| /* |
| * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation, version 2. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for |
| * more details. |
| */ |
| |
| #include <linux/string.h> |
| #include <linux/smp.h> |
| #include <linux/module.h> |
| #include <linux/uaccess.h> |
| #include <asm/fixmap.h> |
| #include <asm/kmap_types.h> |
| #include <asm/tlbflush.h> |
| #include <hv/hypervisor.h> |
| #include <arch/chip.h> |
| |
| |
| #if !CHIP_HAS_COHERENT_LOCAL_CACHE() |
| |
| /* Defined in memcpy.S */ |
| extern unsigned long __memcpy_asm(void *to, const void *from, unsigned long n); |
| extern unsigned long __copy_to_user_inatomic_asm( |
| void __user *to, const void *from, unsigned long n); |
| extern unsigned long __copy_from_user_inatomic_asm( |
| void *to, const void __user *from, unsigned long n); |
| extern unsigned long __copy_from_user_zeroing_asm( |
| void *to, const void __user *from, unsigned long n); |
| |
| typedef unsigned long (*memcpy_t)(void *, const void *, unsigned long); |
| |
| /* Size above which to consider TLB games for performance */ |
| #define LARGE_COPY_CUTOFF 2048 |
| |
| /* Communicate to the simulator what we are trying to do. */ |
| #define sim_allow_multiple_caching(b) \ |
| __insn_mtspr(SPR_SIM_CONTROL, \ |
| SIM_CONTROL_ALLOW_MULTIPLE_CACHING | ((b) << _SIM_CONTROL_OPERATOR_BITS)) |
| |
| /* |
| * Copy memory by briefly enabling incoherent cacheline-at-a-time mode. |
| * |
| * We set up our own source and destination PTEs that we fully control. |
| * This is the only way to guarantee that we don't race with another |
| * thread that is modifying the PTE; we can't afford to try the |
| * copy_{to,from}_user() technique of catching the interrupt, since |
| * we must run with interrupts disabled to avoid the risk of some |
| * other code seeing the incoherent data in our cache. (Recall that |
| * our cache is indexed by PA, so even if the other code doesn't use |
| * our kmap_atomic virtual addresses, they'll still hit in cache using |
| * the normal VAs that aren't supposed to hit in cache.) |
| */ |
| static void memcpy_multicache(void *dest, const void *source, |
| pte_t dst_pte, pte_t src_pte, int len) |
| { |
| int idx; |
| unsigned long flags, newsrc, newdst; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| int type0, type1; |
| int cpu = get_cpu(); |
| |
| /* |
| * Disable interrupts so that we don't recurse into memcpy() |
| * in an interrupt handler, nor accidentally reference |
| * the PA of the source from an interrupt routine. Also |
| * notify the simulator that we're playing games so we don't |
| * generate spurious coherency warnings. |
| */ |
| local_irq_save(flags); |
| sim_allow_multiple_caching(1); |
| |
| /* Set up the new dest mapping */ |
| type0 = kmap_atomic_idx_push(); |
| idx = FIX_KMAP_BEGIN + (KM_TYPE_NR * cpu) + type0; |
| newdst = __fix_to_virt(idx) + ((unsigned long)dest & (PAGE_SIZE-1)); |
| pmdp = pmd_offset(pud_offset(pgd_offset_k(newdst), newdst), newdst); |
| ptep = pte_offset_kernel(pmdp, newdst); |
| if (pte_val(*ptep) != pte_val(dst_pte)) { |
| set_pte(ptep, dst_pte); |
| local_flush_tlb_page(NULL, newdst, PAGE_SIZE); |
| } |
| |
| /* Set up the new source mapping */ |
| type1 = kmap_atomic_idx_push(); |
| idx += (type0 - type1); |
| src_pte = hv_pte_set_nc(src_pte); |
| src_pte = hv_pte_clear_writable(src_pte); /* be paranoid */ |
| newsrc = __fix_to_virt(idx) + ((unsigned long)source & (PAGE_SIZE-1)); |
| pmdp = pmd_offset(pud_offset(pgd_offset_k(newsrc), newsrc), newsrc); |
| ptep = pte_offset_kernel(pmdp, newsrc); |
| *ptep = src_pte; /* set_pte() would be confused by this */ |
| local_flush_tlb_page(NULL, newsrc, PAGE_SIZE); |
| |
| /* Actually move the data. */ |
| __memcpy_asm((void *)newdst, (const void *)newsrc, len); |
| |
| /* |
| * Remap the source as locally-cached and not OLOC'ed so that |
| * we can inval without also invaling the remote cpu's cache. |
| * This also avoids known errata with inv'ing cacheable oloc data. |
| */ |
| src_pte = hv_pte_set_mode(src_pte, HV_PTE_MODE_CACHE_NO_L3); |
| src_pte = hv_pte_set_writable(src_pte); /* need write access for inv */ |
| *ptep = src_pte; /* set_pte() would be confused by this */ |
| local_flush_tlb_page(NULL, newsrc, PAGE_SIZE); |
| |
| /* |
| * Do the actual invalidation, covering the full L2 cache line |
| * at the end since __memcpy_asm() is somewhat aggressive. |
| */ |
| __inv_buffer((void *)newsrc, len); |
| |
| /* |
| * We're done: notify the simulator that all is back to normal, |
| * and re-enable interrupts and pre-emption. |
| */ |
| kmap_atomic_idx_pop(); |
| kmap_atomic_idx_pop(); |
| sim_allow_multiple_caching(0); |
| local_irq_restore(flags); |
| put_cpu(); |
| } |
| |
| /* |
| * Identify large copies from remotely-cached memory, and copy them |
| * via memcpy_multicache() if they look good, otherwise fall back |
| * to the particular kind of copying passed as the memcpy_t function. |
| */ |
| static unsigned long fast_copy(void *dest, const void *source, int len, |
| memcpy_t func) |
| { |
| /* |
| * Check if it's big enough to bother with. We may end up doing a |
| * small copy via TLB manipulation if we're near a page boundary, |
| * but presumably we'll make it up when we hit the second page. |
| */ |
| while (len >= LARGE_COPY_CUTOFF) { |
| int copy_size, bytes_left_on_page; |
| pte_t *src_ptep, *dst_ptep; |
| pte_t src_pte, dst_pte; |
| struct page *src_page, *dst_page; |
| |
| /* Is the source page oloc'ed to a remote cpu? */ |
| retry_source: |
| src_ptep = virt_to_pte(current->mm, (unsigned long)source); |
| if (src_ptep == NULL) |
| break; |
| src_pte = *src_ptep; |
| if (!hv_pte_get_present(src_pte) || |
| !hv_pte_get_readable(src_pte) || |
| hv_pte_get_mode(src_pte) != HV_PTE_MODE_CACHE_TILE_L3) |
| break; |
| if (get_remote_cache_cpu(src_pte) == smp_processor_id()) |
| break; |
| src_page = pfn_to_page(hv_pte_get_pfn(src_pte)); |
| get_page(src_page); |
| if (pte_val(src_pte) != pte_val(*src_ptep)) { |
| put_page(src_page); |
| goto retry_source; |
| } |
| if (pte_huge(src_pte)) { |
| /* Adjust the PTE to correspond to a small page */ |
| int pfn = hv_pte_get_pfn(src_pte); |
| pfn += (((unsigned long)source & (HPAGE_SIZE-1)) |
| >> PAGE_SHIFT); |
| src_pte = pfn_pte(pfn, src_pte); |
| src_pte = pte_mksmall(src_pte); |
| } |
| |
| /* Is the destination page writable? */ |
| retry_dest: |
| dst_ptep = virt_to_pte(current->mm, (unsigned long)dest); |
| if (dst_ptep == NULL) { |
| put_page(src_page); |
| break; |
| } |
| dst_pte = *dst_ptep; |
| if (!hv_pte_get_present(dst_pte) || |
| !hv_pte_get_writable(dst_pte)) { |
| put_page(src_page); |
| break; |
| } |
| dst_page = pfn_to_page(hv_pte_get_pfn(dst_pte)); |
| if (dst_page == src_page) { |
| /* |
| * Source and dest are on the same page; this |
| * potentially exposes us to incoherence if any |
| * part of src and dest overlap on a cache line. |
| * Just give up rather than trying to be precise. |
| */ |
| put_page(src_page); |
| break; |
| } |
| get_page(dst_page); |
| if (pte_val(dst_pte) != pte_val(*dst_ptep)) { |
| put_page(dst_page); |
| goto retry_dest; |
| } |
| if (pte_huge(dst_pte)) { |
| /* Adjust the PTE to correspond to a small page */ |
| int pfn = hv_pte_get_pfn(dst_pte); |
| pfn += (((unsigned long)dest & (HPAGE_SIZE-1)) |
| >> PAGE_SHIFT); |
| dst_pte = pfn_pte(pfn, dst_pte); |
| dst_pte = pte_mksmall(dst_pte); |
| } |
| |
| /* All looks good: create a cachable PTE and copy from it */ |
| copy_size = len; |
| bytes_left_on_page = |
| PAGE_SIZE - (((int)source) & (PAGE_SIZE-1)); |
| if (copy_size > bytes_left_on_page) |
| copy_size = bytes_left_on_page; |
| bytes_left_on_page = |
| PAGE_SIZE - (((int)dest) & (PAGE_SIZE-1)); |
| if (copy_size > bytes_left_on_page) |
| copy_size = bytes_left_on_page; |
| memcpy_multicache(dest, source, dst_pte, src_pte, copy_size); |
| |
| /* Release the pages */ |
| put_page(dst_page); |
| put_page(src_page); |
| |
| /* Continue on the next page */ |
| dest += copy_size; |
| source += copy_size; |
| len -= copy_size; |
| } |
| |
| return func(dest, source, len); |
| } |
| |
| void *memcpy(void *to, const void *from, __kernel_size_t n) |
| { |
| if (n < LARGE_COPY_CUTOFF) |
| return (void *)__memcpy_asm(to, from, n); |
| else |
| return (void *)fast_copy(to, from, n, __memcpy_asm); |
| } |
| |
| unsigned long __copy_to_user_inatomic(void __user *to, const void *from, |
| unsigned long n) |
| { |
| if (n < LARGE_COPY_CUTOFF) |
| return __copy_to_user_inatomic_asm(to, from, n); |
| else |
| return fast_copy(to, from, n, __copy_to_user_inatomic_asm); |
| } |
| |
| unsigned long __copy_from_user_inatomic(void *to, const void __user *from, |
| unsigned long n) |
| { |
| if (n < LARGE_COPY_CUTOFF) |
| return __copy_from_user_inatomic_asm(to, from, n); |
| else |
| return fast_copy(to, from, n, __copy_from_user_inatomic_asm); |
| } |
| |
| unsigned long __copy_from_user_zeroing(void *to, const void __user *from, |
| unsigned long n) |
| { |
| if (n < LARGE_COPY_CUTOFF) |
| return __copy_from_user_zeroing_asm(to, from, n); |
| else |
| return fast_copy(to, from, n, __copy_from_user_zeroing_asm); |
| } |
| |
| #endif /* !CHIP_HAS_COHERENT_LOCAL_CACHE() */ |