blob: 67587fe9e358f0c395b743c364b9f12317e0d5fe [file] [log] [blame]
/* bnx2x_main.c: Broadcom Everest network driver.
*
* Copyright (c) 2007-2010 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Maintained by: Eilon Greenstein <eilong@broadcom.com>
* Written by: Eliezer Tamir
* Based on code from Michael Chan's bnx2 driver
* UDP CSUM errata workaround by Arik Gendelman
* Slowpath and fastpath rework by Vladislav Zolotarov
* Statistics and Link management by Yitchak Gertner
*
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/device.h> /* for dev_info() */
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/dma-mapping.h>
#include <linux/bitops.h>
#include <linux/irq.h>
#include <linux/delay.h>
#include <asm/byteorder.h>
#include <linux/time.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/if_vlan.h>
#include <net/ip.h>
#include <net/tcp.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/workqueue.h>
#include <linux/crc32.h>
#include <linux/crc32c.h>
#include <linux/prefetch.h>
#include <linux/zlib.h>
#include <linux/io.h>
#include <linux/stringify.h>
#define BNX2X_MAIN
#include "bnx2x.h"
#include "bnx2x_init.h"
#include "bnx2x_init_ops.h"
#include "bnx2x_cmn.h"
#include <linux/firmware.h>
#include "bnx2x_fw_file_hdr.h"
/* FW files */
#define FW_FILE_VERSION \
__stringify(BCM_5710_FW_MAJOR_VERSION) "." \
__stringify(BCM_5710_FW_MINOR_VERSION) "." \
__stringify(BCM_5710_FW_REVISION_VERSION) "." \
__stringify(BCM_5710_FW_ENGINEERING_VERSION)
#define FW_FILE_NAME_E1 "bnx2x-e1-" FW_FILE_VERSION ".fw"
#define FW_FILE_NAME_E1H "bnx2x-e1h-" FW_FILE_VERSION ".fw"
/* Time in jiffies before concluding the transmitter is hung */
#define TX_TIMEOUT (5*HZ)
static char version[] __devinitdata =
"Broadcom NetXtreme II 5771x 10Gigabit Ethernet Driver "
DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
MODULE_AUTHOR("Eliezer Tamir");
MODULE_DESCRIPTION("Broadcom NetXtreme II BCM57710/57711/57711E Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);
MODULE_FIRMWARE(FW_FILE_NAME_E1);
MODULE_FIRMWARE(FW_FILE_NAME_E1H);
static int multi_mode = 1;
module_param(multi_mode, int, 0);
MODULE_PARM_DESC(multi_mode, " Multi queue mode "
"(0 Disable; 1 Enable (default))");
static int num_queues;
module_param(num_queues, int, 0);
MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
" (default is as a number of CPUs)");
static int disable_tpa;
module_param(disable_tpa, int, 0);
MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
static int int_mode;
module_param(int_mode, int, 0);
MODULE_PARM_DESC(int_mode, " Force interrupt mode other then MSI-X "
"(1 INT#x; 2 MSI)");
static int dropless_fc;
module_param(dropless_fc, int, 0);
MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
static int poll;
module_param(poll, int, 0);
MODULE_PARM_DESC(poll, " Use polling (for debug)");
static int mrrs = -1;
module_param(mrrs, int, 0);
MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
static int debug;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, " Default debug msglevel");
static struct workqueue_struct *bnx2x_wq;
enum bnx2x_board_type {
BCM57710 = 0,
BCM57711 = 1,
BCM57711E = 2,
};
/* indexed by board_type, above */
static struct {
char *name;
} board_info[] __devinitdata = {
{ "Broadcom NetXtreme II BCM57710 XGb" },
{ "Broadcom NetXtreme II BCM57711 XGb" },
{ "Broadcom NetXtreme II BCM57711E XGb" }
};
static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
/****************************************************************************
* General service functions
****************************************************************************/
/* used only at init
* locking is done by mcp
*/
void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
{
pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
PCICFG_VENDOR_ID_OFFSET);
}
static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
{
u32 val;
pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
PCICFG_VENDOR_ID_OFFSET);
return val;
}
const u32 dmae_reg_go_c[] = {
DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
};
/* copy command into DMAE command memory and set DMAE command go */
void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
{
u32 cmd_offset;
int i;
cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
DP(BNX2X_MSG_OFF, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
idx, i, cmd_offset + i*4, *(((u32 *)dmae) + i));
}
REG_WR(bp, dmae_reg_go_c[idx], 1);
}
void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
u32 len32)
{
struct dmae_command dmae;
u32 *wb_comp = bnx2x_sp(bp, wb_comp);
int cnt = 200;
if (!bp->dmae_ready) {
u32 *data = bnx2x_sp(bp, wb_data[0]);
DP(BNX2X_MSG_OFF, "DMAE is not ready (dst_addr %08x len32 %d)"
" using indirect\n", dst_addr, len32);
bnx2x_init_ind_wr(bp, dst_addr, data, len32);
return;
}
memset(&dmae, 0, sizeof(struct dmae_command));
dmae.opcode = (DMAE_CMD_SRC_PCI | DMAE_CMD_DST_GRC |
DMAE_CMD_C_DST_PCI | DMAE_CMD_C_ENABLE |
DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET |
#ifdef __BIG_ENDIAN
DMAE_CMD_ENDIANITY_B_DW_SWAP |
#else
DMAE_CMD_ENDIANITY_DW_SWAP |
#endif
(BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0) |
(BP_E1HVN(bp) << DMAE_CMD_E1HVN_SHIFT));
dmae.src_addr_lo = U64_LO(dma_addr);
dmae.src_addr_hi = U64_HI(dma_addr);
dmae.dst_addr_lo = dst_addr >> 2;
dmae.dst_addr_hi = 0;
dmae.len = len32;
dmae.comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
dmae.comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
dmae.comp_val = DMAE_COMP_VAL;
DP(BNX2X_MSG_OFF, "DMAE: opcode 0x%08x\n"
DP_LEVEL "src_addr [%x:%08x] len [%d *4] "
"dst_addr [%x:%08x (%08x)]\n"
DP_LEVEL "comp_addr [%x:%08x] comp_val 0x%08x\n",
dmae.opcode, dmae.src_addr_hi, dmae.src_addr_lo,
dmae.len, dmae.dst_addr_hi, dmae.dst_addr_lo, dst_addr,
dmae.comp_addr_hi, dmae.comp_addr_lo, dmae.comp_val);
DP(BNX2X_MSG_OFF, "data [0x%08x 0x%08x 0x%08x 0x%08x]\n",
bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
mutex_lock(&bp->dmae_mutex);
*wb_comp = 0;
bnx2x_post_dmae(bp, &dmae, INIT_DMAE_C(bp));
udelay(5);
while (*wb_comp != DMAE_COMP_VAL) {
DP(BNX2X_MSG_OFF, "wb_comp 0x%08x\n", *wb_comp);
if (!cnt) {
BNX2X_ERR("DMAE timeout!\n");
break;
}
cnt--;
/* adjust delay for emulation/FPGA */
if (CHIP_REV_IS_SLOW(bp))
msleep(100);
else
udelay(5);
}
mutex_unlock(&bp->dmae_mutex);
}
void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
{
struct dmae_command dmae;
u32 *wb_comp = bnx2x_sp(bp, wb_comp);
int cnt = 200;
if (!bp->dmae_ready) {
u32 *data = bnx2x_sp(bp, wb_data[0]);
int i;
DP(BNX2X_MSG_OFF, "DMAE is not ready (src_addr %08x len32 %d)"
" using indirect\n", src_addr, len32);
for (i = 0; i < len32; i++)
data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
return;
}
memset(&dmae, 0, sizeof(struct dmae_command));
dmae.opcode = (DMAE_CMD_SRC_GRC | DMAE_CMD_DST_PCI |
DMAE_CMD_C_DST_PCI | DMAE_CMD_C_ENABLE |
DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET |
#ifdef __BIG_ENDIAN
DMAE_CMD_ENDIANITY_B_DW_SWAP |
#else
DMAE_CMD_ENDIANITY_DW_SWAP |
#endif
(BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0) |
(BP_E1HVN(bp) << DMAE_CMD_E1HVN_SHIFT));
dmae.src_addr_lo = src_addr >> 2;
dmae.src_addr_hi = 0;
dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
dmae.len = len32;
dmae.comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
dmae.comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
dmae.comp_val = DMAE_COMP_VAL;
DP(BNX2X_MSG_OFF, "DMAE: opcode 0x%08x\n"
DP_LEVEL "src_addr [%x:%08x] len [%d *4] "
"dst_addr [%x:%08x (%08x)]\n"
DP_LEVEL "comp_addr [%x:%08x] comp_val 0x%08x\n",
dmae.opcode, dmae.src_addr_hi, dmae.src_addr_lo,
dmae.len, dmae.dst_addr_hi, dmae.dst_addr_lo, src_addr,
dmae.comp_addr_hi, dmae.comp_addr_lo, dmae.comp_val);
mutex_lock(&bp->dmae_mutex);
memset(bnx2x_sp(bp, wb_data[0]), 0, sizeof(u32) * 4);
*wb_comp = 0;
bnx2x_post_dmae(bp, &dmae, INIT_DMAE_C(bp));
udelay(5);
while (*wb_comp != DMAE_COMP_VAL) {
if (!cnt) {
BNX2X_ERR("DMAE timeout!\n");
break;
}
cnt--;
/* adjust delay for emulation/FPGA */
if (CHIP_REV_IS_SLOW(bp))
msleep(100);
else
udelay(5);
}
DP(BNX2X_MSG_OFF, "data [0x%08x 0x%08x 0x%08x 0x%08x]\n",
bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
mutex_unlock(&bp->dmae_mutex);
}
void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
u32 addr, u32 len)
{
int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
int offset = 0;
while (len > dmae_wr_max) {
bnx2x_write_dmae(bp, phys_addr + offset,
addr + offset, dmae_wr_max);
offset += dmae_wr_max * 4;
len -= dmae_wr_max;
}
bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
}
/* used only for slowpath so not inlined */
static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
{
u32 wb_write[2];
wb_write[0] = val_hi;
wb_write[1] = val_lo;
REG_WR_DMAE(bp, reg, wb_write, 2);
}
#ifdef USE_WB_RD
static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
{
u32 wb_data[2];
REG_RD_DMAE(bp, reg, wb_data, 2);
return HILO_U64(wb_data[0], wb_data[1]);
}
#endif
static int bnx2x_mc_assert(struct bnx2x *bp)
{
char last_idx;
int i, rc = 0;
u32 row0, row1, row2, row3;
/* XSTORM */
last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
XSTORM_ASSERT_LIST_INDEX_OFFSET);
if (last_idx)
BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
/* print the asserts */
for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
XSTORM_ASSERT_LIST_OFFSET(i));
row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
XSTORM_ASSERT_LIST_OFFSET(i) + 4);
row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
XSTORM_ASSERT_LIST_OFFSET(i) + 8);
row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
XSTORM_ASSERT_LIST_OFFSET(i) + 12);
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
" 0x%08x 0x%08x 0x%08x\n",
i, row3, row2, row1, row0);
rc++;
} else {
break;
}
}
/* TSTORM */
last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
TSTORM_ASSERT_LIST_INDEX_OFFSET);
if (last_idx)
BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
/* print the asserts */
for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
TSTORM_ASSERT_LIST_OFFSET(i));
row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
TSTORM_ASSERT_LIST_OFFSET(i) + 4);
row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
TSTORM_ASSERT_LIST_OFFSET(i) + 8);
row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
TSTORM_ASSERT_LIST_OFFSET(i) + 12);
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
" 0x%08x 0x%08x 0x%08x\n",
i, row3, row2, row1, row0);
rc++;
} else {
break;
}
}
/* CSTORM */
last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
CSTORM_ASSERT_LIST_INDEX_OFFSET);
if (last_idx)
BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
/* print the asserts */
for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
CSTORM_ASSERT_LIST_OFFSET(i));
row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
CSTORM_ASSERT_LIST_OFFSET(i) + 4);
row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
CSTORM_ASSERT_LIST_OFFSET(i) + 8);
row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
CSTORM_ASSERT_LIST_OFFSET(i) + 12);
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
" 0x%08x 0x%08x 0x%08x\n",
i, row3, row2, row1, row0);
rc++;
} else {
break;
}
}
/* USTORM */
last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
USTORM_ASSERT_LIST_INDEX_OFFSET);
if (last_idx)
BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
/* print the asserts */
for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
USTORM_ASSERT_LIST_OFFSET(i));
row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
USTORM_ASSERT_LIST_OFFSET(i) + 4);
row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
USTORM_ASSERT_LIST_OFFSET(i) + 8);
row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
USTORM_ASSERT_LIST_OFFSET(i) + 12);
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
" 0x%08x 0x%08x 0x%08x\n",
i, row3, row2, row1, row0);
rc++;
} else {
break;
}
}
return rc;
}
static void bnx2x_fw_dump(struct bnx2x *bp)
{
u32 addr;
u32 mark, offset;
__be32 data[9];
int word;
if (BP_NOMCP(bp)) {
BNX2X_ERR("NO MCP - can not dump\n");
return;
}
addr = bp->common.shmem_base - 0x0800 + 4;
mark = REG_RD(bp, addr);
mark = MCP_REG_MCPR_SCRATCH + ((mark + 0x3) & ~0x3) - 0x08000000;
pr_err("begin fw dump (mark 0x%x)\n", mark);
pr_err("");
for (offset = mark; offset <= bp->common.shmem_base; offset += 0x8*4) {
for (word = 0; word < 8; word++)
data[word] = htonl(REG_RD(bp, offset + 4*word));
data[8] = 0x0;
pr_cont("%s", (char *)data);
}
for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
for (word = 0; word < 8; word++)
data[word] = htonl(REG_RD(bp, offset + 4*word));
data[8] = 0x0;
pr_cont("%s", (char *)data);
}
pr_err("end of fw dump\n");
}
void bnx2x_panic_dump(struct bnx2x *bp)
{
int i;
u16 j, start, end;
bp->stats_state = STATS_STATE_DISABLED;
DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
BNX2X_ERR("begin crash dump -----------------\n");
/* Indices */
/* Common */
BNX2X_ERR("def_c_idx(0x%x) def_u_idx(0x%x) def_x_idx(0x%x)"
" def_t_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x)"
" spq_prod_idx(0x%x)\n",
bp->def_c_idx, bp->def_u_idx, bp->def_x_idx, bp->def_t_idx,
bp->def_att_idx, bp->attn_state, bp->spq_prod_idx);
/* Rx */
for_each_queue(bp, i) {
struct bnx2x_fastpath *fp = &bp->fp[i];
BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x)"
" *rx_bd_cons_sb(0x%x) rx_comp_prod(0x%x)"
" rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
i, fp->rx_bd_prod, fp->rx_bd_cons,
le16_to_cpu(*fp->rx_bd_cons_sb), fp->rx_comp_prod,
fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x)"
" fp_u_idx(0x%x) *sb_u_idx(0x%x)\n",
fp->rx_sge_prod, fp->last_max_sge,
le16_to_cpu(fp->fp_u_idx),
fp->status_blk->u_status_block.status_block_index);
}
/* Tx */
for_each_queue(bp, i) {
struct bnx2x_fastpath *fp = &bp->fp[i];
BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x)"
" tx_bd_prod(0x%x) tx_bd_cons(0x%x)"
" *tx_cons_sb(0x%x)\n",
i, fp->tx_pkt_prod, fp->tx_pkt_cons, fp->tx_bd_prod,
fp->tx_bd_cons, le16_to_cpu(*fp->tx_cons_sb));
BNX2X_ERR(" fp_c_idx(0x%x) *sb_c_idx(0x%x)"
" tx_db_prod(0x%x)\n", le16_to_cpu(fp->fp_c_idx),
fp->status_blk->c_status_block.status_block_index,
fp->tx_db.data.prod);
}
/* Rings */
/* Rx */
for_each_queue(bp, i) {
struct bnx2x_fastpath *fp = &bp->fp[i];
start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
for (j = start; j != end; j = RX_BD(j + 1)) {
u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
i, j, rx_bd[1], rx_bd[0], sw_bd->skb);
}
start = RX_SGE(fp->rx_sge_prod);
end = RX_SGE(fp->last_max_sge);
for (j = start; j != end; j = RX_SGE(j + 1)) {
u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
i, j, rx_sge[1], rx_sge[0], sw_page->page);
}
start = RCQ_BD(fp->rx_comp_cons - 10);
end = RCQ_BD(fp->rx_comp_cons + 503);
for (j = start; j != end; j = RCQ_BD(j + 1)) {
u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
}
}
/* Tx */
for_each_queue(bp, i) {
struct bnx2x_fastpath *fp = &bp->fp[i];
start = TX_BD(le16_to_cpu(*fp->tx_cons_sb) - 10);
end = TX_BD(le16_to_cpu(*fp->tx_cons_sb) + 245);
for (j = start; j != end; j = TX_BD(j + 1)) {
struct sw_tx_bd *sw_bd = &fp->tx_buf_ring[j];
BNX2X_ERR("fp%d: packet[%x]=[%p,%x]\n",
i, j, sw_bd->skb, sw_bd->first_bd);
}
start = TX_BD(fp->tx_bd_cons - 10);
end = TX_BD(fp->tx_bd_cons + 254);
for (j = start; j != end; j = TX_BD(j + 1)) {
u32 *tx_bd = (u32 *)&fp->tx_desc_ring[j];
BNX2X_ERR("fp%d: tx_bd[%x]=[%x:%x:%x:%x]\n",
i, j, tx_bd[0], tx_bd[1], tx_bd[2], tx_bd[3]);
}
}
bnx2x_fw_dump(bp);
bnx2x_mc_assert(bp);
BNX2X_ERR("end crash dump -----------------\n");
}
void bnx2x_int_enable(struct bnx2x *bp)
{
int port = BP_PORT(bp);
u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
u32 val = REG_RD(bp, addr);
int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
if (msix) {
val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_INT_LINE_EN_0);
val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
} else if (msi) {
val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
} else {
val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_INT_LINE_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
val, port, addr);
REG_WR(bp, addr, val);
val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
}
DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
REG_WR(bp, addr, val);
/*
* Ensure that HC_CONFIG is written before leading/trailing edge config
*/
mmiowb();
barrier();
if (CHIP_IS_E1H(bp)) {
/* init leading/trailing edge */
if (IS_E1HMF(bp)) {
val = (0xee0f | (1 << (BP_E1HVN(bp) + 4)));
if (bp->port.pmf)
/* enable nig and gpio3 attention */
val |= 0x1100;
} else
val = 0xffff;
REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
}
/* Make sure that interrupts are indeed enabled from here on */
mmiowb();
}
static void bnx2x_int_disable(struct bnx2x *bp)
{
int port = BP_PORT(bp);
u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
u32 val = REG_RD(bp, addr);
val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_INT_LINE_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
val, port, addr);
/* flush all outstanding writes */
mmiowb();
REG_WR(bp, addr, val);
if (REG_RD(bp, addr) != val)
BNX2X_ERR("BUG! proper val not read from IGU!\n");
}
void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
{
int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
int i, offset;
/* disable interrupt handling */
atomic_inc(&bp->intr_sem);
smp_wmb(); /* Ensure that bp->intr_sem update is SMP-safe */
if (disable_hw)
/* prevent the HW from sending interrupts */
bnx2x_int_disable(bp);
/* make sure all ISRs are done */
if (msix) {
synchronize_irq(bp->msix_table[0].vector);
offset = 1;
#ifdef BCM_CNIC
offset++;
#endif
for_each_queue(bp, i)
synchronize_irq(bp->msix_table[i + offset].vector);
} else
synchronize_irq(bp->pdev->irq);
/* make sure sp_task is not running */
cancel_delayed_work(&bp->sp_task);
flush_workqueue(bnx2x_wq);
}
/* fast path */
/*
* General service functions
*/
/* Return true if succeeded to acquire the lock */
static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
{
u32 lock_status;
u32 resource_bit = (1 << resource);
int func = BP_FUNC(bp);
u32 hw_lock_control_reg;
DP(NETIF_MSG_HW, "Trying to take a lock on resource %d\n", resource);
/* Validating that the resource is within range */
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
DP(NETIF_MSG_HW,
"resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
resource, HW_LOCK_MAX_RESOURCE_VALUE);
return false;
}
if (func <= 5)
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
else
hw_lock_control_reg =
(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
/* Try to acquire the lock */
REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
lock_status = REG_RD(bp, hw_lock_control_reg);
if (lock_status & resource_bit)
return true;
DP(NETIF_MSG_HW, "Failed to get a lock on resource %d\n", resource);
return false;
}
#ifdef BCM_CNIC
static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid);
#endif
void bnx2x_sp_event(struct bnx2x_fastpath *fp,
union eth_rx_cqe *rr_cqe)
{
struct bnx2x *bp = fp->bp;
int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
DP(BNX2X_MSG_SP,
"fp %d cid %d got ramrod #%d state is %x type is %d\n",
fp->index, cid, command, bp->state,
rr_cqe->ramrod_cqe.ramrod_type);
bp->spq_left++;
if (fp->index) {
switch (command | fp->state) {
case (RAMROD_CMD_ID_ETH_CLIENT_SETUP |
BNX2X_FP_STATE_OPENING):
DP(NETIF_MSG_IFUP, "got MULTI[%d] setup ramrod\n",
cid);
fp->state = BNX2X_FP_STATE_OPEN;
break;
case (RAMROD_CMD_ID_ETH_HALT | BNX2X_FP_STATE_HALTING):
DP(NETIF_MSG_IFDOWN, "got MULTI[%d] halt ramrod\n",
cid);
fp->state = BNX2X_FP_STATE_HALTED;
break;
default:
BNX2X_ERR("unexpected MC reply (%d) "
"fp[%d] state is %x\n",
command, fp->index, fp->state);
break;
}
mb(); /* force bnx2x_wait_ramrod() to see the change */
return;
}
switch (command | bp->state) {
case (RAMROD_CMD_ID_ETH_PORT_SETUP | BNX2X_STATE_OPENING_WAIT4_PORT):
DP(NETIF_MSG_IFUP, "got setup ramrod\n");
bp->state = BNX2X_STATE_OPEN;
break;
case (RAMROD_CMD_ID_ETH_HALT | BNX2X_STATE_CLOSING_WAIT4_HALT):
DP(NETIF_MSG_IFDOWN, "got halt ramrod\n");
bp->state = BNX2X_STATE_CLOSING_WAIT4_DELETE;
fp->state = BNX2X_FP_STATE_HALTED;
break;
case (RAMROD_CMD_ID_ETH_CFC_DEL | BNX2X_STATE_CLOSING_WAIT4_HALT):
DP(NETIF_MSG_IFDOWN, "got delete ramrod for MULTI[%d]\n", cid);
bnx2x_fp(bp, cid, state) = BNX2X_FP_STATE_CLOSED;
break;
#ifdef BCM_CNIC
case (RAMROD_CMD_ID_ETH_CFC_DEL | BNX2X_STATE_OPEN):
DP(NETIF_MSG_IFDOWN, "got delete ramrod for CID %d\n", cid);
bnx2x_cnic_cfc_comp(bp, cid);
break;
#endif
case (RAMROD_CMD_ID_ETH_SET_MAC | BNX2X_STATE_OPEN):
case (RAMROD_CMD_ID_ETH_SET_MAC | BNX2X_STATE_DIAG):
DP(NETIF_MSG_IFUP, "got set mac ramrod\n");
bp->set_mac_pending--;
smp_wmb();
break;
case (RAMROD_CMD_ID_ETH_SET_MAC | BNX2X_STATE_CLOSING_WAIT4_HALT):
DP(NETIF_MSG_IFDOWN, "got (un)set mac ramrod\n");
bp->set_mac_pending--;
smp_wmb();
break;
default:
BNX2X_ERR("unexpected MC reply (%d) bp->state is %x\n",
command, bp->state);
break;
}
mb(); /* force bnx2x_wait_ramrod() to see the change */
}
irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
{
struct bnx2x *bp = netdev_priv(dev_instance);
u16 status = bnx2x_ack_int(bp);
u16 mask;
int i;
/* Return here if interrupt is shared and it's not for us */
if (unlikely(status == 0)) {
DP(NETIF_MSG_INTR, "not our interrupt!\n");
return IRQ_NONE;
}
DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
/* Return here if interrupt is disabled */
if (unlikely(atomic_read(&bp->intr_sem) != 0)) {
DP(NETIF_MSG_INTR, "called but intr_sem not 0, returning\n");
return IRQ_HANDLED;
}
#ifdef BNX2X_STOP_ON_ERROR
if (unlikely(bp->panic))
return IRQ_HANDLED;
#endif
for (i = 0; i < BNX2X_NUM_QUEUES(bp); i++) {
struct bnx2x_fastpath *fp = &bp->fp[i];
mask = 0x2 << fp->sb_id;
if (status & mask) {
/* Handle Rx and Tx according to SB id */
prefetch(fp->rx_cons_sb);
prefetch(&fp->status_blk->u_status_block.
status_block_index);
prefetch(fp->tx_cons_sb);
prefetch(&fp->status_blk->c_status_block.
status_block_index);
napi_schedule(&bnx2x_fp(bp, fp->index, napi));
status &= ~mask;
}
}
#ifdef BCM_CNIC
mask = 0x2 << CNIC_SB_ID(bp);
if (status & (mask | 0x1)) {
struct cnic_ops *c_ops = NULL;
rcu_read_lock();
c_ops = rcu_dereference(bp->cnic_ops);
if (c_ops)
c_ops->cnic_handler(bp->cnic_data, NULL);
rcu_read_unlock();
status &= ~mask;
}
#endif
if (unlikely(status & 0x1)) {
queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
status &= ~0x1;
if (!status)
return IRQ_HANDLED;
}
if (unlikely(status))
DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
status);
return IRQ_HANDLED;
}
/* end of fast path */
/* Link */
/*
* General service functions
*/
int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
{
u32 lock_status;
u32 resource_bit = (1 << resource);
int func = BP_FUNC(bp);
u32 hw_lock_control_reg;
int cnt;
/* Validating that the resource is within range */
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
DP(NETIF_MSG_HW,
"resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
resource, HW_LOCK_MAX_RESOURCE_VALUE);
return -EINVAL;
}
if (func <= 5) {
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
} else {
hw_lock_control_reg =
(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
}
/* Validating that the resource is not already taken */
lock_status = REG_RD(bp, hw_lock_control_reg);
if (lock_status & resource_bit) {
DP(NETIF_MSG_HW, "lock_status 0x%x resource_bit 0x%x\n",
lock_status, resource_bit);
return -EEXIST;
}
/* Try for 5 second every 5ms */
for (cnt = 0; cnt < 1000; cnt++) {
/* Try to acquire the lock */
REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
lock_status = REG_RD(bp, hw_lock_control_reg);
if (lock_status & resource_bit)
return 0;
msleep(5);
}
DP(NETIF_MSG_HW, "Timeout\n");
return -EAGAIN;
}
int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
{
u32 lock_status;
u32 resource_bit = (1 << resource);
int func = BP_FUNC(bp);
u32 hw_lock_control_reg;
DP(NETIF_MSG_HW, "Releasing a lock on resource %d\n", resource);
/* Validating that the resource is within range */
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
DP(NETIF_MSG_HW,
"resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
resource, HW_LOCK_MAX_RESOURCE_VALUE);
return -EINVAL;
}
if (func <= 5) {
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
} else {
hw_lock_control_reg =
(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
}
/* Validating that the resource is currently taken */
lock_status = REG_RD(bp, hw_lock_control_reg);
if (!(lock_status & resource_bit)) {
DP(NETIF_MSG_HW, "lock_status 0x%x resource_bit 0x%x\n",
lock_status, resource_bit);
return -EFAULT;
}
REG_WR(bp, hw_lock_control_reg, resource_bit);
return 0;
}
int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
{
/* The GPIO should be swapped if swap register is set and active */
int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
int gpio_shift = gpio_num +
(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
u32 gpio_mask = (1 << gpio_shift);
u32 gpio_reg;
int value;
if (gpio_num > MISC_REGISTERS_GPIO_3) {
BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
return -EINVAL;
}
/* read GPIO value */
gpio_reg = REG_RD(bp, MISC_REG_GPIO);
/* get the requested pin value */
if ((gpio_reg & gpio_mask) == gpio_mask)
value = 1;
else
value = 0;
DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value);
return value;
}
int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
{
/* The GPIO should be swapped if swap register is set and active */
int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
int gpio_shift = gpio_num +
(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
u32 gpio_mask = (1 << gpio_shift);
u32 gpio_reg;
if (gpio_num > MISC_REGISTERS_GPIO_3) {
BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
return -EINVAL;
}
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
/* read GPIO and mask except the float bits */
gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
switch (mode) {
case MISC_REGISTERS_GPIO_OUTPUT_LOW:
DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n",
gpio_num, gpio_shift);
/* clear FLOAT and set CLR */
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
break;
case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n",
gpio_num, gpio_shift);
/* clear FLOAT and set SET */
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
break;
case MISC_REGISTERS_GPIO_INPUT_HI_Z:
DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n",
gpio_num, gpio_shift);
/* set FLOAT */
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
break;
default:
break;
}
REG_WR(bp, MISC_REG_GPIO, gpio_reg);
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
return 0;
}
int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
{
/* The GPIO should be swapped if swap register is set and active */
int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
int gpio_shift = gpio_num +
(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
u32 gpio_mask = (1 << gpio_shift);
u32 gpio_reg;
if (gpio_num > MISC_REGISTERS_GPIO_3) {
BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
return -EINVAL;
}
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
/* read GPIO int */
gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
switch (mode) {
case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> "
"output low\n", gpio_num, gpio_shift);
/* clear SET and set CLR */
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
break;
case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> "
"output high\n", gpio_num, gpio_shift);
/* clear CLR and set SET */
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
break;
default:
break;
}
REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
return 0;
}
static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
{
u32 spio_mask = (1 << spio_num);
u32 spio_reg;
if ((spio_num < MISC_REGISTERS_SPIO_4) ||
(spio_num > MISC_REGISTERS_SPIO_7)) {
BNX2X_ERR("Invalid SPIO %d\n", spio_num);
return -EINVAL;
}
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
/* read SPIO and mask except the float bits */
spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
switch (mode) {
case MISC_REGISTERS_SPIO_OUTPUT_LOW:
DP(NETIF_MSG_LINK, "Set SPIO %d -> output low\n", spio_num);
/* clear FLOAT and set CLR */
spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
break;
case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
DP(NETIF_MSG_LINK, "Set SPIO %d -> output high\n", spio_num);
/* clear FLOAT and set SET */
spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
break;
case MISC_REGISTERS_SPIO_INPUT_HI_Z:
DP(NETIF_MSG_LINK, "Set SPIO %d -> input\n", spio_num);
/* set FLOAT */
spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
break;
default:
break;
}
REG_WR(bp, MISC_REG_SPIO, spio_reg);
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
return 0;
}
int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
{
u32 sel_phy_idx = 0;
if (bp->link_vars.link_up) {
sel_phy_idx = EXT_PHY1;
/* In case link is SERDES, check if the EXT_PHY2 is the one */
if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
(bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
sel_phy_idx = EXT_PHY2;
} else {
switch (bnx2x_phy_selection(&bp->link_params)) {
case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
sel_phy_idx = EXT_PHY1;
break;
case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
sel_phy_idx = EXT_PHY2;
break;
}
}
/*
* The selected actived PHY is always after swapping (in case PHY
* swapping is enabled). So when swapping is enabled, we need to reverse
* the configuration
*/
if (bp->link_params.multi_phy_config &
PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
if (sel_phy_idx == EXT_PHY1)
sel_phy_idx = EXT_PHY2;
else if (sel_phy_idx == EXT_PHY2)
sel_phy_idx = EXT_PHY1;
}
return LINK_CONFIG_IDX(sel_phy_idx);
}
void bnx2x_calc_fc_adv(struct bnx2x *bp)
{
u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
switch (bp->link_vars.ieee_fc &
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
ADVERTISED_Pause);
break;
case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
ADVERTISED_Pause);
break;
case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
break;
default:
bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
ADVERTISED_Pause);
break;
}
}
u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
{
if (!BP_NOMCP(bp)) {
u8 rc;
int cfx_idx = bnx2x_get_link_cfg_idx(bp);
u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
/* Initialize link parameters structure variables */
/* It is recommended to turn off RX FC for jumbo frames
for better performance */
if (bp->dev->mtu > 5000)
bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
else
bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
bnx2x_acquire_phy_lock(bp);
if (load_mode == LOAD_DIAG) {
bp->link_params.loopback_mode = LOOPBACK_XGXS;
bp->link_params.req_line_speed[cfx_idx] = SPEED_10000;
}
rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
bnx2x_release_phy_lock(bp);
bnx2x_calc_fc_adv(bp);
if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
bnx2x_link_report(bp);
}
bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
return rc;
}
BNX2X_ERR("Bootcode is missing - can not initialize link\n");
return -EINVAL;
}
void bnx2x_link_set(struct bnx2x *bp)
{
if (!BP_NOMCP(bp)) {
bnx2x_acquire_phy_lock(bp);
bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
bnx2x_phy_init(&bp->link_params, &bp->link_vars);
bnx2x_release_phy_lock(bp);
bnx2x_calc_fc_adv(bp);
} else
BNX2X_ERR("Bootcode is missing - can not set link\n");
}
static void bnx2x__link_reset(struct bnx2x *bp)
{
if (!BP_NOMCP(bp)) {
bnx2x_acquire_phy_lock(bp);
bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
bnx2x_release_phy_lock(bp);
} else
BNX2X_ERR("Bootcode is missing - can not reset link\n");
}
u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
{
u8 rc = 0;
if (!BP_NOMCP(bp)) {
bnx2x_acquire_phy_lock(bp);
rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
is_serdes);
bnx2x_release_phy_lock(bp);
} else
BNX2X_ERR("Bootcode is missing - can not test link\n");
return rc;
}
static void bnx2x_init_port_minmax(struct bnx2x *bp)
{
u32 r_param = bp->link_vars.line_speed / 8;
u32 fair_periodic_timeout_usec;
u32 t_fair;
memset(&(bp->cmng.rs_vars), 0,
sizeof(struct rate_shaping_vars_per_port));
memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
/* 100 usec in SDM ticks = 25 since each tick is 4 usec */
bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
/* this is the threshold below which no timer arming will occur
1.25 coefficient is for the threshold to be a little bigger
than the real time, to compensate for timer in-accuracy */
bp->cmng.rs_vars.rs_threshold =
(RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
/* resolution of fairness timer */
fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
/* for 10G it is 1000usec. for 1G it is 10000usec. */
t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
/* this is the threshold below which we won't arm the timer anymore */
bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
/* we multiply by 1e3/8 to get bytes/msec.
We don't want the credits to pass a credit
of the t_fair*FAIR_MEM (algorithm resolution) */
bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
/* since each tick is 4 usec */
bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
}
/* Calculates the sum of vn_min_rates.
It's needed for further normalizing of the min_rates.
Returns:
sum of vn_min_rates.
or
0 - if all the min_rates are 0.
In the later case fainess algorithm should be deactivated.
If not all min_rates are zero then those that are zeroes will be set to 1.
*/
static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
{
int all_zero = 1;
int port = BP_PORT(bp);
int vn;
bp->vn_weight_sum = 0;
for (vn = VN_0; vn < E1HVN_MAX; vn++) {
int func = 2*vn + port;
u32 vn_cfg = SHMEM_RD(bp, mf_cfg.func_mf_config[func].config);
u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
/* Skip hidden vns */
if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
continue;
/* If min rate is zero - set it to 1 */
if (!vn_min_rate)
vn_min_rate = DEF_MIN_RATE;
else
all_zero = 0;
bp->vn_weight_sum += vn_min_rate;
}
/* ... only if all min rates are zeros - disable fairness */
if (all_zero) {
bp->cmng.flags.cmng_enables &=
~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
" fairness will be disabled\n");
} else
bp->cmng.flags.cmng_enables |=
CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
}
static void bnx2x_init_vn_minmax(struct bnx2x *bp, int func)
{
struct rate_shaping_vars_per_vn m_rs_vn;
struct fairness_vars_per_vn m_fair_vn;
u32 vn_cfg = SHMEM_RD(bp, mf_cfg.func_mf_config[func].config);
u16 vn_min_rate, vn_max_rate;
int i;
/* If function is hidden - set min and max to zeroes */
if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
vn_min_rate = 0;
vn_max_rate = 0;
} else {
vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
/* If min rate is zero - set it to 1 */
if (!vn_min_rate)
vn_min_rate = DEF_MIN_RATE;
vn_max_rate = ((vn_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
FUNC_MF_CFG_MAX_BW_SHIFT) * 100;
}
DP(NETIF_MSG_IFUP,
"func %d: vn_min_rate %d vn_max_rate %d vn_weight_sum %d\n",
func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
/* global vn counter - maximal Mbps for this vn */
m_rs_vn.vn_counter.rate = vn_max_rate;
/* quota - number of bytes transmitted in this period */
m_rs_vn.vn_counter.quota =
(vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
if (bp->vn_weight_sum) {
/* credit for each period of the fairness algorithm:
number of bytes in T_FAIR (the vn share the port rate).
vn_weight_sum should not be larger than 10000, thus
T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
than zero */
m_fair_vn.vn_credit_delta =
max_t(u32, (vn_min_rate * (T_FAIR_COEF /
(8 * bp->vn_weight_sum))),
(bp->cmng.fair_vars.fair_threshold * 2));
DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
m_fair_vn.vn_credit_delta);
}
/* Store it to internal memory */
for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
REG_WR(bp, BAR_XSTRORM_INTMEM +
XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
((u32 *)(&m_rs_vn))[i]);
for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
REG_WR(bp, BAR_XSTRORM_INTMEM +
XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
((u32 *)(&m_fair_vn))[i]);
}
/* This function is called upon link interrupt */
static void bnx2x_link_attn(struct bnx2x *bp)
{
u32 prev_link_status = bp->link_vars.link_status;
/* Make sure that we are synced with the current statistics */
bnx2x_stats_handle(bp, STATS_EVENT_STOP);
bnx2x_link_update(&bp->link_params, &bp->link_vars);
if (bp->link_vars.link_up) {
/* dropless flow control */
if (CHIP_IS_E1H(bp) && bp->dropless_fc) {
int port = BP_PORT(bp);
u32 pause_enabled = 0;
if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
pause_enabled = 1;
REG_WR(bp, BAR_USTRORM_INTMEM +
USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
pause_enabled);
}
if (bp->link_vars.mac_type == MAC_TYPE_BMAC) {
struct host_port_stats *pstats;
pstats = bnx2x_sp(bp, port_stats);
/* reset old bmac stats */
memset(&(pstats->mac_stx[0]), 0,
sizeof(struct mac_stx));
}
if (bp->state == BNX2X_STATE_OPEN)
bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
}
/* indicate link status only if link status actually changed */
if (prev_link_status != bp->link_vars.link_status)
bnx2x_link_report(bp);
if (IS_E1HMF(bp)) {
int port = BP_PORT(bp);
int func;
int vn;
/* Set the attention towards other drivers on the same port */
for (vn = VN_0; vn < E1HVN_MAX; vn++) {
if (vn == BP_E1HVN(bp))
continue;
func = ((vn << 1) | port);
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_0 +
(LINK_SYNC_ATTENTION_BIT_FUNC_0 + func)*4, 1);
}
if (bp->link_vars.link_up) {
int i;
/* Init rate shaping and fairness contexts */
bnx2x_init_port_minmax(bp);
for (vn = VN_0; vn < E1HVN_MAX; vn++)
bnx2x_init_vn_minmax(bp, 2*vn + port);
/* Store it to internal memory */
for (i = 0;
i < sizeof(struct cmng_struct_per_port) / 4; i++)
REG_WR(bp, BAR_XSTRORM_INTMEM +
XSTORM_CMNG_PER_PORT_VARS_OFFSET(port) + i*4,
((u32 *)(&bp->cmng))[i]);
}
}
}
void bnx2x__link_status_update(struct bnx2x *bp)
{
if ((bp->state != BNX2X_STATE_OPEN) || (bp->flags & MF_FUNC_DIS))
return;
bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
if (bp->link_vars.link_up)
bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
else
bnx2x_stats_handle(bp, STATS_EVENT_STOP);
bnx2x_calc_vn_weight_sum(bp);
/* indicate link status */
bnx2x_link_report(bp);
}
static void bnx2x_pmf_update(struct bnx2x *bp)
{
int port = BP_PORT(bp);
u32 val;
bp->port.pmf = 1;
DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
/* enable nig attention */
val = (0xff0f | (1 << (BP_E1HVN(bp) + 4)));
REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
bnx2x_stats_handle(bp, STATS_EVENT_PMF);
}
/* end of Link */
/* slow path */
/*
* General service functions
*/
/* send the MCP a request, block until there is a reply */
u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
{
int func = BP_FUNC(bp);
u32 seq = ++bp->fw_seq;
u32 rc = 0;
u32 cnt = 1;
u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
mutex_lock(&bp->fw_mb_mutex);
SHMEM_WR(bp, func_mb[func].drv_mb_param, param);
SHMEM_WR(bp, func_mb[func].drv_mb_header, (command | seq));
DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB\n", (command | seq));
do {
/* let the FW do it's magic ... */
msleep(delay);
rc = SHMEM_RD(bp, func_mb[func].fw_mb_header);
/* Give the FW up to 5 second (500*10ms) */
} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
cnt*delay, rc, seq);
/* is this a reply to our command? */
if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
rc &= FW_MSG_CODE_MASK;
else {
/* FW BUG! */
BNX2X_ERR("FW failed to respond!\n");
bnx2x_fw_dump(bp);
rc = 0;
}
mutex_unlock(&bp->fw_mb_mutex);
return rc;
}
static void bnx2x_e1h_disable(struct bnx2x *bp)
{
int port = BP_PORT(bp);
netif_tx_disable(bp->dev);
REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
netif_carrier_off(bp->dev);
}
static void bnx2x_e1h_enable(struct bnx2x *bp)
{
int port = BP_PORT(bp);
REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
/* Tx queue should be only reenabled */
netif_tx_wake_all_queues(bp->dev);
/*
* Should not call netif_carrier_on since it will be called if the link
* is up when checking for link state
*/
}
static void bnx2x_update_min_max(struct bnx2x *bp)
{
int port = BP_PORT(bp);
int vn, i;
/* Init rate shaping and fairness contexts */
bnx2x_init_port_minmax(bp);
bnx2x_calc_vn_weight_sum(bp);
for (vn = VN_0; vn < E1HVN_MAX; vn++)
bnx2x_init_vn_minmax(bp, 2*vn + port);
if (bp->port.pmf) {
int func;
/* Set the attention towards other drivers on the same port */
for (vn = VN_0; vn < E1HVN_MAX; vn++) {
if (vn == BP_E1HVN(bp))
continue;
func = ((vn << 1) | port);
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_0 +
(LINK_SYNC_ATTENTION_BIT_FUNC_0 + func)*4, 1);
}
/* Store it to internal memory */
for (i = 0; i < sizeof(struct cmng_struct_per_port) / 4; i++)
REG_WR(bp, BAR_XSTRORM_INTMEM +
XSTORM_CMNG_PER_PORT_VARS_OFFSET(port) + i*4,
((u32 *)(&bp->cmng))[i]);
}
}
static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
{
DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
/*
* This is the only place besides the function initialization
* where the bp->flags can change so it is done without any
* locks
*/
if (bp->mf_config & FUNC_MF_CFG_FUNC_DISABLED) {
DP(NETIF_MSG_IFDOWN, "mf_cfg function disabled\n");
bp->flags |= MF_FUNC_DIS;
bnx2x_e1h_disable(bp);
} else {
DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
bp->flags &= ~MF_FUNC_DIS;
bnx2x_e1h_enable(bp);
}
dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
}
if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
bnx2x_update_min_max(bp);
dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
}
/* Report results to MCP */
if (dcc_event)
bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
else
bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
}
/* must be called under the spq lock */
static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
{
struct eth_spe *next_spe = bp->spq_prod_bd;
if (bp->spq_prod_bd == bp->spq_last_bd) {
bp->spq_prod_bd = bp->spq;
bp->spq_prod_idx = 0;
DP(NETIF_MSG_TIMER, "end of spq\n");
} else {
bp->spq_prod_bd++;
bp->spq_prod_idx++;
}
return next_spe;
}
/* must be called under the spq lock */
static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
{
int func = BP_FUNC(bp);
/* Make sure that BD data is updated before writing the producer */
wmb();
REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
bp->spq_prod_idx);
mmiowb();
}
/* the slow path queue is odd since completions arrive on the fastpath ring */
int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
u32 data_hi, u32 data_lo, int common)
{
struct eth_spe *spe;
#ifdef BNX2X_STOP_ON_ERROR
if (unlikely(bp->panic))
return -EIO;
#endif
spin_lock_bh(&bp->spq_lock);
if (!bp->spq_left) {
BNX2X_ERR("BUG! SPQ ring full!\n");
spin_unlock_bh(&bp->spq_lock);
bnx2x_panic();
return -EBUSY;
}
spe = bnx2x_sp_get_next(bp);
/* CID needs port number to be encoded int it */
spe->hdr.conn_and_cmd_data =
cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
HW_CID(bp, cid));
spe->hdr.type = cpu_to_le16(ETH_CONNECTION_TYPE);
if (common)
spe->hdr.type |=
cpu_to_le16((1 << SPE_HDR_COMMON_RAMROD_SHIFT));
spe->data.mac_config_addr.hi = cpu_to_le32(data_hi);
spe->data.mac_config_addr.lo = cpu_to_le32(data_lo);
bp->spq_left--;
DP(BNX2X_MSG_SP/*NETIF_MSG_TIMER*/,
"SPQE[%x] (%x:%x) command %d hw_cid %x data (%x:%x) left %x\n",
bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
(u32)(U64_LO(bp->spq_mapping) +
(void *)bp->spq_prod_bd - (void *)bp->spq), command,
HW_CID(bp, cid), data_hi, data_lo, bp->spq_left);
bnx2x_sp_prod_update(bp);
spin_unlock_bh(&bp->spq_lock);
return 0;
}
/* acquire split MCP access lock register */
static int bnx2x_acquire_alr(struct bnx2x *bp)
{
u32 j, val;
int rc = 0;
might_sleep();
for (j = 0; j < 1000; j++) {
val = (1UL << 31);
REG_WR(bp, GRCBASE_MCP + 0x9c, val);
val = REG_RD(bp, GRCBASE_MCP + 0x9c);
if (val & (1L << 31))
break;
msleep(5);
}
if (!(val & (1L << 31))) {
BNX2X_ERR("Cannot acquire MCP access lock register\n");
rc = -EBUSY;
}
return rc;
}
/* release split MCP access lock register */
static void bnx2x_release_alr(struct bnx2x *bp)
{
REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
}
static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
{
struct host_def_status_block *def_sb = bp->def_status_blk;
u16 rc = 0;
barrier(); /* status block is written to by the chip */
if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
rc |= 1;
}
if (bp->def_c_idx != def_sb->c_def_status_block.status_block_index) {
bp->def_c_idx = def_sb->c_def_status_block.status_block_index;
rc |= 2;
}
if (bp->def_u_idx != def_sb->u_def_status_block.status_block_index) {
bp->def_u_idx = def_sb->u_def_status_block.status_block_index;
rc |= 4;
}
if (bp->def_x_idx != def_sb->x_def_status_block.status_block_index) {
bp->def_x_idx = def_sb->x_def_status_block.status_block_index;
rc |= 8;
}
if (bp->def_t_idx != def_sb->t_def_status_block.status_block_index) {
bp->def_t_idx = def_sb->t_def_status_block.status_block_index;
rc |= 16;
}
return rc;
}
/*
* slow path service functions
*/
static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
{
int port = BP_PORT(bp);
u32 hc_addr = (HC_REG_COMMAND_REG + port*32 +
COMMAND_REG_ATTN_BITS_SET);
u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
MISC_REG_AEU_MASK_ATTN_FUNC_0;
u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
NIG_REG_MASK_INTERRUPT_PORT0;
u32 aeu_mask;
u32 nig_mask = 0;
if (bp->attn_state & asserted)
BNX2X_ERR("IGU ERROR\n");
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
aeu_mask = REG_RD(bp, aeu_addr);
DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
aeu_mask, asserted);
aeu_mask &= ~(asserted & 0x3ff);
DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
REG_WR(bp, aeu_addr, aeu_mask);
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
bp->attn_state |= asserted;
DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
if (asserted & ATTN_HARD_WIRED_MASK) {
if (asserted & ATTN_NIG_FOR_FUNC) {
bnx2x_acquire_phy_lock(bp);
/* save nig interrupt mask */
nig_mask = REG_RD(bp, nig_int_mask_addr);
REG_WR(bp, nig_int_mask_addr, 0);
bnx2x_link_attn(bp);
/* handle unicore attn? */
}
if (asserted & ATTN_SW_TIMER_4_FUNC)
DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
if (asserted & GPIO_2_FUNC)
DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
if (asserted & GPIO_3_FUNC)
DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
if (asserted & GPIO_4_FUNC)
DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
if (port == 0) {
if (asserted & ATTN_GENERAL_ATTN_1) {
DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_2) {
DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_3) {
DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
}
} else {
if (asserted & ATTN_GENERAL_ATTN_4) {
DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_5) {
DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_6) {
DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
}
}
} /* if hardwired */
DP(NETIF_MSG_HW, "about to mask 0x%08x at HC addr 0x%x\n",
asserted, hc_addr);
REG_WR(bp, hc_addr, asserted);
/* now set back the mask */
if (asserted & ATTN_NIG_FOR_FUNC) {
REG_WR(bp, nig_int_mask_addr, nig_mask);
bnx2x_release_phy_lock(bp);
}
}
static inline void bnx2x_fan_failure(struct bnx2x *bp)
{
int port = BP_PORT(bp);
u32 ext_phy_config;
/* mark the failure */
ext_phy_config =
SHMEM_RD(bp,
dev_info.port_hw_config[port].external_phy_config);
ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
ext_phy_config);
/* log the failure */
netdev_err(bp->dev, "Fan Failure on Network Controller has caused"
" the driver to shutdown the card to prevent permanent"
" damage. Please contact OEM Support for assistance\n");
}
static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
{
int port = BP_PORT(bp);
int reg_offset;
u32 val;
reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
val = REG_RD(bp, reg_offset);
val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
REG_WR(bp, reg_offset, val);
BNX2X_ERR("SPIO5 hw attention\n");
/* Fan failure attention */
bnx2x_hw_reset_phy(&bp->link_params);
bnx2x_fan_failure(bp);
}
if (attn & (AEU_INPUTS_ATTN_BITS_GPIO3_FUNCTION_0 |
AEU_INPUTS_ATTN_BITS_GPIO3_FUNCTION_1)) {
bnx2x_acquire_phy_lock(bp);
bnx2x_handle_module_detect_int(&bp->link_params);
bnx2x_release_phy_lock(bp);
}
if (attn & HW_INTERRUT_ASSERT_SET_0) {
val = REG_RD(bp, reg_offset);
val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
REG_WR(bp, reg_offset, val);
BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
(u32)(attn & HW_INTERRUT_ASSERT_SET_0));
bnx2x_panic();
}
}
static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
{
u32 val;
if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
BNX2X_ERR("DB hw attention 0x%x\n", val);
/* DORQ discard attention */
if (val & 0x2)
BNX2X_ERR("FATAL error from DORQ\n");
}
if (attn & HW_INTERRUT_ASSERT_SET_1) {
int port = BP_PORT(bp);
int reg_offset;
reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
val = REG_RD(bp, reg_offset);
val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
REG_WR(bp, reg_offset, val);
BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
(u32)(attn & HW_INTERRUT_ASSERT_SET_1));
bnx2x_panic();
}
}
static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
{
u32 val;
if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
BNX2X_ERR("CFC hw attention 0x%x\n", val);
/* CFC error attention */
if (val & 0x2)
BNX2X_ERR("FATAL error from CFC\n");
}
if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
BNX2X_ERR("PXP hw attention 0x%x\n", val);
/* RQ_USDMDP_FIFO_OVERFLOW */
if (val & 0x18000)
BNX2X_ERR("FATAL error from PXP\n");
}
if (attn & HW_INTERRUT_ASSERT_SET_2) {
int port = BP_PORT(bp);
int reg_offset;
reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
val = REG_RD(bp, reg_offset);
val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
REG_WR(bp, reg_offset, val);
BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
(u32)(attn & HW_INTERRUT_ASSERT_SET_2));
bnx2x_panic();
}
}
static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
{
u32 val;
if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
if (attn & BNX2X_PMF_LINK_ASSERT) {
int func = BP_FUNC(bp);
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
bp->mf_config = SHMEM_RD(bp,
mf_cfg.func_mf_config[func].config);
val = SHMEM_RD(bp, func_mb[func].drv_status);
if (val & DRV_STATUS_DCC_EVENT_MASK)
bnx2x_dcc_event(bp,
(val & DRV_STATUS_DCC_EVENT_MASK));
bnx2x__link_status_update(bp);
if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
bnx2x_pmf_update(bp);
} else if (attn & BNX2X_MC_ASSERT_BITS) {
BNX2X_ERR("MC assert!\n");
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
bnx2x_panic();
} else if (attn & BNX2X_MCP_ASSERT) {
BNX2X_ERR("MCP assert!\n");
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
bnx2x_fw_dump(bp);
} else
BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
}
if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
if (attn & BNX2X_GRC_TIMEOUT) {
val = CHIP_IS_E1H(bp) ?
REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN) : 0;
BNX2X_ERR("GRC time-out 0x%08x\n", val);
}
if (attn & BNX2X_GRC_RSV) {
val = CHIP_IS_E1H(bp) ?
REG_RD(bp, MISC_REG_GRC_RSV_ATTN) : 0;
BNX2X_ERR("GRC reserved 0x%08x\n", val);
}
REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
}
}
#define BNX2X_MISC_GEN_REG MISC_REG_GENERIC_POR_1
#define LOAD_COUNTER_BITS 16 /* Number of bits for load counter */
#define LOAD_COUNTER_MASK (((u32)0x1 << LOAD_COUNTER_BITS) - 1)
#define RESET_DONE_FLAG_MASK (~LOAD_COUNTER_MASK)
#define RESET_DONE_FLAG_SHIFT LOAD_COUNTER_BITS
#define CHIP_PARITY_SUPPORTED(bp) (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp))
/*
* should be run under rtnl lock
*/
static inline void bnx2x_set_reset_done(struct bnx2x *bp)
{
u32 val = REG_RD(bp, BNX2X_MISC_GEN_REG);
val &= ~(1 << RESET_DONE_FLAG_SHIFT);
REG_WR(bp, BNX2X_MISC_GEN_REG, val);
barrier();
mmiowb();
}
/*
* should be run under rtnl lock
*/
static inline void bnx2x_set_reset_in_progress(struct bnx2x *bp)
{
u32 val = REG_RD(bp, BNX2X_MISC_GEN_REG);
val |= (1 << 16);
REG_WR(bp, BNX2X_MISC_GEN_REG, val);
barrier();
mmiowb();
}
/*
* should be run under rtnl lock
*/
bool bnx2x_reset_is_done(struct bnx2x *bp)
{
u32 val = REG_RD(bp, BNX2X_MISC_GEN_REG);
DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
return (val & RESET_DONE_FLAG_MASK) ? false : true;
}
/*
* should be run under rtnl lock
*/
inline void bnx2x_inc_load_cnt(struct bnx2x *bp)
{
u32 val1, val = REG_RD(bp, BNX2X_MISC_GEN_REG);
DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
val1 = ((val & LOAD_COUNTER_MASK) + 1) & LOAD_COUNTER_MASK;
REG_WR(bp, BNX2X_MISC_GEN_REG, (val & RESET_DONE_FLAG_MASK) | val1);
barrier();
mmiowb();
}
/*
* should be run under rtnl lock
*/
u32 bnx2x_dec_load_cnt(struct bnx2x *bp)
{
u32 val1, val = REG_RD(bp, BNX2X_MISC_GEN_REG);
DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
val1 = ((val & LOAD_COUNTER_MASK) - 1) & LOAD_COUNTER_MASK;
REG_WR(bp, BNX2X_MISC_GEN_REG, (val & RESET_DONE_FLAG_MASK) | val1);
barrier();
mmiowb();
return val1;
}
/*
* should be run under rtnl lock
*/
static inline u32 bnx2x_get_load_cnt(struct bnx2x *bp)
{
return REG_RD(bp, BNX2X_MISC_GEN_REG) & LOAD_COUNTER_MASK;
}
static inline void bnx2x_clear_load_cnt(struct bnx2x *bp)
{
u32 val = REG_RD(bp, BNX2X_MISC_GEN_REG);
REG_WR(bp, BNX2X_MISC_GEN_REG, val & (~LOAD_COUNTER_MASK));
}
static inline void _print_next_block(int idx, const char *blk)
{
if (idx)
pr_cont(", ");
pr_cont("%s", blk);
}
static inline int bnx2x_print_blocks_with_parity0(u32 sig, int par_num)
{
int i = 0;
u32 cur_bit = 0;
for (i = 0; sig; i++) {
cur_bit = ((u32)0x1 << i);
if (sig & cur_bit) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
_print_next_block(par_num++, "BRB");
break;
case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
_print_next_block(par_num++, "PARSER");
break;
case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
_print_next_block(par_num++, "TSDM");
break;
case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
_print_next_block(par_num++, "SEARCHER");
break;
case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
_print_next_block(par_num++, "TSEMI");
break;
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return par_num;
}
static inline int bnx2x_print_blocks_with_parity1(u32 sig, int par_num)
{
int i = 0;
u32 cur_bit = 0;
for (i = 0; sig; i++) {
cur_bit = ((u32)0x1 << i);
if (sig & cur_bit) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
_print_next_block(par_num++, "PBCLIENT");
break;
case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
_print_next_block(par_num++, "QM");
break;
case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
_print_next_block(par_num++, "XSDM");
break;
case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
_print_next_block(par_num++, "XSEMI");
break;
case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
_print_next_block(par_num++, "DOORBELLQ");
break;
case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
_print_next_block(par_num++, "VAUX PCI CORE");
break;
case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
_print_next_block(par_num++, "DEBUG");
break;
case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
_print_next_block(par_num++, "USDM");
break;
case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
_print_next_block(par_num++, "USEMI");
break;
case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
_print_next_block(par_num++, "UPB");
break;
case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
_print_next_block(par_num++, "CSDM");
break;
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return par_num;
}
static inline int bnx2x_print_blocks_with_parity2(u32 sig, int par_num)
{
int i = 0;
u32 cur_bit = 0;
for (i = 0; sig; i++) {
cur_bit = ((u32)0x1 << i);
if (sig & cur_bit) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
_print_next_block(par_num++, "CSEMI");
break;
case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
_print_next_block(par_num++, "PXP");
break;
case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
_print_next_block(par_num++,
"PXPPCICLOCKCLIENT");
break;
case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
_print_next_block(par_num++, "CFC");
break;
case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
_print_next_block(par_num++, "CDU");
break;
case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
_print_next_block(par_num++, "IGU");
break;
case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
_print_next_block(par_num++, "MISC");
break;
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return par_num;
}
static inline int bnx2x_print_blocks_with_parity3(u32 sig, int par_num)
{
int i = 0;
u32 cur_bit = 0;
for (i = 0; sig; i++) {
cur_bit = ((u32)0x1 << i);
if (sig & cur_bit) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
_print_next_block(par_num++, "MCP ROM");
break;
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
_print_next_block(par_num++, "MCP UMP RX");
break;
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
_print_next_block(par_num++, "MCP UMP TX");
break;
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
_print_next_block(par_num++, "MCP SCPAD");
break;
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return par_num;
}
static inline bool bnx2x_parity_attn(struct bnx2x *bp, u32 sig0, u32 sig1,
u32 sig2, u32 sig3)
{
if ((sig0 & HW_PRTY_ASSERT_SET_0) || (sig1 & HW_PRTY_ASSERT_SET_1) ||
(sig2 & HW_PRTY_ASSERT_SET_2) || (sig3 & HW_PRTY_ASSERT_SET_3)) {
int par_num = 0;
DP(NETIF_MSG_HW, "Was parity error: HW block parity attention: "
"[0]:0x%08x [1]:0x%08x "
"[2]:0x%08x [3]:0x%08x\n",
sig0 & HW_PRTY_ASSERT_SET_0,
sig1 & HW_PRTY_ASSERT_SET_1,
sig2 & HW_PRTY_ASSERT_SET_2,
sig3 & HW_PRTY_ASSERT_SET_3);
printk(KERN_ERR"%s: Parity errors detected in blocks: ",
bp->dev->name);
par_num = bnx2x_print_blocks_with_parity0(
sig0 & HW_PRTY_ASSERT_SET_0, par_num);
par_num = bnx2x_print_blocks_with_parity1(
sig1 & HW_PRTY_ASSERT_SET_1, par_num);
par_num = bnx2x_print_blocks_with_parity2(
sig2 & HW_PRTY_ASSERT_SET_2, par_num);
par_num = bnx2x_print_blocks_with_parity3(
sig3 & HW_PRTY_ASSERT_SET_3, par_num);
printk("\n");
return true;
} else
return false;
}
bool bnx2x_chk_parity_attn(struct bnx2x *bp)
{
struct attn_route attn;
int port = BP_PORT(bp);
attn.sig[0] = REG_RD(bp,
MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
port*4);
attn.sig[1] = REG_RD(bp,
MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
port*4);
attn.sig[2] = REG_RD(bp,
MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
port*4);
attn.sig[3] = REG_RD(bp,
MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
port*4);
return bnx2x_parity_attn(bp, attn.sig[0], attn.sig[1], attn.sig[2],
attn.sig[3]);
}
static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
{
struct attn_route attn, *group_mask;
int port = BP_PORT(bp);
int index;
u32 reg_addr;
u32 val;
u32 aeu_mask;
/* need to take HW lock because MCP or other port might also
try to handle this event */
bnx2x_acquire_alr(bp);
if (bnx2x_chk_parity_attn(bp)) {
bp->recovery_state = BNX2X_RECOVERY_INIT;
bnx2x_set_reset_in_progress(bp);
schedule_delayed_work(&bp->reset_task, 0);
/* Disable HW interrupts */
bnx2x_int_disable(bp);
bnx2x_release_alr(bp);
/* In case of parity errors don't handle attentions so that
* other function would "see" parity errors.
*/
return;
}
attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x\n",
attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3]);
for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
if (deasserted & (1 << index)) {
group_mask = &bp->attn_group[index];
DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x\n",
index, group_mask->sig[0], group_mask->sig[1],
group_mask->sig[2], group_mask->sig[3]);
bnx2x_attn_int_deasserted3(bp,
attn.sig[3] & group_mask->sig[3]);
bnx2x_attn_int_deasserted1(bp,
attn.sig[1] & group_mask->sig[1]);
bnx2x_attn_int_deasserted2(bp,
attn.sig[2] & group_mask->sig[2]);
bnx2x_attn_int_deasserted0(bp,
attn.sig[0] & group_mask->sig[0]);
}
}
bnx2x_release_alr(bp);
reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_CLR);
val = ~deasserted;
DP(NETIF_MSG_HW, "about to mask 0x%08x at HC addr 0x%x\n",
val, reg_addr);
REG_WR(bp, reg_addr, val);
if (~bp->attn_state & deasserted)
BNX2X_ERR("IGU ERROR\n");
reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
MISC_REG_AEU_MASK_ATTN_FUNC_0;
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
aeu_mask = REG_RD(bp, reg_addr);
DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
aeu_mask, deasserted);
aeu_mask |= (deasserted & 0x3ff);
DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
REG_WR(bp, reg_addr, aeu_mask);
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
bp->attn_state &= ~deasserted;
DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
}
static void bnx2x_attn_int(struct bnx2x *bp)
{
/* read local copy of bits */
u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
attn_bits);
u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
attn_bits_ack);
u32 attn_state = bp->attn_state;
/* look for changed bits */
u32 asserted = attn_bits & ~attn_ack & ~attn_state;
u32 deasserted = ~attn_bits & attn_ack & attn_state;
DP(NETIF_MSG_HW,
"attn_bits %x attn_ack %x asserted %x deasserted %x\n",
attn_bits, attn_ack, asserted, deasserted);
if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
BNX2X_ERR("BAD attention state\n");
/* handle bits that were raised */
if (asserted)
bnx2x_attn_int_asserted(bp, asserted);
if (deasserted)
bnx2x_attn_int_deasserted(bp, deasserted);
}
static void bnx2x_sp_task(struct work_struct *work)
{
struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
u16 status;
/* Return here if interrupt is disabled */
if (unlikely(atomic_read(&bp->intr_sem) != 0)) {
DP(NETIF_MSG_INTR, "called but intr_sem not 0, returning\n");
return;
}
status = bnx2x_update_dsb_idx(bp);
/* if (status == 0) */
/* BNX2X_ERR("spurious slowpath interrupt!\n"); */
DP(NETIF_MSG_INTR, "got a slowpath interrupt (status 0x%x)\n", status);
/* HW attentions */
if (status & 0x1) {
bnx2x_attn_int(bp);
status &= ~0x1;
}
/* CStorm events: STAT_QUERY */
if (status & 0x2) {
DP(BNX2X_MSG_SP, "CStorm events: STAT_QUERY\n");
status &= ~0x2;
}
if (unlikely(status))
DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
status);
bnx2x_ack_sb(bp, DEF_SB_ID, ATTENTION_ID, le16_to_cpu(bp->def_att_idx),
IGU_INT_NOP, 1);
bnx2x_ack_sb(bp, DEF_SB_ID, USTORM_ID, le16_to_cpu(bp->def_u_idx),
IGU_INT_NOP, 1);
bnx2x_ack_sb(bp, DEF_SB_ID, CSTORM_ID, le16_to_cpu(bp->def_c_idx),
IGU_INT_NOP, 1);
bnx2x_ack_sb(bp, DEF_SB_ID, XSTORM_ID, le16_to_cpu(bp->def_x_idx),
IGU_INT_NOP, 1);
bnx2x_ack_sb(bp, DEF_SB_ID, TSTORM_ID, le16_to_cpu(bp->def_t_idx),
IGU_INT_ENABLE, 1);
}
irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
{
struct net_device *dev = dev_instance;
struct bnx2x *bp = netdev_priv(dev);
/* Return here if interrupt is disabled */
if (unlikely(atomic_read(&bp->intr_sem) != 0)) {
DP(NETIF_MSG_INTR, "called but intr_sem not 0, returning\n");
return IRQ_HANDLED;
}
bnx2x_ack_sb(bp, DEF_SB_ID, TSTORM_ID, 0, IGU_INT_DISABLE, 0);
#ifdef BNX2X_STOP_ON_ERROR
if (unlikely(bp->panic))
return IRQ_HANDLED;
#endif
#ifdef BCM_CNIC
{
struct cnic_ops *c_ops;
rcu_read_lock();
c_ops = rcu_dereference(bp->cnic_ops);
if (c_ops)
c_ops->cnic_handler(bp->cnic_data, NULL);
rcu_read_unlock();
}
#endif
queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
return IRQ_HANDLED;
}
/* end of slow path */
static void bnx2x_timer(unsigned long data)
{
struct bnx2x *bp = (struct bnx2x *) data;
if (!netif_running(bp->dev))
return;
if (atomic_read(&bp->intr_sem) != 0)
goto timer_restart;
if (poll) {
struct bnx2x_fastpath *fp = &bp->fp[0];
int rc;
bnx2x_tx_int(fp);
rc = bnx2x_rx_int(fp, 1000);
}
if (!BP_NOMCP(bp)) {
int func = BP_FUNC(bp);
u32 drv_pulse;
u32 mcp_pulse;
++bp->fw_drv_pulse_wr_seq;
bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
/* TBD - add SYSTEM_TIME */
drv_pulse = bp->fw_drv_pulse_wr_seq;
SHMEM_WR(bp, func_mb[func].drv_pulse_mb, drv_pulse);
mcp_pulse = (SHMEM_RD(bp, func_mb[func].mcp_pulse_mb) &
MCP_PULSE_SEQ_MASK);
/* The delta between driver pulse and mcp response
* should be 1 (before mcp response) or 0 (after mcp response)
*/
if ((drv_pulse != mcp_pulse) &&
(drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
/* someone lost a heartbeat... */
BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
drv_pulse, mcp_pulse);
}
}
if (bp->state == BNX2X_STATE_OPEN)
bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
timer_restart:
mod_timer(&bp->timer, jiffies + bp->current_interval);
}
/* end of Statistics */
/* nic init */
/*
* nic init service functions
*/
static void bnx2x_zero_sb(struct bnx2x *bp, int sb_id)
{
int port = BP_PORT(bp);
/* "CSTORM" */
bnx2x_init_fill(bp, CSEM_REG_FAST_MEMORY +
CSTORM_SB_HOST_STATUS_BLOCK_U_OFFSET(port, sb_id), 0,
CSTORM_SB_STATUS_BLOCK_U_SIZE / 4);
bnx2x_init_fill(bp, CSEM_REG_FAST_MEMORY +
CSTORM_SB_HOST_STATUS_BLOCK_C_OFFSET(port, sb_id), 0,
CSTORM_SB_STATUS_BLOCK_C_SIZE / 4);
}
void bnx2x_init_sb(struct bnx2x *bp, struct host_status_block *sb,
dma_addr_t mapping, int sb_id)
{
int port = BP_PORT(bp);
int func = BP_FUNC(bp);
int index;
u64 section;
/* USTORM */
section = ((u64)mapping) + offsetof(struct host_status_block,
u_status_block);
sb->u_status_block.status_block_id = sb_id;
REG_WR(bp, BAR_CSTRORM_INTMEM +
CSTORM_SB_HOST_SB_ADDR_U_OFFSET(port, sb_id), U64_LO(section));
REG_WR(bp, BAR_CSTRORM_INTMEM +
((CSTORM_SB_HOST_SB_ADDR_U_OFFSET(port, sb_id)) + 4),
U64_HI(section));
REG_WR8(bp, BAR_CSTRORM_INTMEM + FP_USB_FUNC_OFF +
CSTORM_SB_HOST_STATUS_BLOCK_U_OFFSET(port, sb_id), func);
for (index = 0; index < HC_USTORM_SB_NUM_INDICES; index++)
REG_WR16(bp, BAR_CSTRORM_INTMEM +
CSTORM_SB_HC_DISABLE_U_OFFSET(port, sb_id, index), 1);
/* CSTORM */
section = ((u64)mapping) + offsetof(struct host_status_block,
c_status_block);
sb->c_status_block.status_block_id = sb_id;
REG_WR(bp, BAR_CSTRORM_INTMEM +
CSTORM_SB_HOST_SB_ADDR_C_OFFSET(port, sb_id), U64_LO(section));
REG_WR(bp, BAR_CSTRORM_INTMEM +
((CSTORM_SB_HOST_SB_ADDR_C_OFFSET(port, sb_id)) + 4),
U64_HI(section));
REG_WR8(bp, BAR_CSTRORM_INTMEM + FP_CSB_FUNC_OFF +
CSTORM_SB_HOST_STATUS_BLOCK_C_OFFSET(port, sb_id), func);
for (index = 0; index < HC_CSTORM_SB_NUM_INDICES; index++)
REG_WR16(bp, BAR_CSTRORM_INTMEM +
CSTORM_SB_HC_DISABLE_C_OFFSET(port, sb_id, index), 1);
bnx2x_ack_sb(bp, sb_id, CSTORM_ID, 0, IGU_INT_ENABLE, 0);
}
static void bnx2x_zero_def_sb(struct bnx2x *bp)
{
int func = BP_FUNC(bp);
bnx2x_init_fill(bp, TSEM_REG_FAST_MEMORY +
TSTORM_DEF_SB_HOST_STATUS_BLOCK_OFFSET(func), 0,
sizeof(struct tstorm_def_status_block)/4);
bnx2x_init_fill(bp, CSEM_REG_FAST_MEMORY +
CSTORM_DEF_SB_HOST_STATUS_BLOCK_U_OFFSET(func), 0,
sizeof(struct cstorm_def_status_block_u)/4);
bnx2x_init_fill(bp, CSEM_REG_FAST_MEMORY +
CSTORM_DEF_SB_HOST_STATUS_BLOCK_C_OFFSET(func), 0,
sizeof(struct cstorm_def_status_block_c)/4);
bnx2x_init_fill(bp, XSEM_REG_FAST_MEMORY +
XSTORM_DEF_SB_HOST_STATUS_BLOCK_OFFSET(func), 0,
sizeof(struct xstorm_def_status_block)/4);
}
static void bnx2x_init_def_sb(struct bnx2x *bp,
struct host_def_status_block *def_sb,
dma_addr_t mapping, int sb_id)
{
int port = BP_PORT(bp);
int func = BP_FUNC(bp);
int index, val, reg_offset;
u64 section;
/* ATTN */
section = ((u64)mapping) + offsetof(struct host_def_status_block,
atten_status_block);
def_sb->atten_status_block.status_block_id = sb_id;
bp->attn_state = 0;
reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
bp->attn_group[index].sig[0] = REG_RD(bp,
reg_offset + 0x10*index);
bp->attn_group[index].sig[1] = REG_RD(bp,
reg_offset + 0x4 + 0x10*index);
bp->attn_group[index].sig[2] = REG_RD(bp,
reg_offset + 0x8 + 0x10*index);
bp->attn_group[index].sig[3] = REG_RD(bp,
reg_offset + 0xc + 0x10*index);
}
reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
HC_REG_ATTN_MSG0_ADDR_L);
REG_WR(bp, reg_offset, U64_LO(section));
REG_WR(bp, reg_offset + 4, U64_HI(section));
reg_offset = (port ? HC_REG_ATTN_NUM_P1 : HC_REG_ATTN_NUM_P0);
val = REG_RD(bp, reg_offset);
val |= sb_id;
REG_WR(bp, reg_offset, val);
/* USTORM */
section = ((u64)mapping) + offsetof(struct host_def_status_block,
u_def_status_block);
def_sb->u_def_status_block.status_block_id = sb_id;
REG_WR(bp, BAR_CSTRORM_INTMEM +
CSTORM_DEF_SB_HOST_SB_ADDR_U_OFFSET(func), U64_LO(section));
REG_WR(bp, BAR_CSTRORM_INTMEM +
((CSTORM_DEF_SB_HOST_SB_ADDR_U_OFFSET(func)) + 4),
U64_HI(section));
REG_WR8(bp, BAR_CSTRORM_INTMEM + DEF_USB_FUNC_OFF +
CSTORM_DEF_SB_HOST_STATUS_BLOCK_U_OFFSET(func), func);
for (index = 0; index < HC_USTORM_DEF_SB_NUM_INDICES; index++)
REG_WR16(bp, BAR_CSTRORM_INTMEM +
CSTORM_DEF_SB_HC_DISABLE_U_OFFSET(func, index), 1);
/* CSTORM */
section = ((u64)mapping) + offsetof(struct host_def_status_block,
c_def_status_block);
def_sb->c_def_status_block.status_block_id = sb_id;
REG_WR(bp, BAR_CSTRORM_INTMEM +
CSTORM_DEF_SB_HOST_SB_ADDR_C_OFFSET(func), U64_LO(section));
REG_WR(bp, BAR_CSTRORM_INTMEM +
((CSTORM_DEF_SB_HOST_SB_ADDR_C_OFFSET(func)) + 4),
U64_HI(section));
REG_WR8(bp, BAR_CSTRORM_INTMEM + DEF_CSB_FUNC_OFF +
CSTORM_DEF_SB_HOST_STATUS_BLOCK_C_OFFSET(func), func);
for (index = 0; index < HC_CSTORM_DEF_SB_NUM_INDICES; index++)
REG_WR16(bp, BAR_CSTRORM_INTMEM +
CSTORM_DEF_SB_HC_DISABLE_C_OFFSET(func, index), 1);
/* TSTORM */
section = ((u64)mapping) + offsetof(struct host_def_status_block,
t_def_status_block);
def_sb->t_def_status_block.status_block_id = sb_id;
REG_WR(bp, BAR_TSTRORM_INTMEM +
TSTORM_DEF_SB_HOST_SB_ADDR_OFFSET(func), U64_LO(section));
REG_WR(bp, BAR_TSTRORM_INTMEM +
((TSTORM_DEF_SB_HOST_SB_ADDR_OFFSET(func)) + 4),
U64_HI(section));
REG_WR8(bp, BAR_TSTRORM_INTMEM + DEF_TSB_FUNC_OFF +
TSTORM_DEF_SB_HOST_STATUS_BLOCK_OFFSET(func), func);
for (index = 0; index < HC_TSTORM_DEF_SB_NUM_INDICES; index++)
REG_WR16(bp, BAR_TSTRORM_INTMEM +
TSTORM_DEF_SB_HC_DISABLE_OFFSET(func, index), 1);
/* XSTORM */
section = ((u64)mapping) + offsetof(struct host_def_status_block,
x_def_status_block);
def_sb->x_def_status_block.status_block_id = sb_id;
REG_WR(bp, BAR_XSTRORM_INTMEM +
XSTORM_DEF_SB_HOST_SB_ADDR_OFFSET(func), U64_LO(section));
REG_WR(bp, BAR_XSTRORM_INTMEM +
((XSTORM_DEF_SB_HOST_SB_ADDR_OFFSET(func)) + 4),
U64_HI(section));
REG_WR8(bp, BAR_XSTRORM_INTMEM + DEF_XSB_FUNC_OFF +
XSTORM_DEF_SB_HOST_STATUS_BLOCK_OFFSET(func), func);
for (index = 0; index < HC_XSTORM_DEF_SB_NUM_INDICES; index++)
REG_WR16(bp, BAR_XSTRORM_INTMEM +
XSTORM_DEF_SB_HC_DISABLE_OFFSET(func, index), 1);
bp->stats_pending = 0;
bp->set_mac_pending = 0;
bnx2x_ack_sb(bp, sb_id, CSTORM_ID, 0, IGU_INT_ENABLE, 0);
}
void bnx2x_update_coalesce(struct bnx2x *bp)
{
int port = BP_PORT(bp);
int i;
for_each_queue(bp, i) {
int sb_id = bp->fp[i].sb_id;
/* HC_INDEX_U_ETH_RX_CQ_CONS */
REG_WR8(bp, BAR_CSTRORM_INTMEM +
CSTORM_SB_HC_TIMEOUT_U_OFFSET(port, sb_id,
U_SB_ETH_RX_CQ_INDEX),
bp->rx_ticks/(4 * BNX2X_BTR));
REG_WR16(bp, BAR_CSTRORM_INTMEM +
CSTORM_SB_HC_DISABLE_U_OFFSET(port, sb_id,
U_SB_ETH_RX_CQ_INDEX),
(bp->rx_ticks/(4 * BNX2X_BTR)) ? 0 : 1);
/* HC_INDEX_C_ETH_TX_CQ_CONS */
REG_WR8(bp, BAR_CSTRORM_INTMEM +
CSTORM_SB_HC_TIMEOUT_C_OFFSET(port, sb_id,
C_SB_ETH_TX_CQ_INDEX),
bp->tx_ticks/(4 * BNX2X_BTR));
REG_WR16(bp, BAR_CSTRORM_INTMEM +
CSTORM_SB_HC_DISABLE_C_OFFSET(port, sb_id,
C_SB_ETH_TX_CQ_INDEX),
(bp->tx_ticks/(4 * BNX2X_BTR)) ? 0 : 1);
}
}
static void bnx2x_init_sp_ring(struct bnx2x *bp)
{
int func = BP_FUNC(bp);
spin_lock_init(&bp->spq_lock);
bp->spq_left = MAX_SPQ_PENDING;
bp->spq_prod_idx = 0;
bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
bp->spq_prod_bd = bp->spq;
bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
REG_WR(bp, XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PAGE_BASE_OFFSET(func),
U64_LO(bp->spq_mapping));
REG_WR(bp,
XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PAGE_BASE_OFFSET(func) + 4,
U64_HI(bp->spq_mapping));
REG_WR(bp, XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(func),
bp->spq_prod_idx);
}
static void bnx2x_init_context(struct bnx2x *bp)
{
int i;
/* Rx */
for_each_queue(bp, i) {
struct eth_context *context = bnx2x_sp(bp, context[i].eth);
struct bnx2x_fastpath *fp = &bp->fp[i];
u8 cl_id = fp->cl_id;
context->ustorm_st_context.common.sb_index_numbers =
BNX2X_RX_SB_INDEX_NUM;
context->ustorm_st_context.common.clientId = cl_id;
context->ustorm_st_context.common.status_block_id = fp->sb_id;
context->ustorm_st_context.common.flags =
(USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_MC_ALIGNMENT |
USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_STATISTICS);
context->ustorm_st_context.common.statistics_counter_id =
cl_id;
context->ustorm_st_context.common.mc_alignment_log_size =
BNX2X_RX_ALIGN_SHIFT;
context->ustorm_st_context.common.bd_buff_size =
bp->rx_buf_size;
context->ustorm_st_context.common.bd_page_base_hi =
U64_HI(fp->rx_desc_mapping);
context->ustorm_st_context.common.bd_page_base_lo =
U64_LO(fp->rx_desc_mapping);
if (!fp->disable_tpa) {
context->ustorm_st_context.common.flags |=
USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_TPA;
context->ustorm_st_context.common.sge_buff_size =
(u16)min_t(u32, SGE_PAGE_SIZE*PAGES_PER_SGE,
0xffff);
context->ustorm_st_context.common.sge_page_base_hi =
U64_HI(fp->rx_sge_mapping);
context->ustorm_st_context.common.sge_page_base_lo =
U64_LO(fp->rx_sge_mapping);
context->ustorm_st_context.common.max_sges_for_packet =
SGE_PAGE_ALIGN(bp->dev->mtu) >> SGE_PAGE_SHIFT;
context->ustorm_st_context.common.max_sges_for_packet =
((context->ustorm_st_context.common.
max_sges_for_packet + PAGES_PER_SGE - 1) &
(~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
}
context->ustorm_ag_context.cdu_usage =
CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, i),
CDU_REGION_NUMBER_UCM_AG,
ETH_CONNECTION_TYPE);
context->xstorm_ag_context.cdu_reserved =
CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, i),
CDU_REGION_NUMBER_XCM_AG,
ETH_CONNECTION_TYPE);
}
/* Tx */
for_each_queue(bp, i) {
struct bnx2x_fastpath *fp = &bp->fp[i];
struct eth_context *context =
bnx2x_sp(bp, context[i].eth);
context->cstorm_st_context.sb_index_number =
C_SB_ETH_TX_CQ_INDEX;
context->cstorm_st_context.status_block_id = fp->sb_id;
context->xstorm_st_context.tx_bd_page_base_hi =
U64_HI(fp->tx_desc_mapping);
context->xstorm_st_context.tx_bd_page_base_lo =
U64_LO(fp->tx_desc_mapping);
context->xstorm_st_context.statistics_data = (fp->cl_id |
XSTORM_ETH_ST_CONTEXT_STATISTICS_ENABLE);
}
}
static void bnx2x_init_ind_table(struct bnx2x *bp)
{
int func = BP_FUNC(bp);
int i;
if (bp->multi_mode == ETH_RSS_MODE_DISABLED)
return;
DP(NETIF_MSG_IFUP,
"Initializing indirection table multi_mode %d\n", bp->multi_mode);
for (i = 0; i < TSTORM_INDIRECTION_TABLE_SIZE; i++)
REG_WR8(bp, BAR_TSTRORM_INTMEM +
TSTORM_INDIRECTION_TABLE_OFFSET(func) + i,
bp->fp->cl_id + (i % bp->num_queues));
}
void bnx2x_set_client_config(struct bnx2x *bp)
{
struct tstorm_eth_client_config tstorm_client = {0};
int port = BP_PORT(bp);
int i;
tstorm_client.mtu = bp->dev->mtu;
tstorm_client.config_flags =
(TSTORM_ETH_CLIENT_CONFIG_STATSITICS_ENABLE |
TSTORM_ETH_CLIENT_CONFIG_E1HOV_REM_ENABLE);
#ifdef BCM_VLAN
if (bp->rx_mode && bp->vlgrp && (bp->flags & HW_VLAN_RX_FLAG)) {
tstorm_client.config_flags |=
TSTORM_ETH_CLIENT_CONFIG_VLAN_REM_ENABLE;
DP(NETIF_MSG_IFUP, "vlan removal enabled\n");
}
#endif
for_each_queue(bp, i) {
tstorm_client.statistics_counter_id = bp->fp[i].cl_id;
REG_WR(bp, BAR_TSTRORM_INTMEM +
TSTORM_CLIENT_CONFIG_OFFSET(port, bp->fp[i].cl_id),
((u32 *)&tstorm_client)[0]);
REG_WR(bp, BAR_TSTRORM_INTMEM +
TSTORM_CLIENT_CONFIG_OFFSET(port, bp->fp[i].cl_id) + 4,
((u32 *)&tstorm_client)[1]);
}
DP(BNX2X_MSG_OFF, "tstorm_client: 0x%08x 0x%08x\n",
((u32 *)&tstorm_client)[0], ((u32 *)&tstorm_client)[1]);
}
void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
{
struct tstorm_eth_mac_filter_config tstorm_mac_filter = {0};
int mode = bp->rx_mode;
int mask = bp->rx_mode_cl_mask;
int func = BP_FUNC(bp);
int port = BP_PORT(bp);
int i;
/* All but management unicast packets should pass to the host as well */
u32 llh_mask =
NIG_LLH0_BRB1_DRV_MASK_REG_LLH0_BRB1_DRV_MASK_BRCST |
NIG_LLH0_BRB1_DRV_MASK_REG_LLH0_BRB1_DRV_MASK_MLCST |
NIG_LLH0_BRB1_DRV_MASK_REG_LLH0_BRB1_DRV_MASK_VLAN |
NIG_LLH0_BRB1_DRV_MASK_REG_LLH0_BRB1_DRV_MASK_NO_VLAN;
DP(NETIF_MSG_IFUP, "rx mode %d mask 0x%x\n", mode, mask);
switch (mode) {
case BNX2X_RX_MODE_NONE: /* no Rx */
tstorm_mac_filter.ucast_drop_all = mask;
tstorm_mac_filter.mcast_drop_all = mask;
tstorm_mac_filter.bcast_drop_all = mask;
break;
case BNX2X_RX_MODE_NORMAL:
tstorm_mac_filter.bcast_accept_all = mask;
break;
case BNX2X_RX_MODE_ALLMULTI:
tstorm_mac_filter.mcast_accept_all = mask;
tstorm_mac_filter.bcast_accept_all = mask;
break;
case BNX2X_RX_MODE_PROMISC:
tstorm_mac_filter.ucast_accept_all = mask;
tstorm_mac_filter.mcast_accept_all = mask;
tstorm_mac_filter.bcast_accept_all = mask;
/* pass management unicast packets as well */
llh_mask |= NIG_LLH0_BRB1_DRV_MASK_REG_LLH0_BRB1_DRV_MASK_UNCST;
break;
default:
BNX2X_ERR("BAD rx mode (%d)\n", mode);
break;
}
REG_WR(bp,
(port ? NIG_REG_LLH1_BRB1_DRV_MASK : NIG_REG_LLH0_BRB1_DRV_MASK),
llh_mask);
for (i = 0; i < sizeof(struct tstorm_eth_mac_filter_config)/4; i++) {
REG_WR(bp, BAR_TSTRORM_INTMEM +
TSTORM_MAC_FILTER_CONFIG_OFFSET(func) + i * 4,
((u32 *)&tstorm_mac_filter)[i]);
/* DP(NETIF_MSG_IFUP, "tstorm_mac_filter[%d]: 0x%08x\n", i,
((u32 *)&tstorm_mac_filter)[i]); */
}
if (mode != BNX2X_RX_MODE_NONE)
bnx2x_set_client_config(bp);
}
static void bnx2x_init_internal_common(struct bnx2x *bp)
{
int i;
/* Zero this manually as its initialization is
currently missing in the initTool */
for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
REG_WR(bp, BAR_USTRORM_INTMEM +
USTORM_AGG_DATA_OFFSET + i * 4, 0);
}
static void bnx2x_init_internal_port(struct bnx2x *bp)
{
int port = BP_PORT(bp);
REG_WR(bp,
BAR_CSTRORM_INTMEM + CSTORM_HC_BTR_U_OFFSET(port), BNX2X_BTR);
REG_WR(bp,
BAR_CSTRORM_INTMEM + CSTORM_HC_BTR_C_OFFSET(port), BNX2X_BTR);
REG_WR(bp, BAR_TSTRORM_INTMEM + TSTORM_HC_BTR_OFFSET(port), BNX2X_BTR);
REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_HC_BTR_OFFSET(port), BNX2X_BTR);
}
static void bnx2x_init_internal_func(struct bnx2x *bp)
{
struct tstorm_eth_function_common_config tstorm_config = {0};
struct stats_indication_flags stats_flags = {0};
int port = BP_PORT(bp);
int func = BP_FUNC(bp);
int i, j;
u32 offset;
u16 max_agg_size;
tstorm_config.config_flags = RSS_FLAGS(bp);
if (is_multi(bp))
tstorm_config.rss_result_mask = MULTI_MASK;
/* Enable TPA if needed */
if (bp->flags & TPA_ENABLE_FLAG)
tstorm_config.config_flags |=
TSTORM_ETH_FUNCTION_COMMON_CONFIG_ENABLE_TPA;
if (IS_E1HMF(bp))
tstorm_config.config_flags |=
TSTORM_ETH_FUNCTION_COMMON_CONFIG_E1HOV_IN_CAM;
tstorm_config.leading_client_id = BP_L_ID(bp);
REG_WR(bp, BAR_TSTRORM_INTMEM +
TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(func),
(*(u32 *)&tstorm_config));
bp->rx_mode = BNX2X_RX_MODE_NONE; /* no rx until link is up */
bp->rx_mode_cl_mask = (1 << BP_L_ID(bp));
bnx2x_set_storm_rx_mode(bp);
for_each_queue(bp, i) {
u8 cl_id = bp->fp[i].cl_id;
/* reset xstorm per client statistics */
offset = BAR_XSTRORM_INTMEM +
XSTORM_PER_COUNTER_ID_STATS_OFFSET(port, cl_id);
for (j = 0;
j < sizeof(struct xstorm_per_client_stats) / 4; j++)
REG_WR(bp, offset + j*4, 0);
/* reset tstorm per client statistics */
offset = BAR_TSTRORM_INTMEM +
TSTORM_PER_COUNTER_ID_STATS_OFFSET(port, cl_id);
for (j = 0;
j < sizeof(struct tstorm_per_client_stats) / 4; j++)
REG_WR(bp, offset + j*4, 0);
/* reset ustorm per client statistics */
offset = BAR_USTRORM_INTMEM +
USTORM_PER_COUNTER_ID_STATS_OFFSET(port, cl_id);
for (j = 0;
j < sizeof(struct ustorm_per_client_stats) / 4; j++)
REG_WR(bp, offset + j*4, 0);
}
/* Init statistics related context */
stats_flags.collect_eth = 1;
REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_STATS_FLAGS_OFFSET(func),
((u32 *)&stats_flags)[0]);
REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_STATS_FLAGS_OFFSET(func) + 4,
((u32 *)&stats_flags)[1]);
REG_WR(bp, BAR_TSTRORM_INTMEM + TSTORM_STATS_FLAGS_OFFSET(func),
((u32 *)&stats_flags)[0]);
REG_WR(bp, BAR_TSTRORM_INTMEM + TSTORM_STATS_FLAGS_OFFSET(func) + 4,
((u32 *)&stats_flags)[1]);
REG_WR(bp, BAR_USTRORM_INTMEM + USTORM_STATS_FLAGS_OFFSET(func),
((u32 *)&stats_flags)[0]);
REG_WR(bp, BAR_USTRORM_INTMEM + USTORM_STATS_FLAGS_OFFSET(func) + 4,
((u32 *)&stats_flags)[1]);
REG_WR(bp, BAR_CSTRORM_INTMEM + CSTORM_STATS_FLAGS_OFFSET(func),
((u32 *)&stats_flags)[0]);
REG_WR(bp, BAR_CSTRORM_INTMEM + CSTORM_STATS_FLAGS_OFFSET(func) + 4,
((u32 *)&stats_flags)[1]);
REG_WR(bp, BAR_XSTRORM_INTMEM +
XSTORM_ETH_STATS_QUERY_ADDR_OFFSET(func),
U64_LO(bnx2x_sp_mapping(bp, fw_stats)));
REG_WR(bp, BAR_XSTRORM_INTMEM +
XSTORM_ETH_STATS_QUERY_ADDR_OFFSET(func) + 4,
U64_HI(bnx2x_sp_mapping(bp, fw_stats)));
REG_WR(bp, BAR_TSTRORM_INTMEM +
TSTORM_ETH_STATS_QUERY_ADDR_OFFSET(func),
U64_LO(bnx2x_sp_mapping(bp, fw_stats)));
REG_WR(bp, BAR_TSTRORM_INTMEM +
TSTORM_ETH_STATS_QUERY_ADDR_OFFSET(func) + 4,
U64_HI(bnx2x_sp_mapping(bp, fw_stats)));
REG_WR(bp, BAR_USTRORM_INTMEM +
USTORM_ETH_STATS_QUERY_ADDR_OFFSET(func),
U64_LO(bnx2x_sp_mapping(bp, fw_stats)));
REG_WR(bp, BAR_USTRORM_INTMEM +
USTORM_ETH_STATS_QUERY_ADDR_OFFSET(func) + 4,
U64_HI(bnx2x_sp_mapping(bp, fw_stats)));
if (CHIP_IS_E1H(bp)) {
REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNCTION_MODE_OFFSET,
IS_E1HMF(bp));
REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNCTION_MODE_OFFSET,
IS_E1HMF(bp));
REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNCTION_MODE_OFFSET,
IS_E1HMF(bp));
REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNCTION_MODE_OFFSET,
IS_E1HMF(bp));
REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_E1HOV_OFFSET(func),
bp->e1hov);
}
/* Init CQ ring mapping and aggregation size, the FW limit is 8 frags */
max_agg_size = min_t(u32, (min_t(u32, 8, MAX_SKB_FRAGS) *
SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
for_each_queue(bp, i) {
struct bnx2x_fastpath *fp = &bp->fp[i];
REG_WR(bp, BAR_USTRORM_INTMEM +
USTORM_CQE_PAGE_BASE_OFFSET(port, fp->cl_id),
U64_LO(fp->rx_comp_mapping));
REG_WR(bp, BAR_USTRORM_INTMEM +
USTORM_CQE_PAGE_BASE_OFFSET(port, fp->cl_id) + 4,
U64_HI(fp->rx_comp_mapping));
/* Next page */
REG_WR(bp, BAR_USTRORM_INTMEM +
USTORM_CQE_PAGE_NEXT_OFFSET(port, fp->cl_id),
U64_LO(fp->rx_comp_mapping + BCM_PAGE_SIZE));
REG_WR(bp, BAR_USTRORM_INTMEM +
USTORM_CQE_PAGE_NEXT_OFFSET(port, fp->cl_id) + 4,
U64_HI(fp->rx_comp_mapping + BCM_PAGE_SIZE));
REG_WR16(bp, BAR_USTRORM_INTMEM +
USTORM_MAX_AGG_SIZE_OFFSET(port, fp->cl_id),
max_agg_size);
}
/* dropless flow control */
if (CHIP_IS_E1H(bp)) {
struct ustorm_eth_rx_pause_data_e1h rx_pause = {0};
rx_pause.bd_thr_low = 250;
rx_pause.cqe_thr_low = 250;
rx_pause.cos = 1;
rx_pause.sge_thr_low = 0;
rx_pause.bd_thr_high = 350;
rx_pause.cqe_thr_high = 350;
rx_pause.sge_thr_high = 0;
for_each_queue(bp, i) {
struct bnx2x_fastpath *fp = &bp->fp[i];
if (!fp->disable_tpa) {
rx_pause.sge_thr_low = 150;
rx_pause.sge_thr_high = 250;
}
offset = BAR_USTRORM_INTMEM +
USTORM_ETH_RING_PAUSE_DATA_OFFSET(port,
fp->cl_id);
for (j = 0;
j < sizeof(struct ustorm_eth_rx_pause_data_e1h)/4;
j++)
REG_WR(bp, offset + j*4,
((u32 *)&rx_pause)[j]);
}
}
memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
/* Init rate shaping and fairness contexts */
if (IS_E1HMF(bp)) {
int vn;
/* During init there is no active link
Until link is up, set link rate to 10Gbps */
bp->link_vars.line_speed = SPEED_10000;
bnx2x_init_port_minmax(bp);
if (!BP_NOMCP(bp))
bp->mf_config =
SHMEM_RD(bp, mf_cfg.func_mf_config[func].config);
bnx2x_calc_vn_weight_sum(bp);
for (vn = VN_0; vn < E1HVN_MAX; vn++)
bnx2x_init_vn_minmax(bp, 2*vn + port);
/* Enable rate shaping and fairness */
bp->cmng.flags.cmng_enables |=
CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
} else {
/* rate shaping and fairness are disabled */
DP(NETIF_MSG_IFUP,
"single function mode minmax will be disabled\n");
}
/* Store cmng structures to internal memory */
if (bp->port.pmf)
for (i = 0; i < sizeof(struct cmng_struct_per_port) / 4; i++)
REG_WR(bp, BAR_XSTRORM_INTMEM +
XSTORM_CMNG_PER_PORT_VARS_OFFSET(port) + i * 4,
((u32 *)(&bp->cmng))[i]);
}
static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
{
switch (load_code) {
case FW_MSG_CODE_DRV_LOAD_COMMON:
bnx2x_init_internal_common(bp);
/* no break */
case FW_MSG_CODE_DRV_LOAD_PORT:
bnx2x_init_internal_port(bp);
/* no break */
case FW_MSG_CODE_DRV_LOAD_FUNCTION:
bnx2x_init_internal_func(bp);
break;
default:
BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
break;
}
}
void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
{
int i;
for_each_queue(bp, i) {
struct bnx2x_fastpath *fp = &bp->fp[i];
fp->bp = bp;
fp->state = BNX2X_FP_STATE_CLOSED;
fp->index = i;
fp->cl_id = BP_L_ID(bp) + i;
#ifdef BCM_CNIC
fp->sb_id = fp->cl_id + 1;
#else
fp->sb_id = fp->cl_id;
#endif
DP(NETIF_MSG_IFUP,
"queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d sb %d\n",
i, bp, fp->status_blk, fp->cl_id, fp->sb_id);
bnx2x_init_sb(bp, fp->status_blk, fp->status_blk_mapping,
fp->sb_id);
bnx2x_update_fpsb_idx(fp);
}
/* ensure status block indices were read */
rmb();
bnx2x_init_def_sb(bp, bp->def_status_blk, bp->def_status_blk_mapping,
DEF_SB_ID);
bnx2x_update_dsb_idx(bp);
bnx2x_update_coalesce(bp);
bnx2x_init_rx_rings(bp);
bnx2x_init_tx_ring(bp);
bnx2x_init_sp_ring(bp);
bnx2x_init_context(bp);
bnx2x_init_internal(bp, load_code);
bnx2x_init_ind_table(bp);
bnx2x_stats_init(bp);
/* At this point, we are ready for interrupts */
atomic_set(&bp->intr_sem, 0);
/* flush all before enabling interrupts */
mb();
mmiowb();
bnx2x_int_enable(bp);
/* Check for SPIO5 */
bnx2x_attn_int_deasserted0(bp,
REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
AEU_INPUTS_ATTN_BITS_SPIO5);
}
/* end of nic init */
/*
* gzip service functions
*/
static int bnx2x_gunzip_init(struct bnx2x *bp)
{
bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
&bp->gunzip_mapping, GFP_KERNEL);
if (bp->gunzip_buf == NULL)
goto gunzip_nomem1;
bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
if (bp->strm == NULL)
goto gunzip_nomem2;
bp->strm->workspace = kmalloc(zlib_inflate_workspacesize(),
GFP_KERNEL);
if (bp->strm->workspace == NULL)
goto gunzip_nomem3;
return 0;
gunzip_nomem3:
kfree(bp->strm);
bp->strm = NULL;
gunzip_nomem2:
dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
bp->gunzip_mapping);
bp->gunzip_buf = NULL;
gunzip_nomem1:
netdev_err(bp->dev, "Cannot allocate firmware buffer for"
" un-compression\n");
return -ENOMEM;
}
static void bnx2x_gunzip_end(struct bnx2x *bp)
{
kfree(bp->strm->workspace);
kfree(bp->strm);
bp->strm = NULL;
if (bp->gunzip_buf) {
dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
bp->gunzip_mapping);
bp->gunzip_buf = NULL;
}
}
static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
{
int n, rc;
/* check gzip header */
if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
BNX2X_ERR("Bad gzip header\n");
return -EINVAL;
}
n = 10;
#define FNAME 0x8
if (zbuf[3] & FNAME)
while ((zbuf[n++] != 0) && (n < len));
bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
bp->strm->avail_in = len - n;
bp->strm->next_out = bp->gunzip_buf;
bp->strm->avail_out = FW_BUF_SIZE;
rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
if (rc != Z_OK)
return rc;
rc = zlib_inflate(bp->strm, Z_FINISH);
if ((rc != Z_OK) && (rc != Z_STREAM_END))
netdev_err(bp->dev, "Firmware decompression error: %s\n",
bp->strm->msg);
bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
if (bp->gunzip_outlen & 0x3)
netdev_err(bp->dev, "Firmware decompression error:"
" gunzip_outlen (%d) not aligned\n",
bp->gunzip_outlen);
bp->gunzip_outlen >>= 2;
zlib_inflateEnd(bp->strm);
if (rc == Z_STREAM_END)
return 0;
return rc;
}
/* nic load/unload */
/*
* General service functions
*/
/* send a NIG loopback debug packet */
static void bnx2x_lb_pckt(struct bnx2x *bp)
{
u32 wb_write[3];
/* Ethernet source and destination addresses */
wb_write[0] = 0x55555555;
wb_write[1] = 0x55555555;
wb_write[2] = 0x20; /* SOP */
REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
/* NON-IP protocol */
wb_write[0] = 0x09000000;
wb_write[1] = 0x55555555;
wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
}
/* some of the internal memories
* are not directly readable from the driver
* to test them we send debug packets
*/
static int bnx2x_int_mem_test(struct bnx2x *bp)
{
int factor;
int count, i;
u32 val = 0;
if (CHIP_REV_IS_FPGA(bp))
factor = 120;
else if (CHIP_REV_IS_EMUL(bp))
factor = 200;
else
factor = 1;
DP(NETIF_MSG_HW, "start part1\n");
/* Disable inputs of parser neighbor blocks */
REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
REG_WR(bp, CFC_REG_DEBUG0, 0x1);
REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
/* Write 0 to parser credits for CFC search request */
REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
/* send Ethernet packet */
bnx2x_lb_pckt(bp);
/* TODO do i reset NIG statistic? */
/* Wait until NIG register shows 1 packet of size 0x10 */
count = 1000 * factor;
while (count) {
bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
val = *bnx2x_sp(bp, wb_data[0]);
if (val == 0x10)
break;
msleep(10);
count--;
}
if (val != 0x10) {
BNX2X_ERR("NIG timeout val = 0x%x\n", val);
return -1;
}
/* Wait until PRS register shows 1 packet */
count = 1000 * factor;
while (count) {
val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
if (val == 1)
break;
msleep(10);
count--;
}
if (val != 0x1) {
BNX2X_ERR("PRS timeout val = 0x%x\n", val);
return -2;
}
/* Reset and init BRB, PRS */
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
msleep(50);
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
msleep(50);
bnx2x_init_block(bp, BRB1_BLOCK, COMMON_STAGE);
bnx2x_init_block(bp, PRS_BLOCK, COMMON_STAGE);
DP(NETIF_MSG_HW, "part2\n");
/* Disable inputs of parser neighbor blocks */
REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
REG_WR(bp, CFC_REG_DEBUG0, 0x1);
REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
/* Write 0 to parser credits for CFC search request */
REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
/* send 10 Ethernet packets */
for (i = 0; i < 10; i++)
bnx2x_lb_pckt(bp);
/* Wait until NIG register shows 10 + 1
packets of size 11*0x10 = 0xb0 */
count = 1000 * factor;
while (count) {
bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
val = *bnx2x_sp(bp, wb_data[0]);
if (val == 0xb0)
break;
msleep(10);
count--;
}
if (val != 0xb0) {
BNX2X_ERR("NIG timeout val = 0x%x\n", val);
return -3;
}
/* Wait until PRS register shows 2 packets */
val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
if (val != 2)
BNX2X_ERR("PRS timeout val = 0x%x\n", val);
/* Write 1 to parser credits for CFC search request */
REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
/* Wait until PRS register shows 3 packets */
msleep(10 * factor);
/* Wait until NIG register shows 1 packet of size 0x10 */
val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
if (val != 3)
BNX2X_ERR("PRS timeout val = 0x%x\n", val);
/* clear NIG EOP FIFO */
for (i = 0; i < 11; i++)
REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
if (val != 1) {
BNX2X_ERR("clear of NIG failed\n");
return -4;
}
/* Reset and init BRB, PRS, NIG */
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
msleep(50);
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
msleep(50);
bnx2x_init_block(bp, BRB1_BLOCK, COMMON_STAGE);
bnx2x_init_block(bp, PRS_BLOCK, COMMON_STAGE);
#ifndef BCM_CNIC
/* set NIC mode */
REG_WR(bp, PRS_REG_NIC_MODE, 1);
#endif
/* Enable inputs of parser neighbor blocks */
REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
REG_WR(bp, CFC_REG_DEBUG0, 0x0);
REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
DP(NETIF_MSG_HW, "done\n");
return 0; /* OK */
}
static void enable_blocks_attention(struct bnx2x *bp)
{
REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
REG_WR(bp, QM_REG_QM_INT_MASK, 0);
REG_WR(bp, TM_REG_TM_INT_MASK, 0);
REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
/* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
/* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
/* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
/* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
/* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
/* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
if (CHIP_REV_IS_FPGA(bp))
REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
else
REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
/* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
/* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0); */
REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
/* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
REG_WR(bp, PBF_REG_PBF_INT_MASK, 0X18); /* bit 3,4 masked */
}
static const struct {
u32 addr;
u32 mask;
} bnx2x_parity_mask[] = {
{PXP_REG_PXP_PRTY_MASK, 0xffffffff},
{PXP2_REG_PXP2_PRTY_MASK_0, 0xffffffff},
{PXP2_REG_PXP2_PRTY_MASK_1, 0xffffffff},
{HC_REG_HC_PRTY_MASK, 0xffffffff},
{MISC_REG_MISC_PRTY_MASK, 0xffffffff},
{QM_REG_QM_PRTY_MASK, 0x0},
{DORQ_REG_DORQ_PRTY_MASK, 0x0},
{GRCBASE_UPB + PB_REG_PB_PRTY_MASK, 0x0},
{GRCBASE_XPB + PB_REG_PB_PRTY_MASK, 0x0},
{SRC_REG_SRC_PRTY_MASK, 0x4}, /* bit 2 */
{CDU_REG_CDU_PRTY_MASK, 0x0},
{CFC_REG_CFC_PRTY_MASK, 0x0},
{DBG_REG_DBG_PRTY_MASK, 0x0},
{DMAE_REG_DMAE_PRTY_MASK, 0x0},
{BRB1_REG_BRB1_PRTY_MASK, 0x0},
{PRS_REG_PRS_PRTY_MASK, (1<<6)},/* bit 6 */
{TSDM_REG_TSDM_PRTY_MASK, 0x18},/* bit 3,4 */
{CSDM_REG_CSDM_PRTY_MASK, 0x8}, /* bit 3 */
{USDM_REG_USDM_PRTY_MASK, 0x38},/* bit 3,4,5 */
{XSDM_REG_XSDM_PRTY_MASK, 0x8}, /* bit 3 */
{TSEM_REG_TSEM_PRTY_MASK_0, 0x0},
{TSEM_REG_TSEM_PRTY_MASK_1, 0x0},
{USEM_REG_USEM_PRTY_MASK_0, 0x0},
{USEM_REG_USEM_PRTY_MASK_1, 0x0},
{CSEM_REG_CSEM_PRTY_MASK_0, 0x0},
{CSEM_REG_CSEM_PRTY_MASK_1, 0x0},
{XSEM_REG_XSEM_PRTY_MASK_0, 0x0},
{XSEM_REG_XSEM_PRTY_MASK_1, 0x0}
};
static void enable_blocks_parity(struct bnx2x *bp)
{
int i;
for (i = 0; i < ARRAY_SIZE(bnx2x_parity_mask); i++)
REG_WR(bp, bnx2x_parity_mask[i].addr,
bnx2x_parity_mask[i].mask);
}
static void bnx2x_reset_common(struct bnx2x *bp)
{
/* reset_common */
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
0xd3ffff7f);
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 0x1403);
}
static void bnx2x_init_pxp(struct bnx2x *bp)
{
u16 devctl;
int r_order, w_order;
pci_read_config_word(bp->pdev,
bp->pcie_cap + PCI_EXP_DEVCTL, &devctl);
DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
if (bp->mrrs == -1)
r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
else {
DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
r_order = bp->mrrs;
}
bnx2x_init_pxp_arb(bp, r_order, w_order);
}
static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
{
int is_required;
u32 val;
int port;
if (BP_NOMCP(bp))
return;
is_required = 0;
val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
SHARED_HW_CFG_FAN_FAILURE_MASK;
if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
is_required = 1;
/*
* The fan failure mechanism is usually related to the PHY type since
* the power consumption of the board is affected by the PHY. Currently,
* fan is required for most designs with SFX7101, BCM8727 and BCM8481.
*/
else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
for (port = PORT_0; port < PORT_MAX; port++) {
is_required |=
bnx2x_fan_failure_det_req(
bp,
bp->common.shmem_base,
bp->common.shmem2_base,
port);
}
DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
if (is_required == 0)
return;
/* Fan failure is indicated by SPIO 5 */
bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
MISC_REGISTERS_SPIO_INPUT_HI_Z);
/* set to active low mode */
val = REG_RD(bp, MISC_REG_SPIO_INT);
val |= ((1 << MISC_REGISTERS_SPIO_5) <<
MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
REG_WR(bp, MISC_REG_SPIO_INT, val);
/* enable interrupt to signal the IGU */
val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
val |= (1 << MISC_REGISTERS_SPIO_5);
REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
}
static int bnx2x_init_common(struct bnx2x *bp)
{
u32 val, i;
#ifdef BCM_CNIC
u32 wb_write[2];
#endif
DP(BNX2X_MSG_MCP, "starting common init func %d\n", BP_FUNC(bp));
bnx2x_reset_common(bp);
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 0xfffc);
bnx2x_init_block(bp, MISC_BLOCK, COMMON_STAGE);
if (CHIP_IS_E1H(bp))
REG_WR(bp, MISC_REG_E1HMF_MODE, IS_E1HMF(bp));
REG_WR(bp, MISC_REG_LCPLL_CTRL_REG_2, 0x100);
msleep(30);
REG_WR(bp, MISC_REG_LCPLL_CTRL_REG_2, 0x0);
bnx2x_init_block(bp, PXP_BLOCK, COMMON_STAGE);
if (CHIP_IS_E1(bp)) {
/* enable HW interrupt from PXP on USDM overflow
bit 16 on INT_MASK_0 */
REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
}
bnx2x_init_block(bp, PXP2_BLOCK, COMMON_STAGE);
bnx2x_init_pxp(bp);
#ifdef __BIG_ENDIAN
REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
/* make sure this value is 0 */
REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
/* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
#endif
REG_WR(bp, PXP2_REG_RQ_CDU_P_SIZE, 2);
#ifdef BCM_CNIC
REG_WR(bp, PXP2_REG_RQ_TM_P_SIZE, 5);
REG_WR(bp, PXP2_REG_RQ_QM_P_SIZE, 5);
REG_WR(bp, PXP2_REG_RQ_SRC_P_SIZE, 5);
#endif
if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
/* let the HW do it's magic ... */
msleep(100);
/* finish PXP init */
val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
if (val != 1) {
BNX2X_ERR("PXP2 CFG failed\n");
return -EBUSY;
}
val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
if (val != 1) {
BNX2X_ERR("PXP2 RD_INIT failed\n");
return -EBUSY;
}
REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
bnx2x_init_block(bp, DMAE_BLOCK, COMMON_STAGE);
/* clean the DMAE memory */
bp->dmae_ready = 1;
bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8);
bnx2x_init_block(bp, TCM_BLOCK, COMMON_STAGE);
bnx2x_init_block(bp, UCM_BLOCK, COMMON_STAGE);
bnx2x_init_block(bp, CCM_BLOCK, COMMON_STAGE);
bnx2x_init_block(bp, XCM_BLOCK, COMMON_STAGE);
bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
bnx2x_init_block(bp, QM_BLOCK, COMMON_STAGE);
#ifdef BCM_CNIC
wb_write[0] = 0;
wb_write[1] = 0;
for (i = 0; i < 64; i++) {
REG_WR(bp, QM_REG_BASEADDR + i*4, 1024 * 4 * (i%16));
bnx2x_init_ind_wr(bp, QM_REG_PTRTBL + i*8, wb_write, 2);
if (CHIP_IS_E1H(bp)) {
REG_WR(bp, QM_REG_BASEADDR_EXT_A + i*4, 1024*4*(i%16));
bnx2x_init_ind_wr(bp, QM_REG_PTRTBL_EXT_A + i*8,
wb_write, 2);
}
}
#endif
/* soft reset pulse */
REG_WR(bp, QM_REG_SOFT_RESET, 1);
REG_WR(bp, QM_REG_SOFT_RESET, 0);
#ifdef BCM_CNIC
bnx2x_init_block(bp, TIMERS_BLOCK, COMMON_STAGE);
#endif
bnx2x_init_block(bp, DQ_BLOCK, COMMON_STAGE);
REG_WR(bp, DORQ_REG_DPM_CID_OFST, BCM_PAGE_SHIFT);
if (!CHIP_REV_IS_SLOW(bp)) {
/* enable hw interrupt from doorbell Q */
REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
}
bnx2x_init_block(bp, BRB1_BLOCK, COMMON_STAGE);
bnx2x_init_block(bp, PRS_BLOCK, COMMON_STAGE);
REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
#ifndef BCM_CNIC
/* set NIC mode */
REG_WR(bp, PRS_REG_NIC_MODE, 1);
#endif
if (CHIP_IS_E1H(bp))
REG_WR(bp, PRS_REG_E1HOV_MODE, IS_E1HMF(bp));
bnx2x_init_block(bp, TSDM_BLOCK, COMMON_STAGE);
bnx2x_init_block(bp, CSDM_BLOCK, COMMON_STAGE);
bnx2x_init_block(bp, USDM_BLOCK, COMMON_STAGE);
bnx2x_init_block(bp, XSDM_BLOCK, COMMON_STAGE);
bnx2x_init_fill(bp, TSEM_REG_FAST_MEMORY, 0, STORM_INTMEM_SIZE(bp));
bnx2x_init_fill(bp, USEM_REG_FAST_MEMORY, 0, STORM_INTMEM_SIZE(bp));
bnx2x_init_fill(bp, CSEM_REG_FAST_MEMORY, 0, STORM_INTMEM_SIZE(bp));
bnx2x_init_fill(bp, XSEM_REG_FAST_MEMORY, 0, STORM_INTMEM_SIZE(bp));
bnx2x_init_block(bp, TSEM_BLOCK, COMMON_STAGE);
bnx2x_init_block(bp, USEM_BLOCK, COMMON_STAGE);
bnx2x_init_block(bp, CSEM_BLOCK, COMMON_STAGE);
bnx2x_init_block(bp, XSEM_BLOCK, COMMON_STAGE);
/* sync semi rtc */
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
0x80000000);
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
0x80000000);
bnx2x_init_block(bp, UPB_BLOCK, COMMON_STAGE);
bnx2x_init_block(bp, XPB_BLOCK, COMMON_STAGE);
bnx2x_init_block(bp, PBF_BLOCK, COMMON_STAGE);
REG_WR(bp, SRC_REG_SOFT_RST, 1);
for (i = SRC_REG_KEYRSS0_0; i <= SRC_REG_KEYRSS1_9; i += 4)
REG_WR(bp, i, random32());
bnx2x_init_block(bp, SRCH_BLOCK, COMMON_STAGE);
#ifdef BCM_CNIC
REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
#endif
REG_WR(bp, SRC_REG_SOFT_RST, 0);
if (sizeof(union cdu_context) != 1024)
/* we currently assume that a context is 1024 bytes */
dev_alert(&bp->pdev->dev, "please adjust the size "
"of cdu_context(%ld)\n",
(long)sizeof(union cdu_context));
bnx2x_init_block(bp, CDU_BLOCK, COMMON_STAGE);
val = (4 << 24) + (0 << 12) + 1024;
REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
bnx2x_init_block(bp, CFC_BLOCK, COMMON_STAGE);
REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
/* enable context validation interrupt from CFC */
REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
/* set the thresholds to prevent CFC/CDU race */
REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
bnx2x_init_block(bp, HC_BLOCK, COMMON_STAGE);
bnx2x_init_block(bp, MISC_AEU_BLOCK, COMMON_STAGE);
bnx2x_init_block(bp, PXPCS_BLOCK, COMMON_STAGE);
/* Reset PCIE errors for debug */
REG_WR(bp, 0x2814, 0xffffffff);
REG_WR(bp, 0x3820, 0xffffffff);
bnx2x_init_block(bp, EMAC0_BLOCK, COMMON_STAGE);
bnx2x_init_block(bp, EMAC1_BLOCK, COMMON_STAGE);
bnx2x_init_block(bp, DBU_BLOCK, COMMON_STAGE);
bnx2x_init_block(bp, DBG_BLOCK, COMMON_STAGE);
bnx2x_init_block(bp, NIG_BLOCK, COMMON_STAGE);
if (CHIP_IS_E1H(bp)) {
REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_E1HMF(bp));
REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_E1HMF(bp));
}
if (CHIP_REV_IS_SLOW(bp))
msleep(200);
/* finish CFC init */
val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
if (val != 1) {
BNX2X_ERR("CFC LL_INIT failed\n");
return -EBUSY;
}
val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
if (val != 1) {
BNX2X_ERR("CFC AC_INIT failed\n");
return -EBUSY;
}
val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
if (val != 1) {
BNX2X_ERR("CFC CAM_INIT failed\n");
return -EBUSY;
}
REG_WR(bp, CFC_REG_DEBUG0, 0);
/* read NIG statistic
to see if this is our first up since powerup */
bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
val = *bnx2x_sp(bp, wb_data[0]);
/* do internal memory self test */
if ((CHIP_IS_E1(bp)) && (val == 0) && bnx2x_int_mem_test(bp)) {
BNX2X_ERR("internal mem self test failed\n");
return -EBUSY;
}
bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
bp->common.shmem_base,
bp->common.shmem2_base);
bnx2x_setup_fan_failure_detection(bp);
/* clear PXP2 attentions */
REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
enable_blocks_attention(bp);
if (CHIP_PARITY_SUPPORTED(bp))
enable_blocks_parity(bp);
if (!BP_NOMCP(bp)) {
bnx2x_acquire_phy_lock(bp);
bnx2x_common_init_phy(bp, bp->common.shmem_base,
bp->common.shmem2_base);
bnx2x_release_phy_lock(bp);
} else
BNX2X_ERR("Bootcode is missing - can not initialize link\n");
return 0;
}
static int bnx2x_init_port(struct bnx2x *bp)
{
int port = BP_PORT(bp);
int init_stage = port ? PORT1_STAGE : PORT0_STAGE;
u32 low, high;
u32 val;
DP(BNX2X_MSG_MCP, "starting port init port %d\n", port);
REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
bnx2x_init_block(bp, PXP_BLOCK, init_stage);
bnx2x_init_block(bp, PXP2_BLOCK, init_stage);
bnx2x_init_block(bp, TCM_BLOCK, init_stage);
bnx2x_init_block(bp, UCM_BLOCK, init_stage);
bnx2x_init_block(bp, CCM_BLOCK, init_stage);
bnx2x_init_block(bp, XCM_BLOCK, init_stage);
#ifdef BCM_CNIC
REG_WR(bp, QM_REG_CONNNUM_0 + port*4, 1024/16 - 1);
bnx2x_init_block(bp, TIMERS_BLOCK, init_stage);
REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
#endif
bnx2x_init_block(bp, DQ_BLOCK, init_stage);
bnx2x_init_block(bp, BRB1_BLOCK, init_stage);
if (CHIP_REV_IS_SLOW(bp) && !CHIP_IS_E1H(bp)) {
/* no pause for emulation and FPGA */
low = 0;
high = 513;
} else {
if (IS_E1HMF(bp))
low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
else if (bp->dev->mtu > 4096) {
if (bp->flags & ONE_PORT_FLAG)
low = 160;
else {
val = bp->dev->mtu;
/* (24*1024 + val*4)/256 */
low = 96 + (val/64) + ((val % 64) ? 1 : 0);
}
} else
low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
high = low + 56; /* 14*1024/256 */
}
REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
bnx2x_init_block(bp, PRS_BLOCK, init_stage);
bnx2x_init_block(bp, TSDM_BLOCK, init_stage);
bnx2x_init_block(bp, CSDM_BLOCK, init_stage);
bnx2x_init_block(bp, USDM_BLOCK, init_stage);
bnx2x_init_block(bp, XSDM_BLOCK, init_stage);
bnx2x_init_block(bp, TSEM_BLOCK, init_stage);
bnx2x_init_block(bp, USEM_BLOCK, init_stage);
bnx2x_init_block(bp, CSEM_BLOCK, init_stage);
bnx2x_init_block(bp, XSEM_BLOCK, init_stage);
bnx2x_init_block(bp, UPB_BLOCK, init_stage);
bnx2x_init_block(bp, XPB_BLOCK, init_stage);
bnx2x_init_block(bp, PBF_BLOCK, init_stage);
/* configure PBF to work without PAUSE mtu 9000 */
REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
/* update threshold */
REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
/* update init credit */
REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
/* probe changes */
REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
msleep(5);
REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
#ifdef BCM_CNIC
bnx2x_init_block(bp, SRCH_BLOCK, init_stage);
#endif
bnx2x_init_block(bp, CDU_BLOCK, init_stage);
bnx2x_init_block(bp, CFC_BLOCK, init_stage);
if (CHIP_IS_E1(bp)) {
REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
}
bnx2x_init_block(bp, HC_BLOCK, init_stage);
bnx2x_init_block(bp, MISC_AEU_BLOCK, init_stage);
/* init aeu_mask_attn_func_0/1:
* - SF mode: bits 3-7 are masked. only bits 0-2 are in use
* - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
* bits 4-7 are used for "per vn group attention" */
REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4,
(IS_E1HMF(bp) ? 0xF7 : 0x7));
bnx2x_init_block(bp, PXPCS_BLOCK, init_stage);
bnx2x_init_block(bp, EMAC0_BLOCK, init_stage);
bnx2x_init_block(bp, EMAC1_BLOCK, init_stage);
bnx2x_init_block(bp, DBU_BLOCK, init_stage);
bnx2x_init_block(bp, DBG_BLOCK, init_stage);
bnx2x_init_block(bp, NIG_BLOCK, init_stage);
REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
if (CHIP_IS_E1H(bp)) {
/* 0x2 disable e1hov, 0x1 enable */
REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
(IS_E1HMF(bp) ? 0x1 : 0x2));
{
REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
}
}
bnx2x_init_block(bp, MCP_BLOCK, init_stage);
bnx2x_init_block(bp, DMAE_BLOCK, init_stage);
bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
bp->common.shmem_base,
bp->common.shmem2_base);
if (bnx2x_fan_failure_det_req(bp, bp->common.shmem_base,
bp->common.shmem2_base, port)) {
u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
val = REG_RD(bp, reg_addr);
val |= AEU_INPUTS_ATTN_BITS_SPIO5;
REG_WR(bp, reg_addr, val);
}
bnx2x__link_reset(bp);
return 0;
}
#define ILT_PER_FUNC (768/2)
#define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
/* the phys address is shifted right 12 bits and has an added
1=valid bit added to the 53rd bit
then since this is a wide register(TM)
we split it into two 32 bit writes
*/
#define ONCHIP_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF))
#define ONCHIP_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44)))
#define PXP_ONE_ILT(x) (((x) << 10) | x)
#define PXP_ILT_RANGE(f, l) (((l) << 10) | f)
#ifdef BCM_CNIC
#define CNIC_ILT_LINES 127
#define CNIC_CTX_PER_ILT 16
#else
#define CNIC_ILT_LINES 0
#endif
static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
{
int reg;
if (CHIP_IS_E1H(bp))
reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
else /* E1 */
reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
}
static int bnx2x_init_func(struct bnx2x *bp)
{
int port = BP_PORT(bp);
int func = BP_FUNC(bp);
u32 addr, val;
int i;
DP(BNX2X_MSG_MCP, "starting func init func %d\n", func);
/* set MSI reconfigure capability */
addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
val = REG_RD(bp, addr);
val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
REG_WR(bp, addr, val);
i = FUNC_ILT_BASE(func);
bnx2x_ilt_wr(bp, i, bnx2x_sp_mapping(bp, context));
if (CHIP_IS_E1H(bp)) {
REG_WR(bp, PXP2_REG_RQ_CDU_FIRST_ILT, i);
REG_WR(bp, PXP2_REG_RQ_CDU_LAST_ILT, i + CNIC_ILT_LINES);
} else /* E1 */
REG_WR(bp, PXP2_REG_PSWRQ_CDU0_L2P + func*4,
PXP_ILT_RANGE(i, i + CNIC_ILT_LINES));
#ifdef BCM_CNIC
i += 1 + CNIC_ILT_LINES;
bnx2x_ilt_wr(bp, i, bp->timers_mapping);
if (CHIP_IS_E1(bp))
REG_WR(bp, PXP2_REG_PSWRQ_TM0_L2P + func*4, PXP_ONE_ILT(i));
else {
REG_WR(bp, PXP2_REG_RQ_TM_FIRST_ILT, i);
REG_WR(bp, PXP2_REG_RQ_TM_LAST_ILT, i);
}
i++;
bnx2x_ilt_wr(bp, i, bp->qm_mapping);
if (CHIP_IS_E1(bp))
REG_WR(bp, PXP2_REG_PSWRQ_QM0_L2P + func*4, PXP_ONE_ILT(i));
else {
REG_WR(bp, PXP2_REG_RQ_QM_FIRST_ILT, i);
REG_WR(bp, PXP2_REG_RQ_QM_LAST_ILT, i);
}
i++;
bnx2x_ilt_wr(bp, i, bp->t1_mapping);
if (CHIP_IS_E1(bp))
REG_WR(bp, PXP2_REG_PSWRQ_SRC0_L2P + func*4, PXP_ONE_ILT(i));
else {
REG_WR(bp, PXP2_REG_RQ_SRC_FIRST_ILT, i);
REG_WR(bp, PXP2_REG_RQ_SRC_LAST_ILT, i);
}
/* tell the searcher where the T2 table is */
REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, 16*1024/64);
bnx2x_wb_wr(bp, SRC_REG_FIRSTFREE0 + port*16,
U64_LO(bp->t2_mapping), U64_HI(bp->t2_mapping));
bnx2x_wb_wr(bp, SRC_REG_LASTFREE0 + port*16,
U64_LO((u64)bp->t2_mapping + 16*1024 - 64),
U64_HI((u64)bp->t2_mapping + 16*1024 - 64));
REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, 10);
#endif
if (CHIP_IS_E1H(bp)) {
bnx2x_init_block(bp, MISC_BLOCK, FUNC0_STAGE + func);
bnx2x_init_block(bp, TCM_BLOCK, FUNC0_STAGE + func);
bnx2x_init_block(bp, UCM_BLOCK, FUNC0_STAGE + func);
bnx2x_init_block(bp, CCM_BLOCK, FUNC0_STAGE + func);
bnx2x_init_block(bp, XCM_BLOCK, FUNC0_STAGE + func);
bnx2x_init_block(bp, TSEM_BLOCK, FUNC0_STAGE + func);
bnx2x_init_block(bp, USEM_BLOCK, FUNC0_STAGE + func);
bnx2x_init_block(bp, CSEM_BLOCK, FUNC0_STAGE + func);
bnx2x_init_block(bp, XSEM_BLOCK, FUNC0_STAGE + func);
REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->e1hov);
}
/* HC init per function */
if (CHIP_IS_E1H(bp)) {
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
}
bnx2x_init_block(bp, HC_BLOCK, FUNC0_STAGE + func);
/* Reset PCIE errors for debug */
REG_WR(bp, 0x2114, 0xffffffff);
REG_WR(bp, 0x2120, 0xffffffff);
bnx2x_phy_probe(&bp->link_params);
return 0;
}
int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
{
int i, rc = 0;
DP(BNX2X_MSG_MCP, "function %d load_code %x\n",
BP_FUNC(bp), load_code);
bp->dmae_ready = 0;
mutex_init(&bp->dmae_mutex);
rc = bnx2x_gunzip_init(bp);
if (rc)
return rc;
switch (load_code) {
case FW_MSG_CODE_DRV_LOAD_COMMON:
rc = bnx2x_init_common(bp);
if (rc)
goto init_hw_err;
/* no break */
case FW_MSG_CODE_DRV_LOAD_PORT:
bp->dmae_ready = 1;
rc = bnx2x_init_port(bp);
if (rc)
goto init_hw_err;
/* no break */
case FW_MSG_CODE_DRV_LOAD_FUNCTION:
bp->dmae_ready = 1;
rc = bnx2x_init_func(bp);
if (rc)
goto init_hw_err;
break;
default:
BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
break;
}
if (!BP_NOMCP(bp)) {
int func = BP_FUNC(bp);
bp->fw_drv_pulse_wr_seq =
(SHMEM_RD(bp, func_mb[func].drv_pulse_mb) &
DRV_PULSE_SEQ_MASK);
DP(BNX2X_MSG_MCP, "drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
}
/* this needs to be done before gunzip end */
bnx2x_zero_def_sb(bp);
for_each_queue(bp, i)
bnx2x_zero_sb(bp, BP_L_ID(bp) + i);
#ifdef BCM_CNIC
bnx2x_zero_sb(bp, BP_L_ID(bp) + i);
#endif
init_hw_err:
bnx2x_gunzip_end(bp);
return rc;
}
void bnx2x_free_mem(struct bnx2x *bp)
{
#define BNX2X_PCI_FREE(x, y, size) \
do { \
if (x) { \
dma_free_coherent(&bp->pdev->dev, size, x, y); \
x = NULL; \
y = 0; \
} \
} while (0)
#define BNX2X_FREE(x) \
do { \
if (x) { \
vfree(x); \
x = NULL; \
} \
} while (0)
int i;
/* fastpath */
/* Common */
for_each_queue(bp, i) {
/* status blocks */
BNX2X_PCI_FREE(bnx2x_fp(bp, i, status_blk),
bnx2x_fp(bp, i, status_blk_mapping),
sizeof(struct host_status_block));
}
/* Rx */
for_each_queue(bp, i) {
/* fastpath rx rings: rx_buf rx_desc rx_comp */
BNX2X_FREE(bnx2x_fp(bp, i, rx_buf_ring));
BNX2X_PCI_FREE(bnx2x_fp(bp, i, rx_desc_ring),
bnx2x_fp(bp, i, rx_desc_mapping),
sizeof(struct eth_rx_bd) * NUM_RX_BD);
BNX2X_PCI_FREE(bnx2x_fp(bp, i, rx_comp_ring),
bnx2x_fp(bp, i, rx_comp_mapping),
sizeof(struct eth_fast_path_rx_cqe) *
NUM_RCQ_BD);
/* SGE ring */
BNX2X_FREE(bnx2x_fp(bp, i, rx_page_ring));
BNX2X_PCI_FREE(bnx2x_fp(bp, i, rx_sge_ring),
bnx2x_fp(bp, i, rx_sge_mapping),
BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
}
/* Tx */
for_each_queue(bp, i) {
/* fastpath tx rings: tx_buf tx_desc */
BNX2X_FREE(bnx2x_fp(bp, i, tx_buf_ring));
BNX2X_PCI_FREE(bnx2x_fp(bp, i, tx_desc_ring),
bnx2x_fp(bp, i, tx_desc_mapping),
sizeof(union eth_tx_bd_types) * NUM_TX_BD);
}
/* end of fastpath */
BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
sizeof(struct host_def_status_block));
BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
sizeof(struct bnx2x_slowpath));
#ifdef BCM_CNIC
BNX2X_PCI_FREE(bp->t1, bp->t1_mapping, 64*1024);
BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, 16*1024);
BNX2X_PCI_FREE(bp->timers, bp->timers_mapping, 8*1024);
BNX2X_PCI_FREE(bp->qm, bp->qm_mapping, 128*1024);
BNX2X_PCI_FREE(bp->cnic_sb, bp->cnic_sb_mapping,
sizeof(struct host_status_block));
#endif
BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
#undef BNX2X_PCI_FREE
#undef BNX2X_KFREE
}
int bnx2x_alloc_mem(struct bnx2x *bp)
{
#define BNX2X_PCI_ALLOC(x, y, size) \
do { \
x = dma_alloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL); \
if (x == NULL) \
goto alloc_mem_err; \
memset(x, 0, size); \
} while (0)
#define BNX2X_ALLOC(x, size) \
do { \
x = vmalloc(size); \
if (x == NULL) \
goto alloc_mem_err; \
memset(x, 0, size); \
} while (0)
int i;
/* fastpath */
/* Common */
for_each_queue(bp, i) {
bnx2x_fp(bp, i, bp) = bp;
/* status blocks */
BNX2X_PCI_ALLOC(bnx2x_fp(bp, i, status_blk),
&bnx2x_fp(bp, i, status_blk_mapping),
sizeof(struct host_status_block));
}
/* Rx */
for_each_queue(bp, i) {
/* fastpath rx rings: rx_buf rx_desc rx_comp */
BNX2X_ALLOC(bnx2x_fp(bp, i, rx_buf_ring),
sizeof(struct sw_rx_bd) * NUM_RX_BD);
BNX2X_PCI_ALLOC(bnx2x_fp(bp, i, rx_desc_ring),
&bnx2x_fp(bp, i, rx_desc_mapping),
sizeof(struct eth_rx_bd) * NUM_RX_BD);
BNX2X_PCI_ALLOC(bnx2x_fp(bp, i, rx_comp_ring),
&bnx2x_fp(bp, i, rx_comp_mapping),
sizeof(struct eth_fast_path_rx_cqe) *
NUM_RCQ_BD);
/* SGE ring */
BNX2X_ALLOC(bnx2x_fp(bp, i, rx_page_ring),
sizeof(struct sw_rx_page) * NUM_RX_SGE);
BNX2X_PCI_ALLOC(bnx2x_fp(bp, i, rx_sge_ring),
&bnx2x_fp(bp, i, rx_sge_mapping),
BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
}
/* Tx */
for_each_queue(bp, i) {
/* fastpath tx rings: tx_buf tx_desc */
BNX2X_ALLOC(bnx2x_fp(bp, i, tx_buf_ring),
sizeof(struct sw_tx_bd) * NUM_TX_BD);
BNX2X_PCI_ALLOC(bnx2x_fp(bp, i, tx_desc_ring),
&bnx2x_fp(bp, i, tx_desc_mapping),
sizeof(union eth_tx_bd_types) * NUM_TX_BD);
}
/* end of fastpath */
BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
sizeof(struct host_def_status_block));
BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
sizeof(struct bnx2x_slowpath));
#ifdef BCM_CNIC
BNX2X_PCI_ALLOC(bp->t1, &bp->t1_mapping, 64*1024);
/* allocate searcher T2 table
we allocate 1/4 of alloc num for T2
(which is not entered into the ILT) */
BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, 16*1024);
/* Initialize T2 (for 1024 connections) */
for (i = 0; i < 16*1024; i += 64)
*(u64 *)((char *)bp->t2 + i + 56) = bp->t2_mapping + i + 64;
/* Timer block array (8*MAX_CONN) phys uncached for now 1024 conns */
BNX2X_PCI_ALLOC(bp->timers, &bp->timers_mapping, 8*1024);
/* QM queues (128*MAX_CONN) */
BNX2X_PCI_ALLOC(bp->qm, &bp->qm_mapping, 128*1024);
BNX2X_PCI_ALLOC(bp->cnic_sb, &bp->cnic_sb_mapping,
sizeof(struct host_status_block));
#endif
/* Slow path ring */
BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
return 0;
alloc_mem_err:
bnx2x_free_mem(bp);
return -ENOMEM;
#undef BNX2X_PCI_ALLOC
#undef BNX2X_ALLOC
}
/*
* Init service functions
*/
/**
* Sets a MAC in a CAM for a few L2 Clients for E1 chip
*
* @param bp driver descriptor
* @param set set or clear an entry (1 or 0)
* @param mac pointer to a buffer containing a MAC
* @param cl_bit_vec bit vector of clients to register a MAC for
* @param cam_offset offset in a CAM to use
* @param with_bcast set broadcast MAC as well
*/
static void bnx2x_set_mac_addr_e1_gen(struct bnx2x *bp, int set, u8 *mac,
u32 cl_bit_vec, u8 cam_offset,
u8 with_bcast)
{
struct mac_configuration_cmd *config = bnx2x_sp(bp, mac_config);
int port = BP_PORT(bp);
/* CAM allocation
* unicasts 0-31:port0 32-63:port1
* multicast 64-127:port0 128-191:port1
*/
config->hdr.length = 1 + (with_bcast ? 1 : 0);
config->hdr.offset = cam_offset;
config->hdr.client_id = 0xff;
config->hdr.reserved1 = 0;
/* primary MAC */
config->config_table[0].cam_entry.msb_mac_addr =
swab16(*(u16 *)&mac[0]);
config->config_table[0].cam_entry.middle_mac_addr =
swab16(*(u16 *)&mac[2]);
config->config_table[0].cam_entry.lsb_mac_addr =
swab16(*(u16 *)&mac[4]);
config->config_table[0].cam_entry.flags = cpu_to_le16(port);
if (set)
config->config_table[0].target_table_entry.flags = 0;
else
CAM_INVALIDATE(config->config_table[0]);
config->config_table[0].target_table_entry.clients_bit_vector =
cpu_to_le32(cl_bit_vec);
config->config_table[0].target_table_entry.vlan_id = 0;
DP(NETIF_MSG_IFUP, "%s MAC (%04x:%04x:%04x)\n",
(set ? "setting" : "clearing"),
config->config_table[0].cam_entry.msb_mac_addr,
config->config_table[0].cam_entry.middle_mac_addr,
config->config_table[0].cam_entry.lsb_mac_addr);
/* broadcast */
if (with_bcast) {
config->config_table[1].cam_entry.msb_mac_addr =
cpu_to_le16(0xffff);
config->config_table[1].cam_entry.middle_mac_addr =
cpu_to_le16(0xffff);
config->config_table[1].cam_entry.lsb_mac_addr =
cpu_to_le16(0xffff);
config->config_table[1].cam_entry.flags = cpu_to_le16(port);
if (set)
config->config_table[1].target_table_entry.flags =
TSTORM_CAM_TARGET_TABLE_ENTRY_BROADCAST;
else
CAM_INVALIDATE(config->config_table[1]);
config->config_table[1].target_table_entry.clients_bit_vector =
cpu_to_le32(cl_bit_vec);
config->config_table[1].target_table_entry.vlan_id = 0;
}
bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_SET_MAC, 0,
U64_HI(bnx2x_sp_mapping(bp, mac_config)),
U64_LO(bnx2x_sp_mapping(bp, mac_config)), 0);
}
/**
* Sets a MAC in a CAM for a few L2 Clients for E1H chip
*
* @param bp driver descriptor
* @param set set or clear an entry (1 or 0)
* @param mac pointer to a buffer containing a MAC
* @param cl_bit_vec bit vector of clients to register a MAC for
* @param cam_offset offset in a CAM to use
*/
static void bnx2x_set_mac_addr_e1h_gen(struct bnx2x *bp, int set, u8 *mac,
u32 cl_bit_vec, u8 cam_offset)
{
struct mac_configuration_cmd_e1h *config =
(struct mac_configuration_cmd_e1h *)bnx2x_sp(bp, mac_config);
config->hdr.length = 1;
config->hdr.offset = cam_offset;
config->hdr.client_id = 0xff;
config->hdr.reserved1 = 0;
/* primary MAC */
config->config_table[0].msb_mac_addr =
swab16(*(u16 *)&mac[0]);
config->config_table[0].middle_mac_addr =
swab16(*(u16 *)&mac[2]);
config->config_table[0].lsb_mac_addr =
swab16(*(u16 *)&mac[4]);
config->config_table[0].clients_bit_vector =
cpu_to_le32(cl_bit_vec);
config->config_table[0].vlan_id = 0;
config->config_table[0].e1hov_id = cpu_to_le16(bp->e1hov);
if (set)
config->config_table[0].flags = BP_PORT(bp);
else
config->config_table[0].flags =
MAC_CONFIGURATION_ENTRY_E1H_ACTION_TYPE;
DP(NETIF_MSG_IFUP, "%s MAC (%04x:%04x:%04x) E1HOV %d CLID mask %d\n",
(set ? "setting" : "clearing"),
config->config_table[0].msb_mac_addr,
config->config_table[0].middle_mac_addr,
config->config_table[0].lsb_mac_addr, bp->e1hov, cl_bit_vec);
bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_SET_MAC, 0,
U64_HI(bnx2x_sp_mapping(bp, mac_config)),
U64_LO(bnx2x_sp_mapping(bp, mac_config)), 0);
}
static int bnx2x_wait_ramrod(struct bnx2x *bp, int state, int idx,
int *state_p, int poll)
{
/* can take a while if any port is running */
int cnt = 5000;
DP(NETIF_MSG_IFUP, "%s for state to become %x on IDX [%d]\n",
poll ? "polling" : "waiting", state, idx);
might_sleep();
while (cnt--) {
if (poll) {
bnx2x_rx_int(bp->fp, 10);
/* if index is different from 0
* the reply for some commands will
* be on the non default queue
*/
if (idx)
bnx2x_rx_int(&bp->fp[idx], 10);
}
mb(); /* state is changed by bnx2x_sp_event() */
if (*state_p == state) {
#ifdef BNX2X_STOP_ON_ERROR
DP(NETIF_MSG_IFUP, "exit (cnt %d)\n", 5000 - cnt);
#endif
return 0;
}
msleep(1);
if (bp->panic)
return -EIO;
}
/* timeout! */
BNX2X_ERR("timeout %s for state %x on IDX [%d]\n",
poll ? "polling" : "waiting", state, idx);
#ifdef BNX2X_STOP_ON_ERROR
bnx2x_panic();
#endif
return -EBUSY;
}
void bnx2x_set_eth_mac_addr_e1h(struct bnx2x *bp, int set)
{
bp->set_mac_pending++;
smp_wmb();
bnx2x_set_mac_addr_e1h_gen(bp, set, bp->dev->dev_addr,
(1 << bp->fp->cl_id), BP_FUNC(bp));
/* Wait for a completion */
bnx2x_wait_ramrod(bp, 0, 0, &bp->set_mac_pending, set ? 0 : 1);
}
void bnx2x_set_eth_mac_addr_e1(struct bnx2x *bp, int set)
{
bp->set_mac_pending++;
smp_wmb();
bnx2x_set_mac_addr_e1_gen(bp, set, bp->dev->dev_addr,
(1 << bp->fp->cl_id), (BP_PORT(bp) ? 32 : 0),
1);
/* Wait for a completion */
bnx2x_wait_ramrod(bp, 0, 0, &bp->set_mac_pending, set ? 0 : 1);
}
#ifdef BCM_CNIC
/**
* Set iSCSI MAC(s) at the next enties in the CAM after the ETH
* MAC(s). This function will wait until the ramdord completion
* returns.
*
* @param bp driver handle
* @param set set or clear the CAM entry
*
* @return 0 if cussess, -ENODEV if ramrod doesn't return.
*/
int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp, int set)
{
u32 cl_bit_vec = (1 << BCM_ISCSI_ETH_CL_ID);
bp->set_mac_pending++;
smp_wmb();
/* Send a SET_MAC ramrod */
if (CHIP_IS_E1(bp))
bnx2x_set_mac_addr_e1_gen(bp, set, bp->iscsi_mac,
cl_bit_vec, (BP_PORT(bp) ? 32 : 0) + 2,
1);
else
/* CAM allocation for E1H
* unicasts: by func number
* multicast: 20+FUNC*20, 20 each
*/
bnx2x_set_mac_addr_e1h_gen(bp, set, bp->iscsi_mac,
cl_bit_vec, E1H_FUNC_MAX + BP_FUNC(bp));
/* Wait for a completion when setting */
bnx2x_wait_ramrod(bp, 0, 0, &bp->set_mac_pending, set ? 0 : 1);
return 0;
}
#endif
int bnx2x_setup_leading(struct bnx2x *bp)
{
int rc;
/* reset IGU state */
bnx2x_ack_sb(bp, bp->fp[0].sb_id, CSTORM_ID, 0, IGU_INT_ENABLE, 0);
/* SETUP ramrod */
bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_PORT_SETUP, 0, 0, 0, 0);
/* Wait for completion */
rc = bnx2x_wait_ramrod(bp, BNX2X_STATE_OPEN, 0, &(bp->state), 0);
return rc;
}
int bnx2x_setup_multi(struct bnx2x *bp, int index)
{
struct bnx2x_fastpath *fp = &bp->fp[index];
/* reset IGU state */
bnx2x_ack_sb(bp, fp->sb_id, CSTORM_ID, 0, IGU_INT_ENABLE, 0);
/* SETUP ramrod */
fp->state = BNX2X_FP_STATE_OPENING;
bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_CLIENT_SETUP, index, 0,
fp->cl_id, 0);
/* Wait for completion */
return bnx2x_wait_ramrod(bp, BNX2X_FP_STATE_OPEN, index,
&(fp->state), 0);
}
void bnx2x_set_num_queues_msix(struct bnx2x *bp)
{
switch (bp->multi_mode) {
case ETH_RSS_MODE_DISABLED:
bp->num_queues = 1;
break;
case ETH_RSS_MODE_REGULAR:
if (num_queues)
bp->num_queues = min_t(u32, num_queues,
BNX2X_MAX_QUEUES(bp));
else
bp->num_queues = min_t(u32, num_online_cpus(),
BNX2X_MAX_QUEUES(bp));
break;
default:
bp->num_queues = 1;
break;
}
}
static int bnx2x_stop_multi(struct bnx2x *bp, int index)
{
struct bnx2x_fastpath *fp = &bp->fp[index];
int rc;
/* halt the connection */
fp->state = BNX2X_FP_STATE_HALTING;
bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_HALT, index, 0, fp->cl_id, 0);
/* Wait for completion */
rc = bnx2x_wait_ramrod(bp, BNX2X_FP_STATE_HALTED, index,
&(fp->state), 1);
if (rc) /* timeout */
return rc;
/* delete cfc entry */
bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_CFC_DEL, index, 0, 0, 1);
/* Wait for completion */
rc = bnx2x_wait_ramrod(bp, BNX2X_FP_STATE_CLOSED, index,
&(fp->state), 1);
return rc;
}
static int bnx2x_stop_leading(struct bnx2x *bp)
{
__le16 dsb_sp_prod_idx;
/* if the other port is handling traffic,
this can take a lot of time */
int cnt = 500;
int rc;
might_sleep();
/* Send HALT ramrod */
bp->fp[0].state = BNX2X_FP_STATE_HALTING;
bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_HALT, 0, 0, bp->fp->cl_id, 0);
/* Wait for completion */
rc = bnx2x_wait_ramrod(bp, BNX2X_FP_STATE_HALTED, 0,
&(bp->fp[0].state), 1);
if (rc) /* timeout */
return rc;
dsb_sp_prod_idx = *bp->dsb_sp_prod;
/* Send PORT_DELETE ramrod */
bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_PORT_DEL, 0, 0, 0, 1);
/* Wait for completion to arrive on default status block
we are going to reset the chip anyway
so there is not much to do if this times out
*/
while (dsb_sp_prod_idx == *bp->dsb_sp_prod) {
if (!cnt) {
DP(NETIF_MSG_IFDOWN, "timeout waiting for port del "
"dsb_sp_prod 0x%x != dsb_sp_prod_idx 0x%x\n",
*bp->dsb_sp_prod, dsb_sp_prod_idx);
#ifdef BNX2X_STOP_ON_ERROR
bnx2x_panic();
#endif
rc = -EBUSY;
break;
}
cnt--;
msleep(1);
rmb(); /* Refresh the dsb_sp_prod */
}
bp->state = BNX2X_STATE_CLOSING_WAIT4_UNLOAD;
bp->fp[0].state = BNX2X_FP_STATE_CLOSED;
return rc;
}
static void bnx2x_reset_func(struct bnx2x *bp)
{
int port = BP_PORT(bp);
int func = BP_FUNC(bp);
int base, i;
/* Configure IGU */
REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
#ifdef BCM_CNIC
/* Disable Timer scan */
REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
/*
* Wait for at least 10ms and up to 2 second for the timers scan to
* complete
*/
for (i = 0; i < 200; i++) {
msleep(10);
if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
break;
}
#endif
/* Clear ILT */
base = FUNC_ILT_BASE(func);
for (i = base; i < base + ILT_PER_FUNC; i++)
bnx2x_ilt_wr(bp, i, 0);
}
static void bnx2x_reset_port(struct bnx2x *bp)
{
int port = BP_PORT(bp);
u32 val;
REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
/* Do not rcv packets to BRB */
REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
/* Do not direct rcv packets that are not for MCP to the BRB */
REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
/* Configure AEU */
REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
msleep(100);
/* Check for BRB port occupancy */
val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
if (val)
DP(NETIF_MSG_IFDOWN,
"BRB1 is not empty %d blocks are occupied\n", val);
/* TODO: Close Doorbell port? */
}
static void bnx2x_reset_chip(struct bnx2x *bp, u32 reset_code)
{
DP(BNX2X_MSG_MCP, "function %d reset_code %x\n",
BP_FUNC(bp), reset_code);
switch (reset_code) {
case FW_MSG_CODE_DRV_UNLOAD_COMMON:
bnx2x_reset_port(bp);
bnx2x_reset_func(bp);
bnx2x_reset_common(bp);
break;
case FW_MSG_CODE_DRV_UNLOAD_PORT:
bnx2x_reset_port(bp);
bnx2x_reset_func(bp);
break;
case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
bnx2x_reset_func(bp);
break;
default:
BNX2X_ERR("Unknown reset_code (0x%x) from MCP\n", reset_code);
break;
}
}
void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
{
int port = BP_PORT(bp);
u32 reset_code = 0;
int i, cnt, rc;
/* Wait until tx fastpath tasks complete */
for_each_queue(bp, i) {
struct bnx2x_fastpath *fp = &bp->fp[i];
cnt = 1000;
while (bnx2x_has_tx_work_unload(fp)) {
bnx2x_tx_int(fp);
if (!cnt) {
BNX2X_ERR("timeout waiting for queue[%d]\n",
i);
#ifdef BNX2X_STOP_ON_ERROR
bnx2x_panic();
return -EBUSY;
#else
break;
#endif
}
cnt--;
msleep(1);
}
}
/* Give HW time to discard old tx messages */
msleep(1);
if (CHIP_IS_E1(bp)) {
struct mac_configuration_cmd *config =
bnx2x_sp(bp, mcast_config);
bnx2x_set_eth_mac_addr_e1(bp, 0);
for (i = 0; i < config->hdr.length; i++)
CAM_INVALIDATE(config->config_table[i]);
config->hdr.length = i;
if (CHIP_REV_IS_SLOW(bp))
config->hdr.offset = BNX2X_MAX_EMUL_MULTI*(1 + port);
else
config->hdr.offset = BNX2X_MAX_MULTICAST*(1 + port);
config->hdr.client_id = bp->fp->cl_id;
config->hdr.reserved1 = 0;
bp->set_mac_pending++;
smp_wmb();
bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_SET_MAC, 0,
U64_HI(bnx2x_sp_mapping(bp, mcast_config)),
U64_LO(bnx2x_sp_mapping(bp, mcast_config)), 0);
} else { /* E1H */
REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
bnx2x_set_eth_mac_addr_e1h(bp, 0);
for (i = 0; i < MC_HASH_SIZE; i++)
REG_WR(bp, MC_HASH_OFFSET(bp, i), 0);
REG_WR(bp, MISC_REG_E1HMF_MODE, 0);
}
#ifdef BCM_CNIC
/* Clear iSCSI L2 MAC */
mutex_lock(&bp->cnic_mutex);
if (bp->cnic_flags & BNX2X_CNIC_FLAG_MAC_SET) {
bnx2x_set_iscsi_eth_mac_addr(bp, 0);
bp->cnic_flags &= ~BNX2X_CNIC_FLAG_MAC_SET;
}
mutex_unlock(&bp->cnic_mutex);
#endif
if (unload_mode == UNLOAD_NORMAL)
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
else if (bp->flags & NO_WOL_FLAG)
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
else if (bp->wol) {
u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
u8 *mac_addr = bp->dev->dev_addr;
u32 val;
/* The mac address is written to entries 1-4 to
preserve entry 0 which is used by the PMF */
u8 entry = (BP_E1HVN(bp) + 1)*8;
val = (mac_addr[0] << 8) | mac_addr[1];
EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
(mac_addr[4] << 8) | mac_addr[5];
EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
} else
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
/* Close multi and leading connections
Completions for ramrods are collected in a synchronous way */
for_each_nondefault_queue(bp, i)
if (bnx2x_stop_multi(bp, i))
goto unload_error;
rc = bnx2x_stop_leading(bp);
if (rc) {
BNX2X_ERR("Stop leading failed!\n");
#ifdef BNX2X_STOP_ON_ERROR
return -EBUSY;
#else
goto unload_error;
#endif
}
unload_error:
if (!BP_NOMCP(bp))
reset_code = bnx2x_fw_command(bp, reset_code, 0);
else {
DP(NETIF_MSG_IFDOWN, "NO MCP - load counts %d, %d, %d\n",
load_count[0], load_count[1], load_count[2]);
load_count[0]--;
load_count[1 + port]--;
DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts %d, %d, %d\n",
load_count[0], load_count[1], load_count[2]);
if (load_count[0] == 0)
reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
else if (load_count[1 + port] == 0)
reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
else
reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
}
if ((reset_code == FW_MSG_CODE_DRV_UNLOAD_COMMON) ||
(reset_code == FW_MSG_CODE_DRV_UNLOAD_PORT))
bnx2x__link_reset(bp);
/* Reset the chip */
bnx2x_reset_chip(bp, reset_code);
/* Report UNLOAD_DONE to MCP */
if (!BP_NOMCP(bp))
bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
}
void bnx2x_disable_close_the_gate(struct bnx2x *bp)
{
u32 val;
DP(NETIF_MSG_HW, "Disabling \"close the gates\"\n");
if (CHIP_IS_E1(bp)) {
int port = BP_PORT(bp);
u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
MISC_REG_AEU_MASK_ATTN_FUNC_0;
val = REG_RD(bp, addr);
val &= ~(0x300);
REG_WR(bp, addr, val);
} else if (CHIP_IS_E1H(bp)) {
val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
}
}
/* Close gates #2, #3 and #4: */
static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
{
u32 val, addr;
/* Gates #2 and #4a are closed/opened for "not E1" only */
if (!CHIP_IS_E1(bp)) {
/* #4 */
val = REG_RD(bp, PXP_REG_HST_DISCARD_DOORBELLS);
REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS,
close ? (val | 0x1) : (val & (~(u32)1)));
/* #2 */
val = REG_RD(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES);
REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES,
close ? (val | 0x1) : (val & (~(u32)1)));
}
/* #3 */
addr = BP_PORT(bp) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
val = REG_RD(bp, addr);
REG_WR(bp, addr, (!close) ? (val | 0x1) : (val & (~(u32)1)));
DP(NETIF_MSG_HW, "%s gates #2, #3 and #4\n",
close ? "closing" : "opening");
mmiowb();
}
#define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
{
/* Do some magic... */
u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
*magic_val = val & SHARED_MF_CLP_MAGIC;
MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
}
/* Restore the value of the `magic' bit.
*
* @param pdev Device handle.
* @param magic_val Old value of the `magic' bit.
*/
static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
{
/* Restore the `magic' bit value... */
/* u32 val = SHMEM_RD(bp, mf_cfg.shared_mf_config.clp_mb);
SHMEM_WR(bp, mf_cfg.shared_mf_config.clp_mb,
(val & (~SHARED_MF_CLP_MAGIC)) | magic_val); */
u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
MF_CFG_WR(bp, shared_mf_config.clp_mb,
(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
}
/* Prepares for MCP reset: takes care of CLP configurations.
*
* @param bp
* @param magic_val Old value of 'magic' bit.
*/
static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
{
u32 shmem;
u32 validity_offset;
DP(NETIF_MSG_HW, "Starting\n");
/* Set `magic' bit in order to save MF config */
if (!CHIP_IS_E1(bp))
bnx2x_clp_reset_prep(bp, magic_val);
/* Get shmem offset */
shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
validity_offset = offsetof(struct shmem_region, validity_map[0]);
/* Clear validity map flags */
if (shmem > 0)
REG_WR(bp, shmem + validity_offset, 0);
}
#define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
#define MCP_ONE_TIMEOUT 100 /* 100 ms */
/* Waits for MCP_ONE_TIMEOUT or MCP_ONE_TIMEOUT*10,
* depending on the HW type.
*
* @param bp
*/
static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
{
/* special handling for emulation and FPGA,
wait 10 times longer */
if (CHIP_REV_IS_SLOW(bp))
msleep(MCP_ONE_TIMEOUT*10);
else
msleep(MCP_ONE_TIMEOUT);
}
static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
{
u32 shmem, cnt, validity_offset, val;
int rc = 0;
msleep(100);
/* Get shmem offset */
shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
if (shmem == 0) {
BNX2X_ERR("Shmem 0 return failure\n");
rc = -ENOTTY;
goto exit_lbl;
}
validity_offset = offsetof(struct shmem_region, validity_map[0]);
/* Wait for MCP to come up */
for (cnt = 0; cnt < (MCP_TIMEOUT / MCP_ONE_TIMEOUT); cnt++) {
/* TBD: its best to check validity map of last port.
* currently checks on port 0.
*/
val = REG_RD(bp, shmem + validity_offset);
DP(NETIF_MSG_HW, "shmem 0x%x validity map(0x%x)=0x%x\n", shmem,
shmem + validity_offset, val);
/* check that shared memory is valid. */
if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
== (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
break;
bnx2x_mcp_wait_one(bp);
}
DP(NETIF_MSG_HW, "Cnt=%d Shmem validity map 0x%x\n", cnt, val);
/* Check that shared memory is valid. This indicates that MCP is up. */
if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
(SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
BNX2X_ERR("Shmem signature not present. MCP is not up !!\n");
rc = -ENOTTY;
goto exit_lbl;
}
exit_lbl:
/* Restore the `magic' bit value */
if (!CHIP_IS_E1(bp))
bnx2x_clp_reset_done(bp, magic_val);
return rc;
}
static void bnx2x_pxp_prep(struct bnx2x *bp)
{
if (!CHIP_IS_E1(bp)) {
REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
REG_WR(bp, PXP2_REG_RQ_CFG_DONE, 0);
mmiowb();
}
}
/*
* Reset the whole chip except for:
* - PCIE core
* - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
* one reset bit)
* - IGU
* - MISC (including AEU)
* - GRC
* - RBCN, RBCP
*/
static void bnx2x_process_kill_chip_reset(struct bnx2x *bp)
{
u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
not_reset_mask1 =
MISC_REGISTERS_RESET_REG_1_RST_HC |
MISC_REGISTERS_RESET_REG_1_RST_PXPV |
MISC_REGISTERS_RESET_REG_1_RST_PXP;
not_reset_mask2 =
MISC_REGISTERS_RESET_REG_2_RST_MDIO |
MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
MISC_REGISTERS_RESET_REG_2_RST_RBCN |
MISC_REGISTERS_RESET_REG_2_RST_GRC |
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B;
reset_mask1 = 0xffffffff;
if (CHIP_IS_E1(bp))
reset_mask2 = 0xffff;
else
reset_mask2 = 0x1ffff;
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
reset_mask1 & (~not_reset_mask1));
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
reset_mask2 & (~not_reset_mask2));
barrier();
mmiowb();
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, reset_mask2);
mmiowb();
}
static int bnx2x_process_kill(struct bnx2x *bp)
{
int cnt = 1000;
u32 val = 0;
u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
/* Empty the Tetris buffer, wait for 1s */
do {
sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
((port_is_idle_0 & 0x1) == 0x1) &&
((port_is_idle_1 & 0x1) == 0x1) &&
(pgl_exp_rom2 == 0xffffffff))
break;
msleep(1);
} while (cnt-- > 0);
if (cnt <= 0) {
DP(NETIF_MSG_HW, "Tetris buffer didn't get empty or there"
" are still"
" outstanding read requests after 1s!\n");
DP(NETIF_MSG_HW, "sr_cnt=0x%08x, blk_cnt=0x%08x,"
" port_is_idle_0=0x%08x,"
" port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
pgl_exp_rom2);
return -EAGAIN;
}
barrier();
/* Close gates #2, #3 and #4 */
bnx2x_set_234_gates(bp, true);
/* TBD: Indicate that "process kill" is in progress to MCP */
/* Clear "unprepared" bit */
REG_WR(bp, MISC_REG_UNPREPARED, 0);
barrier();
/* Make sure all is written to the chip before the reset */
mmiowb();
/* Wait for 1ms to empty GLUE and PCI-E core queues,
* PSWHST, GRC and PSWRD Tetris buffer.
*/
msleep(1);
/* Prepare to chip reset: */
/* MCP */
bnx2x_reset_mcp_prep(bp, &val);
/* PXP */
bnx2x_pxp_prep(bp);
barrier();
/* reset the chip */
bnx2x_process_kill_chip_reset(bp);
barrier();
/* Recover after reset: */
/* MCP */
if (bnx2x_reset_mcp_comp(bp, val))
return -EAGAIN;
/* PXP */
bnx2x_pxp_prep(bp);
/* Open the gates #2, #3 and #4 */
bnx2x_set_234_gates(bp, false);
/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
* reset state, re-enable attentions. */
return 0;
}
static int bnx2x_leader_reset(struct bnx2x *bp)
{
int rc = 0;
/* Try to recover after the failure */
if (bnx2x_process_kill(bp)) {
printk(KERN_ERR "%s: Something bad had happen! Aii!\n",
bp->dev->name);
rc = -EAGAIN;
goto exit_leader_reset;
}
/* Clear "reset is in progress" bit and update the driver state */
bnx2x_set_reset_done(bp);
bp->recovery_state = BNX2X_RECOVERY_DONE;
exit_leader_reset:
bp->is_leader = 0;
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESERVED_08);
smp_wmb();
return rc;
}
/* Assumption: runs under rtnl lock. This together with the fact
* that it's called only from bnx2x_reset_task() ensure that it
* will never be called when netif_running(bp->dev) is false.
*/
static void bnx2x_parity_recover(struct bnx2x *bp)
{
DP(NETIF_MSG_HW, "Handling parity\n");
while (1) {
switch (bp->recovery_state) {
case BNX2X_RECOVERY_INIT:
DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
/* Try to get a LEADER_LOCK HW lock */
if (bnx2x_trylock_hw_lock(bp,
HW_LOCK_RESOURCE_RESERVED_08))
bp->is_leader = 1;
/* Stop the driver */
/* If interface has been removed - break */
if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
return;
bp->recovery_state = BNX2X_RECOVERY_WAIT;
/* Ensure "is_leader" and "recovery_state"
* update values are seen on other CPUs
*/
smp_wmb();
break;
case BNX2X_RECOVERY_WAIT:
DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
if (bp->is_leader) {
u32 load_counter = bnx2x_get_load_cnt(bp);
if (load_counter) {
/* Wait until all other functions get
* down.
*/
schedule_delayed_work(&bp->reset_task,
HZ/10);
return;
} else {
/* If all other functions got down -
* try to bring the chip back to
* normal. In any case it's an exit
* point for a leader.
*/
if (bnx2x_leader_reset(bp) ||
bnx2x_nic_load(bp, LOAD_NORMAL)) {
printk(KERN_ERR"%s: Recovery "
"has failed. Power cycle is "
"needed.\n", bp->dev->name);
/* Disconnect this device */
netif_device_detach(bp->dev);
/* Block ifup for all function
* of this ASIC until
* "process kill" or power
* cycle.
*/
bnx2x_set_reset_in_progress(bp);
/* Shut down the power */
bnx2x_set_power_state(bp,
PCI_D3hot);
return;
}
return;
}
} else { /* non-leader */
if (!bnx2x_reset_is_done(bp)) {
/* Try to get a LEADER_LOCK HW lock as
* long as a former leader may have
* been unloaded by the user or
* released a leadership by another
* reason.
*/
if (bnx2x_trylock_hw_lock(bp,
HW_LOCK_RESOURCE_RESERVED_08)) {
/* I'm a leader now! Restart a
* switch case.
*/
bp->is_leader = 1;
break;
}
schedule_delayed_work(&bp->reset_task,
HZ/10);
return;
} else { /* A leader has completed
* the "process kill". It's an exit
* point for a non-leader.
*/
bnx2x_nic_load(bp, LOAD_NORMAL);
bp->recovery_state =
BNX2X_RECOVERY_DONE;
smp_wmb();
return;
}
}
default:
return;
}
}
}
/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
* scheduled on a general queue in order to prevent a dead lock.
*/
static void bnx2x_reset_task(struct work_struct *work)
{
struct bnx2x *bp = container_of(work, struct bnx2x, reset_task.work);
#ifdef BNX2X_STOP_ON_ERROR
BNX2X_ERR("reset task called but STOP_ON_ERROR defined"
" so reset not done to allow debug dump,\n"
KERN_ERR " you will need to reboot when done\n");
return;
#endif
rtnl_lock();
if (!netif_running(bp->dev))
goto reset_task_exit;
if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE))
bnx2x_parity_recover(bp);
else {
bnx2x_nic_unload(bp, UNLOAD_NORMAL);
bnx2x_nic_load(bp, LOAD_NORMAL);
}
reset_task_exit:
rtnl_unlock();
}
/* end of nic load/unload */
/*
* Init service functions
*/
static inline u32 bnx2x_get_pretend_reg(struct bnx2x *bp, int func)
{
switch (func) {
case 0: return PXP2_REG_PGL_PRETEND_FUNC_F0;
case 1: return PXP2_REG_PGL_PRETEND_FUNC_F1;
case 2: return PXP2_REG_PGL_PRETEND_FUNC_F2;
case 3: return PXP2_REG_PGL_PRETEND_FUNC_F3;
case 4: return PXP2_REG_PGL_PRETEND_FUNC_F4;
case 5: return PXP2_REG_PGL_PRETEND_FUNC_F5;
case 6: return PXP2_REG_PGL_PRETEND_FUNC_F6;
case 7: return PXP2_REG_PGL_PRETEND_FUNC_F7;
default:
BNX2X_ERR("Unsupported function index: %d\n", func);
return (u32)(-1);
}
}
static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp, int orig_func)
{
u32 reg = bnx2x_get_pretend_reg(bp, orig_func), new_val;
/* Flush all outstanding writes */
mmiowb();
/* Pretend to be function 0 */
REG_WR(bp, reg, 0);
/* Flush the GRC transaction (in the chip) */
new_val = REG_RD(bp, reg);
if (new_val != 0) {
BNX2X_ERR("Hmmm... Pretend register wasn't updated: (0,%d)!\n",
new_val);
BUG();
}
/* From now we are in the "like-E1" mode */
bnx2x_int_disable(bp);
/* Flush all outstanding writes */
mmiowb();
/* Restore the original funtion settings */
REG_WR(bp, reg, orig_func);
new_val = REG_RD(bp, reg);
if (new_val != orig_func) {
BNX2X_ERR("Hmmm... Pretend register wasn't updated: (%d,%d)!\n",
orig_func, new_val);
BUG();
}
}
static inline void bnx2x_undi_int_disable(struct bnx2x *bp, int func)
{
if (CHIP_IS_E1H(bp))
bnx2x_undi_int_disable_e1h(bp, func);
else
bnx2x_int_disable(bp);
}
static void __devinit bnx2x_undi_unload(struct bnx2x *bp)
{
u32 val;
/* Check if there is any driver already loaded */
val = REG_RD(bp, MISC_REG_UNPREPARED);
if (val == 0x1) {
/* Check if it is the UNDI driver
* UNDI driver initializes CID offset for normal bell to 0x7
*/
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_UNDI);
val = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
if (val == 0x7) {
u32 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
/* save our func */
int func = BP_FUNC(bp);
u32 swap_en;
u32 swap_val;
/* clear the UNDI indication */
REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
BNX2X_DEV_INFO("UNDI is active! reset device\n");
/* try unload UNDI on port 0 */
bp->func = 0;
bp->fw_seq =
(SHMEM_RD(bp, func_mb[bp->func].drv_mb_header) &
DRV_MSG_SEQ_NUMBER_MASK);
reset_code = bnx2x_fw_command(bp, reset_code, 0);
/* if UNDI is loaded on the other port */
if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
/* send "DONE" for previous unload */
bnx2x_fw_command(bp,
DRV_MSG_CODE_UNLOAD_DONE, 0);
/* unload UNDI on port 1 */
bp->func = 1;
bp->fw_seq =
(SHMEM_RD(bp, func_mb[bp->func].drv_mb_header) &
DRV_MSG_SEQ_NUMBER_MASK);
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
bnx2x_fw_command(bp, reset_code, 0);
}
/* now it's safe to release the lock */
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_UNDI);
bnx2x_undi_int_disable(bp, func);
/* close input traffic and wait for it */
/* Do not rcv packets to BRB */
REG_WR(bp,
(BP_PORT(bp) ? NIG_REG_LLH1_BRB1_DRV_MASK :
NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
/* Do not direct rcv packets that are not for MCP to
* the BRB */
REG_WR(bp,
(BP_PORT(bp) ? NIG_REG_LLH1_BRB1_NOT_MCP :
NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
/* clear AEU */
REG_WR(bp,
(BP_PORT(bp) ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
msleep(10);
/* save NIG port swap info */
swap_val = REG_RD(bp, NIG_REG_PORT_SWAP);
swap_en = REG_RD(bp, NIG_REG_STRAP_OVERRIDE);
/* reset device */
REG_WR(bp,
GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
0xd3ffffff);
REG_WR(bp,
GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
0x1403);
/* take the NIG out of reset and restore swap values */
REG_WR(bp,
GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
MISC_REGISTERS_RESET_REG_1_RST_NIG);
REG_WR(bp, NIG_REG_PORT_SWAP, swap_val);
REG_WR(bp, NIG_REG_STRAP_OVERRIDE, swap_en);
/* send unload done to the MCP */
bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
/* restore our func and fw_seq */
bp->func = func;
bp->fw_seq =
(SHMEM_RD(bp, func_mb[bp->func].drv_mb_header) &
DRV_MSG_SEQ_NUMBER_MASK);
} else
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_UNDI);
}
}
static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
{
u32 val, val2, val3, val4, id;
u16 pmc;
/* Get the chip revision id and number. */
/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
val = REG_RD(bp, MISC_REG_CHIP_NUM);
id = ((val & 0xffff) << 16);
val = REG_RD(bp, MISC_REG_CHIP_REV);
id |= ((val & 0xf) << 12);
val = REG_RD(bp, MISC_REG_CHIP_METAL);
id |= ((val & 0xff) << 4);
val = REG_RD(bp, MISC_REG_BOND_ID);
id |= (val & 0xf);
bp->common.chip_id = id;
bp->link_params.chip_id = bp->common.chip_id;
BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
val = (REG_RD(bp, 0x2874) & 0x55);
if ((bp->common.chip_id & 0x1) ||
(CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
bp->flags |= ONE_PORT_FLAG;
BNX2X_DEV_INFO("single port device\n");
}
val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
bp->common.flash_size = (NVRAM_1MB_SIZE <<
(val & MCPR_NVM_CFG4_FLASH_SIZE));
BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
bp->common.flash_size, bp->common.flash_size);
bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
bp->common.shmem2_base = REG_RD(bp, MISC_REG_GENERIC_CR_0);
bp->link_params.shmem_base = bp->common.shmem_base;
bp->link_params.shmem2_base = bp->common.shmem2_base;
BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
bp->common.shmem_base, bp->common.shmem2_base);
if (!bp->common.shmem_base ||
(bp->common.shmem_base < 0xA0000) ||
(bp->common.shmem_base >= 0xC0000)) {
BNX2X_DEV_INFO("MCP not active\n");
bp->flags |= NO_MCP_FLAG;
return;
}
val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
BNX2X_ERROR("BAD MCP validity signature\n");
bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
bp->link_params.hw_led_mode = ((bp->common.hw_config &
SHARED_HW_CFG_LED_MODE_MASK) >>
SHARED_HW_CFG_LED_MODE_SHIFT);
bp->link_params.feature_config_flags = 0;
val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
bp->link_params.feature_config_flags |=
FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
else
bp->link_params.feature_config_flags &=
~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
bp->common.bc_ver = val;
BNX2X_DEV_INFO("bc_ver %X\n", val);
if (val < BNX2X_BC_VER) {
/* for now only warn
* later we might need to enforce this */
BNX2X_ERROR("This driver needs bc_ver %X but found %X, "
"please upgrade BC\n", BNX2X_BC_VER, val);
}
bp->link_params.feature_config_flags |=
(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
bp->link_params.feature_config_flags |=
(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
if (BP_E1HVN(bp) == 0) {
pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
} else {
/* no WOL capability for E1HVN != 0 */
bp->flags |= NO_WOL_FLAG;
}
BNX2X_DEV_INFO("%sWoL capable\n",
(bp->flags & NO_WOL_FLAG) ? "not " : "");
val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
val, val2, val3, val4);
}
static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
u32 switch_cfg)
{
int cfg_size = 0, idx, port = BP_PORT(bp);
/* Aggregation of supported attributes of all external phys */
bp->port.supported[0] = 0;
bp->port.supported[1] = 0;
switch (bp->link_params.num_phys) {
case 1:
bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
cfg_size = 1;
break;
case 2:
bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
cfg_size = 1;
break;
case 3:
if (bp->link_params.multi_phy_config &
PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
bp->port.supported[1] =
bp->link_params.phy[EXT_PHY1].supported;
bp->port.supported[0] =
bp->link_params.phy[EXT_PHY2].supported;
} else {
bp->port.supported[0] =
bp->link_params.phy[EXT_PHY1].supported;
bp->port.supported[1] =
bp->link_params.phy[EXT_PHY2].supported;
}
cfg_size = 2;
break;
}
if (!(bp->port.supported[0] || bp->port.supported[1])) {
BNX2X_ERR("NVRAM config error. BAD phy config."
"PHY1 config 0x%x, PHY2 config 0x%x\n",
SHMEM_RD(bp,
dev_info.port_hw_config[port].external_phy_config),
SHMEM_RD(bp,
dev_info.port_hw_config[port].external_phy_config2));
return;
}
switch (switch_cfg) {
case SWITCH_CFG_1G:
bp->port.phy_addr = REG_RD(bp, NIG_REG_SERDES0_CTRL_PHY_ADDR +
port*0x10);
BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
break;
case SWITCH_CFG_10G:
bp->port.phy_addr = REG_RD(bp, NIG_REG_XGXS0_CTRL_PHY_ADDR +
port*0x18);
BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
break;
default:
BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
bp->port.link_config[0]);
return;
}
/* mask what we support according to speed_cap_mask per configuration */
for (idx = 0; idx < cfg_size; idx++) {
if (!(bp->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
if (!(bp->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
if (!(bp->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
if (!(bp->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
if (!(bp->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
SUPPORTED_1000baseT_Full);
if (!(bp->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
if (!(bp->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
}
BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
bp->port.supported[1]);
}
static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
{
u32 link_config, idx, cfg_size = 0;
bp->port.advertising[0] = 0;
bp->port.advertising[1] = 0;
switch (bp->link_params.num_phys) {
case 1:
case 2:
cfg_size = 1;
break;
case 3:
cfg_size = 2;
break;
}
for (idx = 0; idx < cfg_size; idx++) {
bp->link_params.req_duplex[idx] = DUPLEX_FULL;
link_config = bp->port.link_config[idx];
switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
case PORT_FEATURE_LINK_SPEED_AUTO:
if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
bp->link_params.req_line_speed[idx] =
SPEED_AUTO_NEG;
bp->port.advertising[idx] |=
bp->port.supported[idx];
} else {
/* force 10G, no AN */
bp->link_params.req_line_speed[idx] =
SPEED_10000;
bp->port.advertising[idx] |=
(ADVERTISED_10000baseT_Full |
ADVERTISED_FIBRE);
continue;
}
break;
case PORT_FEATURE_LINK_SPEED_10M_FULL:
if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
bp->link_params.req_line_speed[idx] =
SPEED_10;
bp->port.advertising[idx] |=
(ADVERTISED_10baseT_Full |
ADVERTISED_TP);
} else {
BNX2X_ERROR("NVRAM config error. "
"Invalid link_config 0x%x"
" speed_cap_mask 0x%x\n",
link_config,
bp->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_10M_HALF:
if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
bp->link_params.req_line_speed[idx] =
SPEED_10;
bp->link_params.req_duplex[idx] =
DUPLEX_HALF;
bp->port.advertising[idx] |=
(ADVERTISED_10baseT_Half |
ADVERTISED_TP);
} else {
BNX2X_ERROR("NVRAM config error. "
"Invalid link_config 0x%x"
" speed_cap_mask 0x%x\n",
link_config,
bp->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_100M_FULL:
if (bp->port.supported[idx] & SUPPORTED_100baseT_Full) {
bp->link_params.req_line_speed[idx] =
SPEED_100;
bp->port.advertising[idx] |=
(ADVERTISED_100baseT_Full |
ADVERTISED_TP);
} else {
BNX2X_ERROR("NVRAM config error. "
"Invalid link_config 0x%x"
" speed_cap_mask 0x%x\n",
link_config,
bp->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_100M_HALF:
if (bp->port.supported[idx] & SUPPORTED_100baseT_Half) {
bp->link_params.req_line_speed[idx] = SPEED_100;
bp->link_params.req_duplex[idx] = DUPLEX_HALF;
bp->port.advertising[idx] |=
(ADVERTISED_100baseT_Half |
ADVERTISED_TP);
} else {
BNX2X_ERROR("NVRAM config error. "
"Invalid link_config 0x%x"
" speed_cap_mask 0x%x\n",
link_config,
bp->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_1G:
if (bp->port.supported[idx] &
SUPPORTED_1000baseT_Full) {
bp->link_params.req_line_speed[idx] =
SPEED_1000;
bp->port.advertising[idx] |=
(ADVERTISED_1000baseT_Full |
ADVERTISED_TP);
} else {
BNX2X_ERROR("NVRAM config error. "
"Invalid link_config 0x%x"
" speed_cap_mask 0x%x\n",
link_config,
bp->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_2_5G:
if (bp->port.supported[idx] &
SUPPORTED_2500baseX_Full) {
bp->link_params.req_line_speed[idx] =
SPEED_2500;
bp->port.advertising[idx] |=
(ADVERTISED_2500baseX_Full |
ADVERTISED_TP);
} else {
BNX2X_ERROR("NVRAM config error. "
"Invalid link_config 0x%x"
" speed_cap_mask 0x%x\n",
link_config,
bp->link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_10G_CX4:
case PORT_FEATURE_LINK_SPEED_10G_KX4:
case PORT_FEATURE_LINK_SPEED_10G_KR:
if (bp->port.supported[idx] &
SUPPORTED_10000baseT_Full) {
bp->link_params.req_line_speed[idx] =
SPEED_10000;
bp->port.advertising[idx] |=
(ADVERTISED_10000baseT_Full |
ADVERTISED_FIBRE);
} else {
BNX2X_ERROR("NVRAM config error. "
"Invalid link_config 0x%x"
" speed_cap_mask 0x%x\n",
link_config,
bp->link_params.speed_cap_mask[idx]);
return;
}
break;
default:
BNX2X_ERROR("NVRAM config error. "
"BAD link speed link_config 0x%x\n",
link_config);
bp->link_params.req_line_speed[idx] = SPEED_AUTO_NEG;
bp->port.advertising[idx] = bp->port.supported[idx];
break;
}
bp->link_params.req_flow_ctrl[idx] = (link_config &
PORT_FEATURE_FLOW_CONTROL_MASK);
if ((bp->link_params.req_flow_ctrl[idx] ==
BNX2X_FLOW_CTRL_AUTO) &&
!(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
bp->link_params.req_flow_ctrl[idx] =
BNX2X_FLOW_CTRL_NONE;
}
BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl"
" 0x%x advertising 0x%x\n",
bp->link_params.req_line_speed[idx],
bp->link_params.req_duplex[idx],
bp->link_params.req_flow_ctrl[idx],
bp->port.advertising[idx]);
}
}
static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
{
mac_hi = cpu_to_be16(mac_hi);
mac_lo = cpu_to_be32(mac_lo);
memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
}
static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
{
int port = BP_PORT(bp);
u32 val, val2;
u32 config;
u32 ext_phy_type, ext_phy_config;;
bp->link_params.bp = bp;
bp->link_params.port = port;
bp->link_params.lane_config =
SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
bp->link_params.speed_cap_mask[0] =
SHMEM_RD(bp,
dev_info.port_hw_config[port].speed_capability_mask);
bp->link_params.speed_cap_mask[1] =
SHMEM_RD(bp,
dev_info.port_hw_config[port].speed_capability_mask2);
bp->port.link_config[0] =
SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
bp->port.link_config[1] =
SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
bp->link_params.multi_phy_config =
SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
/* If the device is capable of WoL, set the default state according
* to the HW
*/
config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
(config & PORT_FEATURE_WOL_ENABLED));
BNX2X_DEV_INFO("lane_config 0x%08x"
"speed_cap_mask0 0x%08x link_config0 0x%08x\n",
bp->link_params.lane_config,
bp->link_params.speed_cap_mask[0],
bp->port.link_config[0]);
bp->link_params.switch_cfg = (bp->port.link_config[0] &
PORT_FEATURE_CONNECTED_SWITCH_MASK);
bnx2x_phy_probe(&bp->link_params);
bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
bnx2x_link_settings_requested(bp);
/*
* If connected directly, work with the internal PHY, otherwise, work
* with the external PHY
*/
ext_phy_config =
SHMEM_RD(bp,
dev_info.port_hw_config[port].external_phy_config);
ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
bp->mdio.prtad = bp->port.phy_addr;
else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
(ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
bp->mdio.prtad =
XGXS_EXT_PHY_ADDR(ext_phy_config);
val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
#ifdef BCM_CNIC
val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].iscsi_mac_upper);
val = SHMEM_RD(bp, dev_info.port_hw_config[port].iscsi_mac_lower);
bnx2x_set_mac_buf(bp->iscsi_mac, val, val2);
#endif
}
static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
{
int func = BP_FUNC(bp);
u32 val, val2;
int rc = 0;
bnx2x_get_common_hwinfo(bp);
bp->e1hov = 0;
bp->e1hmf = 0;
if (CHIP_IS_E1H(bp) && !BP_NOMCP(bp)) {
bp->mf_config =
SHMEM_RD(bp, mf_cfg.func_mf_config[func].config);
val = (SHMEM_RD(bp, mf_cfg.func_mf_config[FUNC_0].e1hov_tag) &
FUNC_MF_CFG_E1HOV_TAG_MASK);
if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
bp->e1hmf = 1;
BNX2X_DEV_INFO("%s function mode\n",
IS_E1HMF(bp) ? "multi" : "single");
if (IS_E1HMF(bp)) {
val = (SHMEM_RD(bp, mf_cfg.func_mf_config[func].
e1hov_tag) &
FUNC_MF_CFG_E1HOV_TAG_MASK);
if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
bp->e1hov = val;
BNX2X_DEV_INFO("E1HOV for func %d is %d "
"(0x%04x)\n",
func, bp->e1hov, bp->e1hov);
} else {
BNX2X_ERROR("No valid E1HOV for func %d,"
" aborting\n", func);
rc = -EPERM;
}
} else {
if (BP_E1HVN(bp)) {
BNX2X_ERROR("VN %d in single function mode,"
" aborting\n", BP_E1HVN(bp));
rc = -EPERM;
}
}
}
if (!BP_NOMCP(bp)) {
bnx2x_get_port_hwinfo(bp);
bp->fw_seq = (SHMEM_RD(bp, func_mb[func].drv_mb_header) &
DRV_MSG_SEQ_NUMBER_MASK);
BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
}
if (IS_E1HMF(bp)) {
val2 = SHMEM_RD(bp, mf_cfg.func_mf_config[func].mac_upper);
val = SHMEM_RD(bp, mf_cfg.func_mf_config[func].mac_lower);
if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
(val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) {
bp->dev->dev_addr[0] = (u8)(val2 >> 8 & 0xff);
bp->dev->dev_addr[1] = (u8)(val2 & 0xff);
bp->dev->dev_addr[2] = (u8)(val >> 24 & 0xff);
bp->dev->dev_addr[3] = (u8)(val >> 16 & 0xff);
bp->dev->dev_addr[4] = (u8)(val >> 8 & 0xff);
bp->dev->dev_addr[5] = (u8)(val & 0xff);
memcpy(bp->link_params.mac_addr, bp->dev->dev_addr,
ETH_ALEN);
memcpy(bp->dev->perm_addr, bp->dev->dev_addr,
ETH_ALEN);
}
return rc;
}
if (BP_NOMCP(bp)) {
/* only supposed to happen on emulation/FPGA */
BNX2X_ERROR("warning: random MAC workaround active\n");
random_ether_addr(bp->dev->dev_addr);
memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
}
return rc;
}
static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
{
int cnt, i, block_end, rodi;
char vpd_data[BNX2X_VPD_LEN+1];
char str_id_reg[VENDOR_ID_LEN+1];
char str_id_cap[VENDOR_ID_LEN+1];
u8 len;
cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_data);
memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
if (cnt < BNX2X_VPD_LEN)
goto out_not_found;
i = pci_vpd_find_tag(vpd_data, 0, BNX2X_VPD_LEN,
PCI_VPD_LRDT_RO_DATA);
if (i < 0)
goto out_not_found;
block_end = i + PCI_VPD_LRDT_TAG_SIZE +
pci_vpd_lrdt_size(&vpd_data[i]);
i += PCI_VPD_LRDT_TAG_SIZE;
if (block_end > BNX2X_VPD_LEN)
goto out_not_found;
rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
PCI_VPD_RO_KEYWORD_MFR_ID);
if (rodi < 0)
goto out_not_found;
len = pci_vpd_info_field_size(&vpd_data[rodi]);
if (len != VENDOR_ID_LEN)
goto out_not_found;
rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
/* vendor specific info */
snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
!strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
PCI_VPD_RO_KEYWORD_VENDOR0);
if (rodi >= 0) {
len = pci_vpd_info_field_size(&vpd_data[rodi]);
rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
memcpy(bp->fw_ver, &vpd_data[rodi], len);
bp->fw_ver[len] = ' ';
}
}
return;
}
out_not_found:
return;
}
static int __devinit bnx2x_init_bp(struct bnx2x *bp)
{
int func = BP_FUNC(bp);
int timer_interval;
int rc;
/* Disable interrupt handling until HW is initialized */
atomic_set(&bp->intr_sem, 1);
smp_wmb(); /* Ensure that bp->intr_sem update is SMP-safe */
mutex_init(&bp->port.phy_mutex);
mutex_init(&bp->fw_mb_mutex);
spin_lock_init(&bp->stats_lock);
#ifdef BCM_CNIC
mutex_init(&bp->cnic_mutex);
#endif
INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
INIT_DELAYED_WORK(&bp->reset_task, bnx2x_reset_task);
rc = bnx2x_get_hwinfo(bp);
bnx2x_read_fwinfo(bp);
/* need to reset chip if undi was active */
if (!BP_NOMCP(bp))
bnx2x_undi_unload(bp);
if (CHIP_REV_IS_FPGA(bp))
dev_err(&bp->pdev->dev, "FPGA detected\n");
if (BP_NOMCP(bp) && (func == 0))
dev_err(&bp->pdev->dev, "MCP disabled, "
"must load devices in order!\n");
/* Set multi queue mode */
if ((multi_mode != ETH_RSS_MODE_DISABLED) &&
((int_mode == INT_MODE_INTx) || (int_mode == INT_MODE_MSI))) {
dev_err(&bp->pdev->dev, "Multi disabled since int_mode "
"requested is not MSI-X\n");
multi_mode = ETH_RSS_MODE_DISABLED;
}
bp->multi_mode = multi_mode;
bp->int_mode = int_mode;
bp->dev->features |= NETIF_F_GRO;
/* Set TPA flags */
if (disable_tpa) {
bp->flags &= ~TPA_ENABLE_FLAG;
bp->dev->features &= ~NETIF_F_LRO;
} else {
bp->flags |= TPA_ENABLE_FLAG;
bp->dev->features |= NETIF_F_LRO;
}
bp->disable_tpa = disable_tpa;
if (CHIP_IS_E1(bp))
bp->dropless_fc = 0;
else
bp->dropless_fc = dropless_fc;
bp->mrrs = mrrs;
bp->tx_ring_size = MAX_TX_AVAIL;
bp->rx_csum = 1;
/* make sure that the numbers are in the right granularity */
bp->tx_ticks = (50 / (4 * BNX2X_BTR)) * (4 * BNX2X_BTR);
bp->rx_ticks = (25 / (4 * BNX2X_BTR)) * (4 * BNX2X_BTR);
timer_interval = (CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ);
bp->current_interval = (poll ? poll : timer_interval);
init_timer(&bp->timer);
bp->timer.expires = jiffies + bp->current_interval;
bp->timer.data = (unsigned long) bp;
bp->timer.function = bnx2x_timer;
return rc;
}
/****************************************************************************
* General service functions
****************************************************************************/
/* called with rtnl_lock */
static int bnx2x_open(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
netif_carrier_off(dev);
bnx2x_set_power_state(bp, PCI_D0);
if (!bnx2x_reset_is_done(bp)) {
do {
/* Reset MCP mail box sequence if there is on going
* recovery
*/
bp->fw_seq = 0;
/* If it's the first function to load and reset done
* is still not cleared it may mean that. We don't
* check the attention state here because it may have
* already been cleared by a "common" reset but we
* shell proceed with "process kill" anyway.
*/
if ((bnx2x_get_load_cnt(bp) == 0) &&
bnx2x_trylock_hw_lock(bp,
HW_LOCK_RESOURCE_RESERVED_08) &&
(!bnx2x_leader_reset(bp))) {
DP(NETIF_MSG_HW, "Recovered in open\n");
break;
}
bnx2x_set_power_state(bp, PCI_D3hot);
printk(KERN_ERR"%s: Recovery flow hasn't been properly"
" completed yet. Try again later. If u still see this"
" message after a few retries then power cycle is"
" required.\n", bp->dev->name);
return -EAGAIN;
} while (0);
}
bp->recovery_state = BNX2X_RECOVERY_DONE;
return bnx2x_nic_load(bp, LOAD_OPEN);
}
/* called with rtnl_lock */
static int bnx2x_close(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
/* Unload the driver, release IRQs */
bnx2x_nic_unload(bp, UNLOAD_CLOSE);
bnx2x_set_power_state(bp, PCI_D3hot);
return 0;
}
/* called with netif_tx_lock from dev_mcast.c */
void bnx2x_set_rx_mode(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
u32 rx_mode = BNX2X_RX_MODE_NORMAL;
int port = BP_PORT(bp);
if (bp->state != BNX2X_STATE_OPEN) {
DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
return;
}
DP(NETIF_MSG_IFUP, "dev->flags = %x\n", dev->flags);
if (dev->flags & IFF_PROMISC)
rx_mode = BNX2X_RX_MODE_PROMISC;
else if ((dev->flags & IFF_ALLMULTI) ||
((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
CHIP_IS_E1(bp)))
rx_mode = BNX2X_RX_MODE_ALLMULTI;
else { /* some multicasts */
if (CHIP_IS_E1(bp)) {
int i, old, offset;
struct netdev_hw_addr *ha;
struct mac_configuration_cmd *config =
bnx2x_sp(bp, mcast_config);
i = 0;
netdev_for_each_mc_addr(ha, dev) {
config->config_table[i].
cam_entry.msb_mac_addr =
swab16(*(u16 *)&ha->addr[0]);
config->config_table[i].
cam_entry.middle_mac_addr =
swab16(*(u16 *)&ha->addr[2]);
config->config_table[i].
cam_entry.lsb_mac_addr =
swab16(*(u16 *)&ha->addr[4]);
config->config_table[i].cam_entry.flags =
cpu_to_le16(port);
config->config_table[i].
target_table_entry.flags = 0;
config->config_table[i].target_table_entry.
clients_bit_vector =
cpu_to_le32(1 << BP_L_ID(bp));
config->config_table[i].
target_table_entry.vlan_id = 0;
DP(NETIF_MSG_IFUP,
"setting MCAST[%d] (%04x:%04x:%04x)\n", i,
config->config_table[i].
cam_entry.msb_mac_addr,
config->config_table[i].
cam_entry.middle_mac_addr,
config->config_table[i].
cam_entry.lsb_mac_addr);
i++;
}
old = config->hdr.length;
if (old > i) {
for (; i < old; i++) {
if (CAM_IS_INVALID(config->
config_table[i])) {
/* already invalidated */
break;
}
/* invalidate */
CAM_INVALIDATE(config->
config_table[i]);
}
}
if (CHIP_REV_IS_SLOW(bp))
offset = BNX2X_MAX_EMUL_MULTI*(1 + port);
else
offset = BNX2X_MAX_MULTICAST*(1 + port);
config->hdr.length = i;
config->hdr.offset = offset;
config->hdr.client_id = bp->fp->cl_id;
config->hdr.reserved1 = 0;
bp->set_mac_pending++;
smp_wmb();
bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_SET_MAC, 0,
U64_HI(bnx2x_sp_mapping(bp, mcast_config)),
U64_LO(bnx2x_sp_mapping(bp, mcast_config)),
0);
} else { /* E1H */
/* Accept one or more multicasts */
struct netdev_hw_addr *ha;
u32 mc_filter[MC_HASH_SIZE];
u32 crc, bit, regidx;
int i;
memset(mc_filter, 0, 4 * MC_HASH_SIZE);
netdev_for_each_mc_addr(ha, dev) {
DP(NETIF_MSG_IFUP, "Adding mcast MAC: %pM\n",
ha->addr);
crc = crc32c_le(0, ha->addr, ETH_ALEN);
bit = (crc >> 24) & 0xff;
regidx = bit >> 5;
bit &= 0x1f;
mc_filter[regidx] |= (1 << bit);
}
for (i = 0; i < MC_HASH_SIZE; i++)
REG_WR(bp, MC_HASH_OFFSET(bp, i),
mc_filter[i]);
}
}
bp->rx_mode = rx_mode;
bnx2x_set_storm_rx_mode(bp);
}
/* called with rtnl_lock */
static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
int devad, u16 addr)
{
struct bnx2x *bp = netdev_priv(netdev);
u16 value;
int rc;
DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
prtad, devad, addr);
/* The HW expects different devad if CL22 is used */
devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
bnx2x_acquire_phy_lock(bp);
rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
bnx2x_release_phy_lock(bp);
DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
if (!rc)
rc = value;
return rc;
}
/* called with rtnl_lock */
static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
u16 addr, u16 value)
{
struct bnx2x *bp = netdev_priv(netdev);
int rc;
DP(NETIF_MSG_LINK, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x,"
" value 0x%x\n", prtad, devad, addr, value);
/* The HW expects different devad if CL22 is used */
devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
bnx2x_acquire_phy_lock(bp);
rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
bnx2x_release_phy_lock(bp);
return rc;
}
/* called with rtnl_lock */
static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct bnx2x *bp = netdev_priv(dev);
struct mii_ioctl_data *mdio = if_mii(ifr);
DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
mdio->phy_id, mdio->reg_num, mdio->val_in);
if (!netif_running(dev))
return -EAGAIN;
return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void poll_bnx2x(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
disable_irq(bp->pdev->irq);
bnx2x_interrupt(bp->pdev->irq, dev);
enable_irq(bp->pdev->irq);
}
#endif
static const struct net_device_ops bnx2x_netdev_ops = {
.ndo_open = bnx2x_open,
.ndo_stop = bnx2x_close,
.ndo_start_xmit = bnx2x_start_xmit,
.ndo_set_multicast_list = bnx2x_set_rx_mode,
.ndo_set_mac_address = bnx2x_change_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = bnx2x_ioctl,
.ndo_change_mtu = bnx2x_change_mtu,
.ndo_tx_timeout = bnx2x_tx_timeout,
#ifdef BCM_VLAN
.ndo_vlan_rx_register = bnx2x_vlan_rx_register,
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = poll_bnx2x,
#endif
};
static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
struct net_device *dev)
{
struct bnx2x *bp;
int rc;
SET_NETDEV_DEV(dev, &pdev->dev);
bp = netdev_priv(dev);
bp->dev = dev;
bp->pdev = pdev;
bp->flags = 0;
bp->func = PCI_FUNC(pdev->devfn);
rc = pci_enable_device(pdev);
if (rc) {
dev_err(&bp->pdev->dev,
"Cannot enable PCI device, aborting\n");
goto err_out;
}
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
dev_err(&bp->pdev->dev,
"Cannot find PCI device base address, aborting\n");
rc = -ENODEV;
goto err_out_disable;
}
if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
dev_err(&bp->pdev->dev, "Cannot find second PCI device"
" base address, aborting\n");
rc = -ENODEV;
goto err_out_disable;
}
if (atomic_read(&pdev->enable_cnt) == 1) {
rc = pci_request_regions(pdev, DRV_MODULE_NAME);
if (rc) {
dev_err(&bp->pdev->dev,
"Cannot obtain PCI resources, aborting\n");
goto err_out_disable;
}
pci_set_master(pdev);
pci_save_state(pdev);
}
bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
if (bp->pm_cap == 0) {
dev_err(&bp->pdev->dev,
"Cannot find power management capability, aborting\n");
rc = -EIO;
goto err_out_release;
}
bp->pcie_cap = pci_find_capability(pdev, PCI_CAP_ID_EXP);
if (bp->pcie_cap == 0) {
dev_err(&bp->pdev->dev,
"Cannot find PCI Express capability, aborting\n");
rc = -EIO;
goto err_out_release;
}
if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) == 0) {
bp->flags |= USING_DAC_FLAG;
if (dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)) != 0) {
dev_err(&bp->pdev->dev, "dma_set_coherent_mask"
" failed, aborting\n");
rc = -EIO;
goto err_out_release;
}
} else if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
dev_err(&bp->pdev->dev,
"System does not support DMA, aborting\n");
rc = -EIO;
goto err_out_release;
}
dev->mem_start = pci_resource_start(pdev, 0);
dev->base_addr = dev->mem_start;
dev->mem_end = pci_resource_end(pdev, 0);
dev->irq = pdev->irq;
bp->regview = pci_ioremap_bar(pdev, 0);
if (!bp->regview) {
dev_err(&bp->pdev->dev,
"Cannot map register space, aborting\n");
rc = -ENOMEM;
goto err_out_release;
}
bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
min_t(u64, BNX2X_DB_SIZE,
pci_resource_len(pdev, 2)));
if (!bp->doorbells) {
dev_err(&bp->pdev->dev,
"Cannot map doorbell space, aborting\n");
rc = -ENOMEM;
goto err_out_unmap;
}
bnx2x_set_power_state(bp, PCI_D0);
/* clean indirect addresses */
pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
PCICFG_VENDOR_ID_OFFSET);
REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0 + BP_PORT(bp)*16, 0);
REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0 + BP_PORT(bp)*16, 0);
REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0 + BP_PORT(bp)*16, 0);
REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0 + BP_PORT(bp)*16, 0);
/* Reset the load counter */
bnx2x_clear_load_cnt(bp);
dev->watchdog_timeo = TX_TIMEOUT;
dev->netdev_ops = &bnx2x_netdev_ops;
bnx2x_set_ethtool_ops(dev);
dev->features |= NETIF_F_SG;
dev->features |= NETIF_F_HW_CSUM;
if (bp->flags & USING_DAC_FLAG)
dev->features |= NETIF_F_HIGHDMA;
dev->features |= (NETIF_F_TSO | NETIF_F_TSO_ECN);
dev->features |= NETIF_F_TSO6;
#ifdef BCM_VLAN
dev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
bp->flags |= (HW_VLAN_RX_FLAG | HW_VLAN_TX_FLAG);
dev->vlan_features |= NETIF_F_SG;
dev->vlan_features |= NETIF_F_HW_CSUM;
if (bp->flags & USING_DAC_FLAG)
dev->vlan_features |= NETIF_F_HIGHDMA;
dev->vlan_features |= (NETIF_F_TSO | NETIF_F_TSO_ECN);
dev->vlan_features |= NETIF_F_TSO6;
#endif
/* get_port_hwinfo() will set prtad and mmds properly */
bp->mdio.prtad = MDIO_PRTAD_NONE;
bp->mdio.mmds = 0;
bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
bp->mdio.dev = dev;
bp->mdio.mdio_read = bnx2x_mdio_read;
bp->mdio.mdio_write = bnx2x_mdio_write;
return 0;
err_out_unmap:
if (bp->regview) {
iounmap(bp->regview);
bp->regview = NULL;
}
if (bp->doorbells) {
iounmap(bp->doorbells);
bp->doorbells = NULL;
}
err_out_release:
if (atomic_read(&pdev->enable_cnt) == 1)
pci_release_regions(pdev);
err_out_disable:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
err_out:
return rc;
}
static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
int *width, int *speed)
{
u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
/* return value of 1=2.5GHz 2=5GHz */
*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
}
static int bnx2x_check_firmware(struct bnx2x *bp)
{
const struct firmware *firmware = bp->firmware;
struct bnx2x_fw_file_hdr *fw_hdr;
struct bnx2x_fw_file_section *sections;
u32 offset, len, num_ops;
u16 *ops_offsets;
int i;
const u8 *fw_ver;
if (firmware->size < sizeof(struct bnx2x_fw_file_hdr))
return -EINVAL;
fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
sections = (struct bnx2x_fw_file_section *)fw_hdr;
/* Make sure none of the offsets and sizes make us read beyond
* the end of the firmware data */
for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
offset = be32_to_cpu(sections[i].offset);
len = be32_to_cpu(sections[i].len);
if (offset + len > firmware->size) {
dev_err(&bp->pdev->dev,
"Section %d length is out of bounds\n", i);
return -EINVAL;
}
}
/* Likewise for the init_ops offsets */
offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
ops_offsets = (u16 *)(firmware->data + offset);
num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
if (be16_to_cpu(ops_offsets[i]) > num_ops) {
dev_err(&bp->pdev->dev,
"Section offset %d is out of bounds\n", i);
return -EINVAL;
}
}
/* Check FW version */
offset = be32_to_cpu(fw_hdr->fw_version.offset);
fw_ver = firmware->data + offset;
if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
(fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
(fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
(fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
dev_err(&bp->pdev->dev,
"Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
fw_ver[0], fw_ver[1], fw_ver[2],
fw_ver[3], BCM_5710_FW_MAJOR_VERSION,
BCM_5710_FW_MINOR_VERSION,
BCM_5710_FW_REVISION_VERSION,
BCM_5710_FW_ENGINEERING_VERSION);
return -EINVAL;
}
return 0;
}
static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
{
const __be32 *source = (const __be32 *)_source;
u32 *target = (u32 *)_target;
u32 i;
for (i = 0; i < n/4; i++)
target[i] = be32_to_cpu(source[i]);
}
/*
Ops array is stored in the following format:
{op(8bit), offset(24bit, big endian), data(32bit, big endian)}
*/
static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
{
const __be32 *source = (const __be32 *)_source;
struct raw_op *target = (struct raw_op *)_target;
u32 i, j, tmp;
for (i = 0, j = 0; i < n/8; i++, j += 2) {
tmp = be32_to_cpu(source[j]);
target[i].op = (tmp >> 24) & 0xff;
target[i].offset = tmp & 0xffffff;
target[i].raw_data = be32_to_cpu(source[j + 1]);
}
}
static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
{
const __be16 *source = (const __be16 *)_source;
u16 *target = (u16 *)_target;
u32 i;
for (i = 0; i < n/2; i++)
target[i] = be16_to_cpu(source[i]);
}
#define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
do { \
u32 len = be32_to_cpu(fw_hdr->arr.len); \
bp->arr = kmalloc(len, GFP_KERNEL); \
if (!bp->arr) { \
pr_err("Failed to allocate %d bytes for "#arr"\n", len); \
goto lbl; \
} \
func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
(u8 *)bp->arr, len); \
} while (0)
int bnx2x_init_firmware(struct bnx2x *bp)
{
const char *fw_file_name;
struct bnx2x_fw_file_hdr *fw_hdr;
int rc;
if (CHIP_IS_E1(bp))
fw_file_name = FW_FILE_NAME_E1;
else if (CHIP_IS_E1H(bp))
fw_file_name = FW_FILE_NAME_E1H;
else {
BNX2X_ERR("Unsupported chip revision\n");
return -EINVAL;
}
BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
if (rc) {
BNX2X_ERR("Can't load firmware file %s\n", fw_file_name);
goto request_firmware_exit;
}
rc = bnx2x_check_firmware(bp);
if (rc) {
BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
goto request_firmware_exit;
}
fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
/* Initialize the pointers to the init arrays */
/* Blob */
BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
/* Opcodes */
BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
/* Offsets */
BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
be16_to_cpu_n);
/* STORMs firmware */
INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->tsem_pram_data.offset);
INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->usem_int_table_data.offset);
INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->usem_pram_data.offset);
INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->xsem_pram_data.offset);
INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->csem_int_table_data.offset);
INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
be32_to_cpu(fw_hdr->csem_pram_data.offset);
return 0;
init_offsets_alloc_err:
kfree(bp->init_ops);
init_ops_alloc_err:
kfree(bp->init_data);
request_firmware_exit:
release_firmware(bp->firmware);
return rc;
}
static int __devinit bnx2x_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *dev = NULL;
struct bnx2x *bp;
int pcie_width, pcie_speed;
int rc;
/* dev zeroed in init_etherdev */
dev = alloc_etherdev_mq(sizeof(*bp), MAX_CONTEXT);
if (!dev) {
dev_err(&pdev->dev, "Cannot allocate net device\n");
return -ENOMEM;
}
bp = netdev_priv(dev);
bp->msg_enable = debug;
pci_set_drvdata(pdev, dev);
rc = bnx2x_init_dev(pdev, dev);
if (rc < 0) {
free_netdev(dev);
return rc;
}
rc = bnx2x_init_bp(bp);
if (rc)
goto init_one_exit;
rc = register_netdev(dev);
if (rc) {
dev_err(&pdev->dev, "Cannot register net device\n");
goto init_one_exit;
}
bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
netdev_info(dev, "%s (%c%d) PCI-E x%d %s found at mem %lx,"
" IRQ %d, ", board_info[ent->driver_data].name,
(CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
pcie_width, (pcie_speed == 2) ? "5GHz (Gen2)" : "2.5GHz",
dev->base_addr, bp->pdev->irq);
pr_cont("node addr %pM\n", dev->dev_addr);
return 0;
init_one_exit:
if (bp->regview)
iounmap(bp->regview);
if (bp->doorbells)
iounmap(bp->doorbells);
free_netdev(dev);
if (atomic_read(&pdev->enable_cnt) == 1)
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
return rc;
}
static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2x *bp;
if (!dev) {
dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
return;
}
bp = netdev_priv(dev);
unregister_netdev(dev);
/* Make sure RESET task is not scheduled before continuing */
cancel_delayed_work_sync(&bp->reset_task);
if (bp->regview)
iounmap(bp->regview);
if (bp->doorbells)
iounmap(bp->doorbells);
free_netdev(dev);
if (atomic_read(&pdev->enable_cnt) == 1)
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
{
int i;
bp->state = BNX2X_STATE_ERROR;
bp->rx_mode = BNX2X_RX_MODE_NONE;
bnx2x_netif_stop(bp, 0);
netif_carrier_off(bp->dev);
del_timer_sync(&bp->timer);
bp->stats_state = STATS_STATE_DISABLED;
DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
/* Release IRQs */
bnx2x_free_irq(bp, false);
if (CHIP_IS_E1(bp)) {
struct mac_configuration_cmd *config =
bnx2x_sp(bp, mcast_config);
for (i = 0; i < config->hdr.length; i++)
CAM_INVALIDATE(config->config_table[i]);
}
/* Free SKBs, SGEs, TPA pool and driver internals */
bnx2x_free_skbs(bp);
for_each_queue(bp, i)
bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
for_each_queue(bp, i)
netif_napi_del(&bnx2x_fp(bp, i, napi));
bnx2x_free_mem(bp);
bp->state = BNX2X_STATE_CLOSED;
return 0;
}
static void bnx2x_eeh_recover(struct bnx2x *bp)
{
u32 val;
mutex_init(&bp->port.phy_mutex);
bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
bp->link_params.shmem_base = bp->common.shmem_base;
BNX2X_DEV_INFO("shmem offset is 0x%x\n", bp->common.shmem_base);
if (!bp->common.shmem_base ||
(bp->common.shmem_base < 0xA0000) ||
(bp->common.shmem_base >= 0xC0000)) {
BNX2X_DEV_INFO("MCP not active\n");
bp->flags |= NO_MCP_FLAG;
return;
}
val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
BNX2X_ERR("BAD MCP validity signature\n");
if (!BP_NOMCP(bp)) {
bp->fw_seq = (SHMEM_RD(bp, func_mb[BP_FUNC(bp)].drv_mb_header)
& DRV_MSG_SEQ_NUMBER_MASK);
BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
}
}
/**
* bnx2x_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
*/
static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2x *bp = netdev_priv(dev);
rtnl_lock();
netif_device_detach(dev);
if (state == pci_channel_io_perm_failure) {
rtnl_unlock();
return PCI_ERS_RESULT_DISCONNECT;
}
if (netif_running(dev))
bnx2x_eeh_nic_unload(bp);
pci_disable_device(pdev);
rtnl_unlock();
/* Request a slot reset */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* bnx2x_io_slot_reset - called after the PCI bus has been reset
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot.
*/
static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2x *bp = netdev_priv(dev);
rtnl_lock();
if (pci_enable_device(pdev)) {
dev_err(&pdev->dev,
"Cannot re-enable PCI device after reset\n");
rtnl_unlock();
return PCI_ERS_RESULT_DISCONNECT;
}
pci_set_master(pdev);
pci_restore_state(pdev);
if (netif_running(dev))
bnx2x_set_power_state(bp, PCI_D0);
rtnl_unlock();
return PCI_ERS_RESULT_RECOVERED;
}
/**
* bnx2x_io_resume - called when traffic can start flowing again
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells us that
* its OK to resume normal operation.
*/
static void bnx2x_io_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2x *bp = netdev_priv(dev);
if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
printk(KERN_ERR "Handling parity error recovery. Try again later\n");
return;
}
rtnl_lock();
bnx2x_eeh_recover(bp);
if (netif_running(dev))
bnx2x_nic_load(bp, LOAD_NORMAL);
netif_device_attach(dev);
rtnl_unlock();
}
static struct pci_error_handlers bnx2x_err_handler = {
.error_detected = bnx2x_io_error_detected,
.slot_reset = bnx2x_io_slot_reset,
.resume = bnx2x_io_resume,
};
static struct pci_driver bnx2x_pci_driver = {
.name = DRV_MODULE_NAME,
.id_table = bnx2x_pci_tbl,
.probe = bnx2x_init_one,
.remove = __devexit_p(bnx2x_remove_one),
.suspend = bnx2x_suspend,
.resume = bnx2x_resume,
.err_handler = &bnx2x_err_handler,
};
static int __init bnx2x_init(void)
{
int ret;
pr_info("%s", version);
bnx2x_wq = create_singlethread_workqueue("bnx2x");
if (bnx2x_wq == NULL) {
pr_err("Cannot create workqueue\n");
return -ENOMEM;
}
ret = pci_register_driver(&bnx2x_pci_driver);
if (ret) {
pr_err("Cannot register driver\n");
destroy_workqueue(bnx2x_wq);
}
return ret;
}
static void __exit bnx2x_cleanup(void)
{
pci_unregister_driver(&bnx2x_pci_driver);
destroy_workqueue(bnx2x_wq);
}
module_init(bnx2x_init);
module_exit(bnx2x_cleanup);
#ifdef BCM_CNIC
/* count denotes the number of new completions we have seen */
static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
{
struct eth_spe *spe;
#ifdef BNX2X_STOP_ON_ERROR
if (unlikely(bp->panic))
return;
#endif
spin_lock_bh(&bp->spq_lock);
bp->cnic_spq_pending -= count;
for (; bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending;
bp->cnic_spq_pending++) {
if (!bp->cnic_kwq_pending)
break;
spe = bnx2x_sp_get_next(bp);
*spe = *bp->cnic_kwq_cons;
bp->cnic_kwq_pending--;
DP(NETIF_MSG_TIMER, "pending on SPQ %d, on KWQ %d count %d\n",
bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
bp->cnic_kwq_cons = bp->cnic_kwq;
else
bp->cnic_kwq_cons++;
}
bnx2x_sp_prod_update(bp);
spin_unlock_bh(&bp->spq_lock);
}
static int bnx2x_cnic_sp_queue(struct net_device *dev,
struct kwqe_16 *kwqes[], u32 count)
{
struct bnx2x *bp = netdev_priv(dev);
int i;
#ifdef BNX2X_STOP_ON_ERROR
if (unlikely(bp->panic))
return -EIO;
#endif
spin_lock_bh(&bp->spq_lock);
for (i = 0; i < count; i++) {
struct eth_spe *spe = (struct eth_spe *)kwqes[i];
if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
break;
*bp->cnic_kwq_prod = *spe;
bp->cnic_kwq_pending++;
DP(NETIF_MSG_TIMER, "L5 SPQE %x %x %x:%x pos %d\n",
spe->hdr.conn_and_cmd_data, spe->hdr.type,
spe->data.mac_config_addr.hi,
spe->data.mac_config_addr.lo,
bp->cnic_kwq_pending);
if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
bp->cnic_kwq_prod = bp->cnic_kwq;
else
bp->cnic_kwq_prod++;
}
spin_unlock_bh(&bp->spq_lock);
if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
bnx2x_cnic_sp_post(bp, 0);
return i;
}
static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
{
struct cnic_ops *c_ops;
int rc = 0;
mutex_lock(&bp->cnic_mutex);
c_ops = bp->cnic_ops;
if (c_ops)
rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
mutex_unlock(&bp->cnic_mutex);
return rc;
}
static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
{
struct cnic_ops *c_ops;
int rc = 0;
rcu_read_lock();
c_ops = rcu_dereference(bp->cnic_ops);
if (c_ops)
rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
rcu_read_unlock();
return rc;
}
/*
* for commands that have no data
*/
int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
{
struct cnic_ctl_info ctl = {0};
ctl.cmd = cmd;
return bnx2x_cnic_ctl_send(bp, &ctl);
}
static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid)
{
struct cnic_ctl_info ctl;
/* first we tell CNIC and only then we count this as a completion */
ctl.cmd = CNIC_CTL_COMPLETION_CMD;
ctl.data.comp.cid = cid;
bnx2x_cnic_ctl_send_bh(bp, &ctl);
bnx2x_cnic_sp_post(bp, 1);
}
static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
{
struct bnx2x *bp = netdev_priv(dev);
int rc = 0;
switch (ctl->cmd) {
case DRV_CTL_CTXTBL_WR_CMD: {
u32 index = ctl->data.io.offset;
dma_addr_t addr = ctl->data.io.dma_addr;
bnx2x_ilt_wr(bp, index, addr);
break;
}
case DRV_CTL_COMPLETION_CMD: {
int count = ctl->data.comp.comp_count;
bnx2x_cnic_sp_post(bp, count);
break;
}
/* rtnl_lock is held. */
case DRV_CTL_START_L2_CMD: {
u32 cli = ctl->data.ring.client_id;
bp->rx_mode_cl_mask |= (1 << cli);
bnx2x_set_storm_rx_mode(bp);
break;
}
/* rtnl_lock is held. */
case DRV_CTL_STOP_L2_CMD: {
u32 cli = ctl->data.ring.client_id;
bp->rx_mode_cl_mask &= ~(1 << cli);
bnx2x_set_storm_rx_mode(bp);
break;
}
default:
BNX2X_ERR("unknown command %x\n", ctl->cmd);
rc = -EINVAL;
}
return rc;
}
void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
{
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
if (bp->flags & USING_MSIX_FLAG) {
cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
cp->irq_arr[0].vector = bp->msix_table[1].vector;
} else {
cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
}
cp->irq_arr[0].status_blk = bp->cnic_sb;
cp->irq_arr[0].status_blk_num = CNIC_SB_ID(bp);
cp->irq_arr[1].status_blk = bp->def_status_blk;
cp->irq_arr[1].status_blk_num = DEF_SB_ID;
cp->num_irq = 2;
}
static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
void *data)
{
struct bnx2x *bp = netdev_priv(dev);
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
if (ops == NULL)
return -EINVAL;
if (atomic_read(&bp->intr_sem) != 0)
return -EBUSY;
bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (!bp->cnic_kwq)
return -ENOMEM;
bp->cnic_kwq_cons = bp->cnic_kwq;
bp->cnic_kwq_prod = bp->cnic_kwq;
bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
bp->cnic_spq_pending = 0;
bp->cnic_kwq_pending = 0;
bp->cnic_data = data;
cp->num_irq = 0;
cp->drv_state = CNIC_DRV_STATE_REGD;
bnx2x_init_sb(bp, bp->cnic_sb, bp->cnic_sb_mapping, CNIC_SB_ID(bp));
bnx2x_setup_cnic_irq_info(bp);
bnx2x_set_iscsi_eth_mac_addr(bp, 1);
bp->cnic_flags |= BNX2X_CNIC_FLAG_MAC_SET;
rcu_assign_pointer(bp->cnic_ops, ops);
return 0;
}
static int bnx2x_unregister_cnic(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
mutex_lock(&bp->cnic_mutex);
if (bp->cnic_flags & BNX2X_CNIC_FLAG_MAC_SET) {
bp->cnic_flags &= ~BNX2X_CNIC_FLAG_MAC_SET;
bnx2x_set_iscsi_eth_mac_addr(bp, 0);
}
cp->drv_state = 0;
rcu_assign_pointer(bp->cnic_ops, NULL);
mutex_unlock(&bp->cnic_mutex);
synchronize_rcu();
kfree(bp->cnic_kwq);
bp->cnic_kwq = NULL;
return 0;
}
struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
cp->drv_owner = THIS_MODULE;
cp->chip_id = CHIP_ID(bp);
cp->pdev = bp->pdev;
cp->io_base = bp->regview;
cp->io_base2 = bp->doorbells;
cp->max_kwqe_pending = 8;
cp->ctx_blk_size = CNIC_CTX_PER_ILT * sizeof(union cdu_context);
cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 1;
cp->ctx_tbl_len = CNIC_ILT_LINES;
cp->starting_cid = BCM_CNIC_CID_START;
cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
cp->drv_ctl = bnx2x_drv_ctl;
cp->drv_register_cnic = bnx2x_register_cnic;
cp->drv_unregister_cnic = bnx2x_unregister_cnic;
return cp;
}
EXPORT_SYMBOL(bnx2x_cnic_probe);
#endif /* BCM_CNIC */