| /* |
| * linux/arch/arm/mm/dma-mapping.c |
| * |
| * Copyright (C) 2000-2004 Russell King |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * DMA uncached mapping support. |
| */ |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| #include <linux/gfp.h> |
| #include <linux/errno.h> |
| #include <linux/list.h> |
| #include <linux/init.h> |
| #include <linux/device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/highmem.h> |
| |
| #include <asm/memory.h> |
| #include <asm/highmem.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| #include <asm/sizes.h> |
| |
| static u64 get_coherent_dma_mask(struct device *dev) |
| { |
| u64 mask = ISA_DMA_THRESHOLD; |
| |
| if (dev) { |
| mask = dev->coherent_dma_mask; |
| |
| /* |
| * Sanity check the DMA mask - it must be non-zero, and |
| * must be able to be satisfied by a DMA allocation. |
| */ |
| if (mask == 0) { |
| dev_warn(dev, "coherent DMA mask is unset\n"); |
| return 0; |
| } |
| |
| if ((~mask) & ISA_DMA_THRESHOLD) { |
| dev_warn(dev, "coherent DMA mask %#llx is smaller " |
| "than system GFP_DMA mask %#llx\n", |
| mask, (unsigned long long)ISA_DMA_THRESHOLD); |
| return 0; |
| } |
| } |
| |
| return mask; |
| } |
| |
| /* |
| * Allocate a DMA buffer for 'dev' of size 'size' using the |
| * specified gfp mask. Note that 'size' must be page aligned. |
| */ |
| static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) |
| { |
| unsigned long order = get_order(size); |
| struct page *page, *p, *e; |
| void *ptr; |
| u64 mask = get_coherent_dma_mask(dev); |
| |
| #ifdef CONFIG_DMA_API_DEBUG |
| u64 limit = (mask + 1) & ~mask; |
| if (limit && size >= limit) { |
| dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", |
| size, mask); |
| return NULL; |
| } |
| #endif |
| |
| if (!mask) |
| return NULL; |
| |
| if (mask < 0xffffffffULL) |
| gfp |= GFP_DMA; |
| |
| page = alloc_pages(gfp, order); |
| if (!page) |
| return NULL; |
| |
| /* |
| * Now split the huge page and free the excess pages |
| */ |
| split_page(page, order); |
| for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) |
| __free_page(p); |
| |
| /* |
| * Ensure that the allocated pages are zeroed, and that any data |
| * lurking in the kernel direct-mapped region is invalidated. |
| */ |
| ptr = page_address(page); |
| memset(ptr, 0, size); |
| dmac_flush_range(ptr, ptr + size); |
| outer_flush_range(__pa(ptr), __pa(ptr) + size); |
| |
| return page; |
| } |
| |
| /* |
| * Free a DMA buffer. 'size' must be page aligned. |
| */ |
| static void __dma_free_buffer(struct page *page, size_t size) |
| { |
| struct page *e = page + (size >> PAGE_SHIFT); |
| |
| while (page < e) { |
| __free_page(page); |
| page++; |
| } |
| } |
| |
| #ifdef CONFIG_MMU |
| /* Sanity check size */ |
| #if (CONSISTENT_DMA_SIZE % SZ_2M) |
| #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB" |
| #endif |
| |
| #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT) |
| #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT) |
| #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT) |
| |
| /* |
| * These are the page tables (2MB each) covering uncached, DMA consistent allocations |
| */ |
| static pte_t *consistent_pte[NUM_CONSISTENT_PTES]; |
| |
| #include "vmregion.h" |
| |
| static struct arm_vmregion_head consistent_head = { |
| .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock), |
| .vm_list = LIST_HEAD_INIT(consistent_head.vm_list), |
| .vm_start = CONSISTENT_BASE, |
| .vm_end = CONSISTENT_END, |
| }; |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| #error ARM Coherent DMA allocator does not (yet) support huge TLB |
| #endif |
| |
| /* |
| * Initialise the consistent memory allocation. |
| */ |
| static int __init consistent_init(void) |
| { |
| int ret = 0; |
| pgd_t *pgd; |
| pmd_t *pmd; |
| pte_t *pte; |
| int i = 0; |
| u32 base = CONSISTENT_BASE; |
| |
| do { |
| pgd = pgd_offset(&init_mm, base); |
| pmd = pmd_alloc(&init_mm, pgd, base); |
| if (!pmd) { |
| printk(KERN_ERR "%s: no pmd tables\n", __func__); |
| ret = -ENOMEM; |
| break; |
| } |
| WARN_ON(!pmd_none(*pmd)); |
| |
| pte = pte_alloc_kernel(pmd, base); |
| if (!pte) { |
| printk(KERN_ERR "%s: no pte tables\n", __func__); |
| ret = -ENOMEM; |
| break; |
| } |
| |
| consistent_pte[i++] = pte; |
| base += (1 << PGDIR_SHIFT); |
| } while (base < CONSISTENT_END); |
| |
| return ret; |
| } |
| |
| core_initcall(consistent_init); |
| |
| static void * |
| __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot) |
| { |
| struct arm_vmregion *c; |
| size_t align; |
| int bit; |
| |
| if (!consistent_pte[0]) { |
| printk(KERN_ERR "%s: not initialised\n", __func__); |
| dump_stack(); |
| return NULL; |
| } |
| |
| /* |
| * Align the virtual region allocation - maximum alignment is |
| * a section size, minimum is a page size. This helps reduce |
| * fragmentation of the DMA space, and also prevents allocations |
| * smaller than a section from crossing a section boundary. |
| */ |
| bit = fls(size - 1); |
| if (bit > SECTION_SHIFT) |
| bit = SECTION_SHIFT; |
| align = 1 << bit; |
| |
| /* |
| * Allocate a virtual address in the consistent mapping region. |
| */ |
| c = arm_vmregion_alloc(&consistent_head, align, size, |
| gfp & ~(__GFP_DMA | __GFP_HIGHMEM)); |
| if (c) { |
| pte_t *pte; |
| int idx = CONSISTENT_PTE_INDEX(c->vm_start); |
| u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); |
| |
| pte = consistent_pte[idx] + off; |
| c->vm_pages = page; |
| |
| do { |
| BUG_ON(!pte_none(*pte)); |
| |
| set_pte_ext(pte, mk_pte(page, prot), 0); |
| page++; |
| pte++; |
| off++; |
| if (off >= PTRS_PER_PTE) { |
| off = 0; |
| pte = consistent_pte[++idx]; |
| } |
| } while (size -= PAGE_SIZE); |
| |
| dsb(); |
| |
| return (void *)c->vm_start; |
| } |
| return NULL; |
| } |
| |
| static void __dma_free_remap(void *cpu_addr, size_t size) |
| { |
| struct arm_vmregion *c; |
| unsigned long addr; |
| pte_t *ptep; |
| int idx; |
| u32 off; |
| |
| c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr); |
| if (!c) { |
| printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n", |
| __func__, cpu_addr); |
| dump_stack(); |
| return; |
| } |
| |
| if ((c->vm_end - c->vm_start) != size) { |
| printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n", |
| __func__, c->vm_end - c->vm_start, size); |
| dump_stack(); |
| size = c->vm_end - c->vm_start; |
| } |
| |
| idx = CONSISTENT_PTE_INDEX(c->vm_start); |
| off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); |
| ptep = consistent_pte[idx] + off; |
| addr = c->vm_start; |
| do { |
| pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep); |
| |
| ptep++; |
| addr += PAGE_SIZE; |
| off++; |
| if (off >= PTRS_PER_PTE) { |
| off = 0; |
| ptep = consistent_pte[++idx]; |
| } |
| |
| if (pte_none(pte) || !pte_present(pte)) |
| printk(KERN_CRIT "%s: bad page in kernel page table\n", |
| __func__); |
| } while (size -= PAGE_SIZE); |
| |
| flush_tlb_kernel_range(c->vm_start, c->vm_end); |
| |
| arm_vmregion_free(&consistent_head, c); |
| } |
| |
| #else /* !CONFIG_MMU */ |
| |
| #define __dma_alloc_remap(page, size, gfp, prot) page_address(page) |
| #define __dma_free_remap(addr, size) do { } while (0) |
| |
| #endif /* CONFIG_MMU */ |
| |
| static void * |
| __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp, |
| pgprot_t prot) |
| { |
| struct page *page; |
| void *addr; |
| |
| *handle = ~0; |
| size = PAGE_ALIGN(size); |
| |
| page = __dma_alloc_buffer(dev, size, gfp); |
| if (!page) |
| return NULL; |
| |
| if (!arch_is_coherent()) |
| addr = __dma_alloc_remap(page, size, gfp, prot); |
| else |
| addr = page_address(page); |
| |
| if (addr) |
| *handle = pfn_to_dma(dev, page_to_pfn(page)); |
| |
| return addr; |
| } |
| |
| /* |
| * Allocate DMA-coherent memory space and return both the kernel remapped |
| * virtual and bus address for that space. |
| */ |
| void * |
| dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) |
| { |
| void *memory; |
| |
| if (dma_alloc_from_coherent(dev, size, handle, &memory)) |
| return memory; |
| |
| return __dma_alloc(dev, size, handle, gfp, |
| pgprot_dmacoherent(pgprot_kernel)); |
| } |
| EXPORT_SYMBOL(dma_alloc_coherent); |
| |
| /* |
| * Allocate a writecombining region, in much the same way as |
| * dma_alloc_coherent above. |
| */ |
| void * |
| dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) |
| { |
| return __dma_alloc(dev, size, handle, gfp, |
| pgprot_writecombine(pgprot_kernel)); |
| } |
| EXPORT_SYMBOL(dma_alloc_writecombine); |
| |
| static int dma_mmap(struct device *dev, struct vm_area_struct *vma, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size) |
| { |
| int ret = -ENXIO; |
| #ifdef CONFIG_MMU |
| unsigned long user_size, kern_size; |
| struct arm_vmregion *c; |
| |
| user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; |
| |
| c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr); |
| if (c) { |
| unsigned long off = vma->vm_pgoff; |
| |
| kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT; |
| |
| if (off < kern_size && |
| user_size <= (kern_size - off)) { |
| ret = remap_pfn_range(vma, vma->vm_start, |
| page_to_pfn(c->vm_pages) + off, |
| user_size << PAGE_SHIFT, |
| vma->vm_page_prot); |
| } |
| } |
| #endif /* CONFIG_MMU */ |
| |
| return ret; |
| } |
| |
| int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size) |
| { |
| vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot); |
| return dma_mmap(dev, vma, cpu_addr, dma_addr, size); |
| } |
| EXPORT_SYMBOL(dma_mmap_coherent); |
| |
| int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size) |
| { |
| vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); |
| return dma_mmap(dev, vma, cpu_addr, dma_addr, size); |
| } |
| EXPORT_SYMBOL(dma_mmap_writecombine); |
| |
| /* |
| * free a page as defined by the above mapping. |
| * Must not be called with IRQs disabled. |
| */ |
| void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle) |
| { |
| WARN_ON(irqs_disabled()); |
| |
| if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) |
| return; |
| |
| size = PAGE_ALIGN(size); |
| |
| if (!arch_is_coherent()) |
| __dma_free_remap(cpu_addr, size); |
| |
| __dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size); |
| } |
| EXPORT_SYMBOL(dma_free_coherent); |
| |
| /* |
| * Make an area consistent for devices. |
| * Note: Drivers should NOT use this function directly, as it will break |
| * platforms with CONFIG_DMABOUNCE. |
| * Use the driver DMA support - see dma-mapping.h (dma_sync_*) |
| */ |
| void ___dma_single_cpu_to_dev(const void *kaddr, size_t size, |
| enum dma_data_direction dir) |
| { |
| unsigned long paddr; |
| |
| BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1)); |
| |
| dmac_map_area(kaddr, size, dir); |
| |
| paddr = __pa(kaddr); |
| if (dir == DMA_FROM_DEVICE) { |
| outer_inv_range(paddr, paddr + size); |
| } else { |
| outer_clean_range(paddr, paddr + size); |
| } |
| /* FIXME: non-speculating: flush on bidirectional mappings? */ |
| } |
| EXPORT_SYMBOL(___dma_single_cpu_to_dev); |
| |
| void ___dma_single_dev_to_cpu(const void *kaddr, size_t size, |
| enum dma_data_direction dir) |
| { |
| BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1)); |
| |
| /* FIXME: non-speculating: not required */ |
| /* don't bother invalidating if DMA to device */ |
| if (dir != DMA_TO_DEVICE) { |
| unsigned long paddr = __pa(kaddr); |
| outer_inv_range(paddr, paddr + size); |
| } |
| |
| dmac_unmap_area(kaddr, size, dir); |
| } |
| EXPORT_SYMBOL(___dma_single_dev_to_cpu); |
| |
| static void dma_cache_maint_page(struct page *page, unsigned long offset, |
| size_t size, enum dma_data_direction dir, |
| void (*op)(const void *, size_t, int)) |
| { |
| /* |
| * A single sg entry may refer to multiple physically contiguous |
| * pages. But we still need to process highmem pages individually. |
| * If highmem is not configured then the bulk of this loop gets |
| * optimized out. |
| */ |
| size_t left = size; |
| do { |
| size_t len = left; |
| void *vaddr; |
| |
| if (PageHighMem(page)) { |
| if (len + offset > PAGE_SIZE) { |
| if (offset >= PAGE_SIZE) { |
| page += offset / PAGE_SIZE; |
| offset %= PAGE_SIZE; |
| } |
| len = PAGE_SIZE - offset; |
| } |
| vaddr = kmap_high_get(page); |
| if (vaddr) { |
| vaddr += offset; |
| op(vaddr, len, dir); |
| kunmap_high(page); |
| } else if (cache_is_vipt()) { |
| /* unmapped pages might still be cached */ |
| vaddr = kmap_atomic(page); |
| op(vaddr + offset, len, dir); |
| kunmap_atomic(vaddr); |
| } |
| } else { |
| vaddr = page_address(page) + offset; |
| op(vaddr, len, dir); |
| } |
| offset = 0; |
| page++; |
| left -= len; |
| } while (left); |
| } |
| |
| void ___dma_page_cpu_to_dev(struct page *page, unsigned long off, |
| size_t size, enum dma_data_direction dir) |
| { |
| unsigned long paddr; |
| |
| dma_cache_maint_page(page, off, size, dir, dmac_map_area); |
| |
| paddr = page_to_phys(page) + off; |
| if (dir == DMA_FROM_DEVICE) { |
| outer_inv_range(paddr, paddr + size); |
| } else { |
| outer_clean_range(paddr, paddr + size); |
| } |
| /* FIXME: non-speculating: flush on bidirectional mappings? */ |
| } |
| EXPORT_SYMBOL(___dma_page_cpu_to_dev); |
| |
| void ___dma_page_dev_to_cpu(struct page *page, unsigned long off, |
| size_t size, enum dma_data_direction dir) |
| { |
| unsigned long paddr = page_to_phys(page) + off; |
| |
| /* FIXME: non-speculating: not required */ |
| /* don't bother invalidating if DMA to device */ |
| if (dir != DMA_TO_DEVICE) |
| outer_inv_range(paddr, paddr + size); |
| |
| dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); |
| |
| /* |
| * Mark the D-cache clean for this page to avoid extra flushing. |
| */ |
| if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE) |
| set_bit(PG_dcache_clean, &page->flags); |
| } |
| EXPORT_SYMBOL(___dma_page_dev_to_cpu); |
| |
| /** |
| * dma_map_sg - map a set of SG buffers for streaming mode DMA |
| * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices |
| * @sg: list of buffers |
| * @nents: number of buffers to map |
| * @dir: DMA transfer direction |
| * |
| * Map a set of buffers described by scatterlist in streaming mode for DMA. |
| * This is the scatter-gather version of the dma_map_single interface. |
| * Here the scatter gather list elements are each tagged with the |
| * appropriate dma address and length. They are obtained via |
| * sg_dma_{address,length}. |
| * |
| * Device ownership issues as mentioned for dma_map_single are the same |
| * here. |
| */ |
| int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, |
| enum dma_data_direction dir) |
| { |
| struct scatterlist *s; |
| int i, j; |
| |
| BUG_ON(!valid_dma_direction(dir)); |
| |
| for_each_sg(sg, s, nents, i) { |
| s->dma_address = __dma_map_page(dev, sg_page(s), s->offset, |
| s->length, dir); |
| if (dma_mapping_error(dev, s->dma_address)) |
| goto bad_mapping; |
| } |
| debug_dma_map_sg(dev, sg, nents, nents, dir); |
| return nents; |
| |
| bad_mapping: |
| for_each_sg(sg, s, i, j) |
| __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir); |
| return 0; |
| } |
| EXPORT_SYMBOL(dma_map_sg); |
| |
| /** |
| * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg |
| * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices |
| * @sg: list of buffers |
| * @nents: number of buffers to unmap (returned from dma_map_sg) |
| * @dir: DMA transfer direction (same as was passed to dma_map_sg) |
| * |
| * Unmap a set of streaming mode DMA translations. Again, CPU access |
| * rules concerning calls here are the same as for dma_unmap_single(). |
| */ |
| void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, |
| enum dma_data_direction dir) |
| { |
| struct scatterlist *s; |
| int i; |
| |
| debug_dma_unmap_sg(dev, sg, nents, dir); |
| |
| for_each_sg(sg, s, nents, i) |
| __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir); |
| } |
| EXPORT_SYMBOL(dma_unmap_sg); |
| |
| /** |
| * dma_sync_sg_for_cpu |
| * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices |
| * @sg: list of buffers |
| * @nents: number of buffers to map (returned from dma_map_sg) |
| * @dir: DMA transfer direction (same as was passed to dma_map_sg) |
| */ |
| void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction dir) |
| { |
| struct scatterlist *s; |
| int i; |
| |
| for_each_sg(sg, s, nents, i) { |
| if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0, |
| sg_dma_len(s), dir)) |
| continue; |
| |
| __dma_page_dev_to_cpu(sg_page(s), s->offset, |
| s->length, dir); |
| } |
| |
| debug_dma_sync_sg_for_cpu(dev, sg, nents, dir); |
| } |
| EXPORT_SYMBOL(dma_sync_sg_for_cpu); |
| |
| /** |
| * dma_sync_sg_for_device |
| * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices |
| * @sg: list of buffers |
| * @nents: number of buffers to map (returned from dma_map_sg) |
| * @dir: DMA transfer direction (same as was passed to dma_map_sg) |
| */ |
| void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction dir) |
| { |
| struct scatterlist *s; |
| int i; |
| |
| for_each_sg(sg, s, nents, i) { |
| if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0, |
| sg_dma_len(s), dir)) |
| continue; |
| |
| __dma_page_cpu_to_dev(sg_page(s), s->offset, |
| s->length, dir); |
| } |
| |
| debug_dma_sync_sg_for_device(dev, sg, nents, dir); |
| } |
| EXPORT_SYMBOL(dma_sync_sg_for_device); |
| |
| #define PREALLOC_DMA_DEBUG_ENTRIES 4096 |
| |
| static int __init dma_debug_do_init(void) |
| { |
| dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); |
| return 0; |
| } |
| fs_initcall(dma_debug_do_init); |