
| return __change_page_attr_set_clr(addr, numpages, __pgprot(0), mask); |
| |
| } |
| |
| int set_memory_uc(unsigned long addr, int numpages) |
| { |
| return change_page_attr_set(addr, numpages, |
| __pgprot(_PAGE_PCD | _PAGE_PWT)); |
| } |
| EXPORT_SYMBOL(set_memory_uc); |
| |
| int set_memory_wb(unsigned long addr, int numpages) |
| { |
| return change_page_attr_clear(addr, numpages, |
| __pgprot(_PAGE_PCD | _PAGE_PWT)); |
| } |
| EXPORT_SYMBOL(set_memory_wb); |
| |
| int set_memory_x(unsigned long addr, int numpages) |
| { |
| return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_NX)); |
| } |
| EXPORT_SYMBOL(set_memory_x); |
| |
| int set_memory_nx(unsigned long addr, int numpages) |
| { |
| return change_page_attr_set(addr, numpages, __pgprot(_PAGE_NX)); |
| } |
| EXPORT_SYMBOL(set_memory_nx); |
| |
| int set_memory_ro(unsigned long addr, int numpages) |
| { |
| return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_RW)); |
| } |
| |
| int set_memory_rw(unsigned long addr, int numpages) |
| { |
| return change_page_attr_set(addr, numpages, __pgprot(_PAGE_RW)); |
| } |
| |
| int set_memory_np(unsigned long addr, int numpages) |
| { |
| return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT)); |
| } |
| |
| int set_pages_uc(struct page *page, int numpages) |
| { |
| unsigned long addr = (unsigned long)page_address(page); |
| |
| return set_memory_uc(addr, numpages); |
| } |
| EXPORT_SYMBOL(set_pages_uc); |
| |
| int set_pages_wb(struct page *page, int numpages) |
| { |
| unsigned long addr = (unsigned long)page_address(page); |
| |
| return set_memory_wb(addr, numpages); |
| } |
| EXPORT_SYMBOL(set_pages_wb); |
| |
| int set_pages_x(struct page *page, int numpages) |
| { |
| unsigned long addr = (unsigned long)page_address(page); |
| |
| return set_memory_x(addr, numpages); |
| } |
| EXPORT_SYMBOL(set_pages_x); |
| |
| int set_pages_nx(struct page *page, int numpages) |
| { |
| unsigned long addr = (unsigned long)page_address(page); |
| |
| return set_memory_nx(addr, numpages); |
| } |
| EXPORT_SYMBOL(set_pages_nx); |
| |
| int set_pages_ro(struct page *page, int numpages) |
| { |
| unsigned long addr = (unsigned long)page_address(page); |
| |
| return set_memory_ro(addr, numpages); |
| } |
| |
| int set_pages_rw(struct page *page, int numpages) |
| { |
| unsigned long addr = (unsigned long)page_address(page); |
| |
| return set_memory_rw(addr, numpages); |
| } |
| |
| |
| #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_CPA_DEBUG) |
| static inline int __change_page_attr_set(unsigned long addr, int numpages, |
| pgprot_t mask) |
| { |
| return __change_page_attr_set_clr(addr, numpages, mask, __pgprot(0)); |
| } |
| |
| static inline int __change_page_attr_clear(unsigned long addr, int numpages, |
| pgprot_t mask) |
| { |
| return __change_page_attr_set_clr(addr, numpages, __pgprot(0), mask); |
| } |
| #endif |
| |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| |
| static int __set_pages_p(struct page *page, int numpages) |
| { |
| unsigned long addr = (unsigned long)page_address(page); |
| |
| return __change_page_attr_set(addr, numpages, |
| __pgprot(_PAGE_PRESENT | _PAGE_RW)); |
| } |
| |
| static int __set_pages_np(struct page *page, int numpages) |
| { |
| unsigned long addr = (unsigned long)page_address(page); |
| |
| return __change_page_attr_clear(addr, numpages, |
| __pgprot(_PAGE_PRESENT)); |
| } |
| |
| void kernel_map_pages(struct page *page, int numpages, int enable) |
| { |
| if (PageHighMem(page)) |
| return; |
| if (!enable) { |
| debug_check_no_locks_freed(page_address(page), |
| numpages * PAGE_SIZE); |
| } |
| |
| /* |
| * If page allocator is not up yet then do not call c_p_a(): |
| */ |
| if (!debug_pagealloc_enabled) |
| return; |
| |
| /* |
| * The return value is ignored - the calls cannot fail, |
| * large pages are disabled at boot time: |
| */ |
| if (enable) |
| __set_pages_p(page, numpages); |
| else |
| __set_pages_np(page, numpages); |
| |
| /* |
| * We should perform an IPI and flush all tlbs, |
| * but that can deadlock->flush only current cpu: |
| */ |
| __flush_tlb_all(); |
| } |
| #endif |
| |
| /* |
| * The testcases use internal knowledge of the implementation that shouldn't |
| * be exposed to the rest of the kernel. Include these directly here. |
| */ |
| #ifdef CONFIG_CPA_DEBUG |
| #include "pageattr-test.c" |
| #endif |