blob: 9aa1afd1786e3261d59eb7c52e2a5e1c3d5b9bcb [file] [log] [blame]
/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
*/
#include <linux/console.h>
#include <linux/slab.h>
#include <drm/drmP.h>
#include <drm/drm_crtc_helper.h>
#include <drm/radeon_drm.h>
#include <linux/vgaarb.h>
#include <linux/vga_switcheroo.h>
#include <linux/efi.h>
#include "radeon_reg.h"
#include "radeon.h"
#include "atom.h"
static const char radeon_family_name[][16] = {
"R100",
"RV100",
"RS100",
"RV200",
"RS200",
"R200",
"RV250",
"RS300",
"RV280",
"R300",
"R350",
"RV350",
"RV380",
"R420",
"R423",
"RV410",
"RS400",
"RS480",
"RS600",
"RS690",
"RS740",
"RV515",
"R520",
"RV530",
"RV560",
"RV570",
"R580",
"R600",
"RV610",
"RV630",
"RV670",
"RV620",
"RV635",
"RS780",
"RS880",
"RV770",
"RV730",
"RV710",
"RV740",
"CEDAR",
"REDWOOD",
"JUNIPER",
"CYPRESS",
"HEMLOCK",
"PALM",
"SUMO",
"SUMO2",
"BARTS",
"TURKS",
"CAICOS",
"CAYMAN",
"ARUBA",
"TAHITI",
"PITCAIRN",
"VERDE",
"OLAND",
"HAINAN",
"BONAIRE",
"KAVERI",
"KABINI",
"HAWAII",
"LAST",
};
bool radeon_is_px(struct drm_device *dev)
{
struct radeon_device *rdev = dev->dev_private;
if (rdev->flags & RADEON_IS_PX)
return true;
return false;
}
/**
* radeon_program_register_sequence - program an array of registers.
*
* @rdev: radeon_device pointer
* @registers: pointer to the register array
* @array_size: size of the register array
*
* Programs an array or registers with and and or masks.
* This is a helper for setting golden registers.
*/
void radeon_program_register_sequence(struct radeon_device *rdev,
const u32 *registers,
const u32 array_size)
{
u32 tmp, reg, and_mask, or_mask;
int i;
if (array_size % 3)
return;
for (i = 0; i < array_size; i +=3) {
reg = registers[i + 0];
and_mask = registers[i + 1];
or_mask = registers[i + 2];
if (and_mask == 0xffffffff) {
tmp = or_mask;
} else {
tmp = RREG32(reg);
tmp &= ~and_mask;
tmp |= or_mask;
}
WREG32(reg, tmp);
}
}
void radeon_pci_config_reset(struct radeon_device *rdev)
{
pci_write_config_dword(rdev->pdev, 0x7c, RADEON_ASIC_RESET_DATA);
}
/**
* radeon_surface_init - Clear GPU surface registers.
*
* @rdev: radeon_device pointer
*
* Clear GPU surface registers (r1xx-r5xx).
*/
void radeon_surface_init(struct radeon_device *rdev)
{
/* FIXME: check this out */
if (rdev->family < CHIP_R600) {
int i;
for (i = 0; i < RADEON_GEM_MAX_SURFACES; i++) {
if (rdev->surface_regs[i].bo)
radeon_bo_get_surface_reg(rdev->surface_regs[i].bo);
else
radeon_clear_surface_reg(rdev, i);
}
/* enable surfaces */
WREG32(RADEON_SURFACE_CNTL, 0);
}
}
/*
* GPU scratch registers helpers function.
*/
/**
* radeon_scratch_init - Init scratch register driver information.
*
* @rdev: radeon_device pointer
*
* Init CP scratch register driver information (r1xx-r5xx)
*/
void radeon_scratch_init(struct radeon_device *rdev)
{
int i;
/* FIXME: check this out */
if (rdev->family < CHIP_R300) {
rdev->scratch.num_reg = 5;
} else {
rdev->scratch.num_reg = 7;
}
rdev->scratch.reg_base = RADEON_SCRATCH_REG0;
for (i = 0; i < rdev->scratch.num_reg; i++) {
rdev->scratch.free[i] = true;
rdev->scratch.reg[i] = rdev->scratch.reg_base + (i * 4);
}
}
/**
* radeon_scratch_get - Allocate a scratch register
*
* @rdev: radeon_device pointer
* @reg: scratch register mmio offset
*
* Allocate a CP scratch register for use by the driver (all asics).
* Returns 0 on success or -EINVAL on failure.
*/
int radeon_scratch_get(struct radeon_device *rdev, uint32_t *reg)
{
int i;
for (i = 0; i < rdev->scratch.num_reg; i++) {
if (rdev->scratch.free[i]) {
rdev->scratch.free[i] = false;
*reg = rdev->scratch.reg[i];
return 0;
}
}
return -EINVAL;
}
/**
* radeon_scratch_free - Free a scratch register
*
* @rdev: radeon_device pointer
* @reg: scratch register mmio offset
*
* Free a CP scratch register allocated for use by the driver (all asics)
*/
void radeon_scratch_free(struct radeon_device *rdev, uint32_t reg)
{
int i;
for (i = 0; i < rdev->scratch.num_reg; i++) {
if (rdev->scratch.reg[i] == reg) {
rdev->scratch.free[i] = true;
return;
}
}
}
/*
* GPU doorbell aperture helpers function.
*/
/**
* radeon_doorbell_init - Init doorbell driver information.
*
* @rdev: radeon_device pointer
*
* Init doorbell driver information (CIK)
* Returns 0 on success, error on failure.
*/
static int radeon_doorbell_init(struct radeon_device *rdev)
{
/* doorbell bar mapping */
rdev->doorbell.base = pci_resource_start(rdev->pdev, 2);
rdev->doorbell.size = pci_resource_len(rdev->pdev, 2);
rdev->doorbell.num_doorbells = min_t(u32, rdev->doorbell.size / sizeof(u32), RADEON_MAX_DOORBELLS);
if (rdev->doorbell.num_doorbells == 0)
return -EINVAL;
rdev->doorbell.ptr = ioremap(rdev->doorbell.base, rdev->doorbell.num_doorbells * sizeof(u32));
if (rdev->doorbell.ptr == NULL) {
return -ENOMEM;
}
DRM_INFO("doorbell mmio base: 0x%08X\n", (uint32_t)rdev->doorbell.base);
DRM_INFO("doorbell mmio size: %u\n", (unsigned)rdev->doorbell.size);
memset(&rdev->doorbell.used, 0, sizeof(rdev->doorbell.used));
return 0;
}
/**
* radeon_doorbell_fini - Tear down doorbell driver information.
*
* @rdev: radeon_device pointer
*
* Tear down doorbell driver information (CIK)
*/
static void radeon_doorbell_fini(struct radeon_device *rdev)
{
iounmap(rdev->doorbell.ptr);
rdev->doorbell.ptr = NULL;
}
/**
* radeon_doorbell_get - Allocate a doorbell entry
*
* @rdev: radeon_device pointer
* @doorbell: doorbell index
*
* Allocate a doorbell for use by the driver (all asics).
* Returns 0 on success or -EINVAL on failure.
*/
int radeon_doorbell_get(struct radeon_device *rdev, u32 *doorbell)
{
unsigned long offset = find_first_zero_bit(rdev->doorbell.used, rdev->doorbell.num_doorbells);
if (offset < rdev->doorbell.num_doorbells) {
__set_bit(offset, rdev->doorbell.used);
*doorbell = offset;
return 0;
} else {
return -EINVAL;
}
}
/**
* radeon_doorbell_free - Free a doorbell entry
*
* @rdev: radeon_device pointer
* @doorbell: doorbell index
*
* Free a doorbell allocated for use by the driver (all asics)
*/
void radeon_doorbell_free(struct radeon_device *rdev, u32 doorbell)
{
if (doorbell < rdev->doorbell.num_doorbells)
__clear_bit(doorbell, rdev->doorbell.used);
}
/*
* radeon_wb_*()
* Writeback is the the method by which the the GPU updates special pages
* in memory with the status of certain GPU events (fences, ring pointers,
* etc.).
*/
/**
* radeon_wb_disable - Disable Writeback
*
* @rdev: radeon_device pointer
*
* Disables Writeback (all asics). Used for suspend.
*/
void radeon_wb_disable(struct radeon_device *rdev)
{
rdev->wb.enabled = false;
}
/**
* radeon_wb_fini - Disable Writeback and free memory
*
* @rdev: radeon_device pointer
*
* Disables Writeback and frees the Writeback memory (all asics).
* Used at driver shutdown.
*/
void radeon_wb_fini(struct radeon_device *rdev)
{
radeon_wb_disable(rdev);
if (rdev->wb.wb_obj) {
if (!radeon_bo_reserve(rdev->wb.wb_obj, false)) {
radeon_bo_kunmap(rdev->wb.wb_obj);
radeon_bo_unpin(rdev->wb.wb_obj);
radeon_bo_unreserve(rdev->wb.wb_obj);
}
radeon_bo_unref(&rdev->wb.wb_obj);
rdev->wb.wb = NULL;
rdev->wb.wb_obj = NULL;
}
}
/**
* radeon_wb_init- Init Writeback driver info and allocate memory
*
* @rdev: radeon_device pointer
*
* Disables Writeback and frees the Writeback memory (all asics).
* Used at driver startup.
* Returns 0 on success or an -error on failure.
*/
int radeon_wb_init(struct radeon_device *rdev)
{
int r;
if (rdev->wb.wb_obj == NULL) {
r = radeon_bo_create(rdev, RADEON_GPU_PAGE_SIZE, PAGE_SIZE, true,
RADEON_GEM_DOMAIN_GTT, NULL, &rdev->wb.wb_obj);
if (r) {
dev_warn(rdev->dev, "(%d) create WB bo failed\n", r);
return r;
}
r = radeon_bo_reserve(rdev->wb.wb_obj, false);
if (unlikely(r != 0)) {
radeon_wb_fini(rdev);
return r;
}
r = radeon_bo_pin(rdev->wb.wb_obj, RADEON_GEM_DOMAIN_GTT,
&rdev->wb.gpu_addr);
if (r) {
radeon_bo_unreserve(rdev->wb.wb_obj);
dev_warn(rdev->dev, "(%d) pin WB bo failed\n", r);
radeon_wb_fini(rdev);
return r;
}
r = radeon_bo_kmap(rdev->wb.wb_obj, (void **)&rdev->wb.wb);
radeon_bo_unreserve(rdev->wb.wb_obj);
if (r) {
dev_warn(rdev->dev, "(%d) map WB bo failed\n", r);
radeon_wb_fini(rdev);
return r;
}
}
/* clear wb memory */
memset((char *)rdev->wb.wb, 0, RADEON_GPU_PAGE_SIZE);
/* disable event_write fences */
rdev->wb.use_event = false;
/* disabled via module param */
if (radeon_no_wb == 1) {
rdev->wb.enabled = false;
} else {
if (rdev->flags & RADEON_IS_AGP) {
/* often unreliable on AGP */
rdev->wb.enabled = false;
} else if (rdev->family < CHIP_R300) {
/* often unreliable on pre-r300 */
rdev->wb.enabled = false;
} else {
rdev->wb.enabled = true;
/* event_write fences are only available on r600+ */
if (rdev->family >= CHIP_R600) {
rdev->wb.use_event = true;
}
}
}
/* always use writeback/events on NI, APUs */
if (rdev->family >= CHIP_PALM) {
rdev->wb.enabled = true;
rdev->wb.use_event = true;
}
dev_info(rdev->dev, "WB %sabled\n", rdev->wb.enabled ? "en" : "dis");
return 0;
}
/**
* radeon_vram_location - try to find VRAM location
* @rdev: radeon device structure holding all necessary informations
* @mc: memory controller structure holding memory informations
* @base: base address at which to put VRAM
*
* Function will place try to place VRAM at base address provided
* as parameter (which is so far either PCI aperture address or
* for IGP TOM base address).
*
* If there is not enough space to fit the unvisible VRAM in the 32bits
* address space then we limit the VRAM size to the aperture.
*
* If we are using AGP and if the AGP aperture doesn't allow us to have
* room for all the VRAM than we restrict the VRAM to the PCI aperture
* size and print a warning.
*
* This function will never fails, worst case are limiting VRAM.
*
* Note: GTT start, end, size should be initialized before calling this
* function on AGP platform.
*
* Note: We don't explicitly enforce VRAM start to be aligned on VRAM size,
* this shouldn't be a problem as we are using the PCI aperture as a reference.
* Otherwise this would be needed for rv280, all r3xx, and all r4xx, but
* not IGP.
*
* Note: we use mc_vram_size as on some board we need to program the mc to
* cover the whole aperture even if VRAM size is inferior to aperture size
* Novell bug 204882 + along with lots of ubuntu ones
*
* Note: when limiting vram it's safe to overwritte real_vram_size because
* we are not in case where real_vram_size is inferior to mc_vram_size (ie
* note afected by bogus hw of Novell bug 204882 + along with lots of ubuntu
* ones)
*
* Note: IGP TOM addr should be the same as the aperture addr, we don't
* explicitly check for that thought.
*
* FIXME: when reducing VRAM size align new size on power of 2.
*/
void radeon_vram_location(struct radeon_device *rdev, struct radeon_mc *mc, u64 base)
{
uint64_t limit = (uint64_t)radeon_vram_limit << 20;
mc->vram_start = base;
if (mc->mc_vram_size > (rdev->mc.mc_mask - base + 1)) {
dev_warn(rdev->dev, "limiting VRAM to PCI aperture size\n");
mc->real_vram_size = mc->aper_size;
mc->mc_vram_size = mc->aper_size;
}
mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
if (rdev->flags & RADEON_IS_AGP && mc->vram_end > mc->gtt_start && mc->vram_start <= mc->gtt_end) {
dev_warn(rdev->dev, "limiting VRAM to PCI aperture size\n");
mc->real_vram_size = mc->aper_size;
mc->mc_vram_size = mc->aper_size;
}
mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
if (limit && limit < mc->real_vram_size)
mc->real_vram_size = limit;
dev_info(rdev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
mc->mc_vram_size >> 20, mc->vram_start,
mc->vram_end, mc->real_vram_size >> 20);
}
/**
* radeon_gtt_location - try to find GTT location
* @rdev: radeon device structure holding all necessary informations
* @mc: memory controller structure holding memory informations
*
* Function will place try to place GTT before or after VRAM.
*
* If GTT size is bigger than space left then we ajust GTT size.
* Thus function will never fails.
*
* FIXME: when reducing GTT size align new size on power of 2.
*/
void radeon_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc)
{
u64 size_af, size_bf;
size_af = ((rdev->mc.mc_mask - mc->vram_end) + mc->gtt_base_align) & ~mc->gtt_base_align;
size_bf = mc->vram_start & ~mc->gtt_base_align;
if (size_bf > size_af) {
if (mc->gtt_size > size_bf) {
dev_warn(rdev->dev, "limiting GTT\n");
mc->gtt_size = size_bf;
}
mc->gtt_start = (mc->vram_start & ~mc->gtt_base_align) - mc->gtt_size;
} else {
if (mc->gtt_size > size_af) {
dev_warn(rdev->dev, "limiting GTT\n");
mc->gtt_size = size_af;
}
mc->gtt_start = (mc->vram_end + 1 + mc->gtt_base_align) & ~mc->gtt_base_align;
}
mc->gtt_end = mc->gtt_start + mc->gtt_size - 1;
dev_info(rdev->dev, "GTT: %lluM 0x%016llX - 0x%016llX\n",
mc->gtt_size >> 20, mc->gtt_start, mc->gtt_end);
}
/*
* GPU helpers function.
*/
/**
* radeon_card_posted - check if the hw has already been initialized
*
* @rdev: radeon_device pointer
*
* Check if the asic has been initialized (all asics).
* Used at driver startup.
* Returns true if initialized or false if not.
*/
bool radeon_card_posted(struct radeon_device *rdev)
{
uint32_t reg;
/* required for EFI mode on macbook2,1 which uses an r5xx asic */
if (efi_enabled(EFI_BOOT) &&
(rdev->pdev->subsystem_vendor == PCI_VENDOR_ID_APPLE) &&
(rdev->family < CHIP_R600))
return false;
if (ASIC_IS_NODCE(rdev))
goto check_memsize;
/* first check CRTCs */
if (ASIC_IS_DCE4(rdev)) {
reg = RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC0_REGISTER_OFFSET) |
RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC1_REGISTER_OFFSET);
if (rdev->num_crtc >= 4) {
reg |= RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC2_REGISTER_OFFSET) |
RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC3_REGISTER_OFFSET);
}
if (rdev->num_crtc >= 6) {
reg |= RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC4_REGISTER_OFFSET) |
RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC5_REGISTER_OFFSET);
}
if (reg & EVERGREEN_CRTC_MASTER_EN)
return true;
} else if (ASIC_IS_AVIVO(rdev)) {
reg = RREG32(AVIVO_D1CRTC_CONTROL) |
RREG32(AVIVO_D2CRTC_CONTROL);
if (reg & AVIVO_CRTC_EN) {
return true;
}
} else {
reg = RREG32(RADEON_CRTC_GEN_CNTL) |
RREG32(RADEON_CRTC2_GEN_CNTL);
if (reg & RADEON_CRTC_EN) {
return true;
}
}
check_memsize:
/* then check MEM_SIZE, in case the crtcs are off */
if (rdev->family >= CHIP_R600)
reg = RREG32(R600_CONFIG_MEMSIZE);
else
reg = RREG32(RADEON_CONFIG_MEMSIZE);
if (reg)
return true;
return false;
}
/**
* radeon_update_bandwidth_info - update display bandwidth params
*
* @rdev: radeon_device pointer
*
* Used when sclk/mclk are switched or display modes are set.
* params are used to calculate display watermarks (all asics)
*/
void radeon_update_bandwidth_info(struct radeon_device *rdev)
{
fixed20_12 a;
u32 sclk = rdev->pm.current_sclk;
u32 mclk = rdev->pm.current_mclk;
/* sclk/mclk in Mhz */
a.full = dfixed_const(100);
rdev->pm.sclk.full = dfixed_const(sclk);
rdev->pm.sclk.full = dfixed_div(rdev->pm.sclk, a);
rdev->pm.mclk.full = dfixed_const(mclk);
rdev->pm.mclk.full = dfixed_div(rdev->pm.mclk, a);
if (rdev->flags & RADEON_IS_IGP) {
a.full = dfixed_const(16);
/* core_bandwidth = sclk(Mhz) * 16 */
rdev->pm.core_bandwidth.full = dfixed_div(rdev->pm.sclk, a);
}
}
/**
* radeon_boot_test_post_card - check and possibly initialize the hw
*
* @rdev: radeon_device pointer
*
* Check if the asic is initialized and if not, attempt to initialize
* it (all asics).
* Returns true if initialized or false if not.
*/
bool radeon_boot_test_post_card(struct radeon_device *rdev)
{
if (radeon_card_posted(rdev))
return true;
if (rdev->bios) {
DRM_INFO("GPU not posted. posting now...\n");
if (rdev->is_atom_bios)
atom_asic_init(rdev->mode_info.atom_context);
else
radeon_combios_asic_init(rdev->ddev);
return true;
} else {
dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n");
return false;
}
}
/**
* radeon_dummy_page_init - init dummy page used by the driver
*
* @rdev: radeon_device pointer
*
* Allocate the dummy page used by the driver (all asics).
* This dummy page is used by the driver as a filler for gart entries
* when pages are taken out of the GART
* Returns 0 on sucess, -ENOMEM on failure.
*/
int radeon_dummy_page_init(struct radeon_device *rdev)
{
if (rdev->dummy_page.page)
return 0;
rdev->dummy_page.page = alloc_page(GFP_DMA32 | GFP_KERNEL | __GFP_ZERO);
if (rdev->dummy_page.page == NULL)
return -ENOMEM;
rdev->dummy_page.addr = pci_map_page(rdev->pdev, rdev->dummy_page.page,
0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(rdev->pdev, rdev->dummy_page.addr)) {
dev_err(&rdev->pdev->dev, "Failed to DMA MAP the dummy page\n");
__free_page(rdev->dummy_page.page);
rdev->dummy_page.page = NULL;
return -ENOMEM;
}
return 0;
}
/**
* radeon_dummy_page_fini - free dummy page used by the driver
*
* @rdev: radeon_device pointer
*
* Frees the dummy page used by the driver (all asics).
*/
void radeon_dummy_page_fini(struct radeon_device *rdev)
{
if (rdev->dummy_page.page == NULL)
return;
pci_unmap_page(rdev->pdev, rdev->dummy_page.addr,
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
__free_page(rdev->dummy_page.page);
rdev->dummy_page.page = NULL;
}
/* ATOM accessor methods */
/*
* ATOM is an interpreted byte code stored in tables in the vbios. The
* driver registers callbacks to access registers and the interpreter
* in the driver parses the tables and executes then to program specific
* actions (set display modes, asic init, etc.). See radeon_atombios.c,
* atombios.h, and atom.c
*/
/**
* cail_pll_read - read PLL register
*
* @info: atom card_info pointer
* @reg: PLL register offset
*
* Provides a PLL register accessor for the atom interpreter (r4xx+).
* Returns the value of the PLL register.
*/
static uint32_t cail_pll_read(struct card_info *info, uint32_t reg)
{
struct radeon_device *rdev = info->dev->dev_private;
uint32_t r;
r = rdev->pll_rreg(rdev, reg);
return r;
}
/**
* cail_pll_write - write PLL register
*
* @info: atom card_info pointer
* @reg: PLL register offset
* @val: value to write to the pll register
*
* Provides a PLL register accessor for the atom interpreter (r4xx+).
*/
static void cail_pll_write(struct card_info *info, uint32_t reg, uint32_t val)
{
struct radeon_device *rdev = info->dev->dev_private;
rdev->pll_wreg(rdev, reg, val);
}
/**
* cail_mc_read - read MC (Memory Controller) register
*
* @info: atom card_info pointer
* @reg: MC register offset
*
* Provides an MC register accessor for the atom interpreter (r4xx+).
* Returns the value of the MC register.
*/
static uint32_t cail_mc_read(struct card_info *info, uint32_t reg)
{
struct radeon_device *rdev = info->dev->dev_private;
uint32_t r;
r = rdev->mc_rreg(rdev, reg);
return r;
}
/**
* cail_mc_write - write MC (Memory Controller) register
*
* @info: atom card_info pointer
* @reg: MC register offset
* @val: value to write to the pll register
*
* Provides a MC register accessor for the atom interpreter (r4xx+).
*/
static void cail_mc_write(struct card_info *info, uint32_t reg, uint32_t val)
{
struct radeon_device *rdev = info->dev->dev_private;
rdev->mc_wreg(rdev, reg, val);
}
/**
* cail_reg_write - write MMIO register
*
* @info: atom card_info pointer
* @reg: MMIO register offset
* @val: value to write to the pll register
*
* Provides a MMIO register accessor for the atom interpreter (r4xx+).
*/
static void cail_reg_write(struct card_info *info, uint32_t reg, uint32_t val)
{
struct radeon_device *rdev = info->dev->dev_private;
WREG32(reg*4, val);
}
/**
* cail_reg_read - read MMIO register
*
* @info: atom card_info pointer
* @reg: MMIO register offset
*
* Provides an MMIO register accessor for the atom interpreter (r4xx+).
* Returns the value of the MMIO register.
*/
static uint32_t cail_reg_read(struct card_info *info, uint32_t reg)
{
struct radeon_device *rdev = info->dev->dev_private;
uint32_t r;
r = RREG32(reg*4);
return r;
}
/**
* cail_ioreg_write - write IO register
*
* @info: atom card_info pointer
* @reg: IO register offset
* @val: value to write to the pll register
*
* Provides a IO register accessor for the atom interpreter (r4xx+).
*/
static void cail_ioreg_write(struct card_info *info, uint32_t reg, uint32_t val)
{
struct radeon_device *rdev = info->dev->dev_private;
WREG32_IO(reg*4, val);
}
/**
* cail_ioreg_read - read IO register
*
* @info: atom card_info pointer
* @reg: IO register offset
*
* Provides an IO register accessor for the atom interpreter (r4xx+).
* Returns the value of the IO register.
*/
static uint32_t cail_ioreg_read(struct card_info *info, uint32_t reg)
{
struct radeon_device *rdev = info->dev->dev_private;
uint32_t r;
r = RREG32_IO(reg*4);
return r;
}
/**
* radeon_atombios_init - init the driver info and callbacks for atombios
*
* @rdev: radeon_device pointer
*
* Initializes the driver info and register access callbacks for the
* ATOM interpreter (r4xx+).
* Returns 0 on sucess, -ENOMEM on failure.
* Called at driver startup.
*/
int radeon_atombios_init(struct radeon_device *rdev)
{
struct card_info *atom_card_info =
kzalloc(sizeof(struct card_info), GFP_KERNEL);
if (!atom_card_info)
return -ENOMEM;
rdev->mode_info.atom_card_info = atom_card_info;
atom_card_info->dev = rdev->ddev;
atom_card_info->reg_read = cail_reg_read;
atom_card_info->reg_write = cail_reg_write;
/* needed for iio ops */
if (rdev->rio_mem) {
atom_card_info->ioreg_read = cail_ioreg_read;
atom_card_info->ioreg_write = cail_ioreg_write;
} else {
DRM_ERROR("Unable to find PCI I/O BAR; using MMIO for ATOM IIO\n");
atom_card_info->ioreg_read = cail_reg_read;
atom_card_info->ioreg_write = cail_reg_write;
}
atom_card_info->mc_read = cail_mc_read;
atom_card_info->mc_write = cail_mc_write;
atom_card_info->pll_read = cail_pll_read;
atom_card_info->pll_write = cail_pll_write;
rdev->mode_info.atom_context = atom_parse(atom_card_info, rdev->bios);
if (!rdev->mode_info.atom_context) {
radeon_atombios_fini(rdev);
return -ENOMEM;
}
mutex_init(&rdev->mode_info.atom_context->mutex);
radeon_atom_initialize_bios_scratch_regs(rdev->ddev);
atom_allocate_fb_scratch(rdev->mode_info.atom_context);
return 0;
}
/**
* radeon_atombios_fini - free the driver info and callbacks for atombios
*
* @rdev: radeon_device pointer
*
* Frees the driver info and register access callbacks for the ATOM
* interpreter (r4xx+).
* Called at driver shutdown.
*/
void radeon_atombios_fini(struct radeon_device *rdev)
{
if (rdev->mode_info.atom_context) {
kfree(rdev->mode_info.atom_context->scratch);
}
kfree(rdev->mode_info.atom_context);
rdev->mode_info.atom_context = NULL;
kfree(rdev->mode_info.atom_card_info);
rdev->mode_info.atom_card_info = NULL;
}
/* COMBIOS */
/*
* COMBIOS is the bios format prior to ATOM. It provides
* command tables similar to ATOM, but doesn't have a unified
* parser. See radeon_combios.c
*/
/**
* radeon_combios_init - init the driver info for combios
*
* @rdev: radeon_device pointer
*
* Initializes the driver info for combios (r1xx-r3xx).
* Returns 0 on sucess.
* Called at driver startup.
*/
int radeon_combios_init(struct radeon_device *rdev)
{
radeon_combios_initialize_bios_scratch_regs(rdev->ddev);
return 0;
}
/**
* radeon_combios_fini - free the driver info for combios
*
* @rdev: radeon_device pointer
*
* Frees the driver info for combios (r1xx-r3xx).
* Called at driver shutdown.
*/
void radeon_combios_fini(struct radeon_device *rdev)
{
}
/* if we get transitioned to only one device, take VGA back */
/**
* radeon_vga_set_decode - enable/disable vga decode
*
* @cookie: radeon_device pointer
* @state: enable/disable vga decode
*
* Enable/disable vga decode (all asics).
* Returns VGA resource flags.
*/
static unsigned int radeon_vga_set_decode(void *cookie, bool state)
{
struct radeon_device *rdev = cookie;
radeon_vga_set_state(rdev, state);
if (state)
return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
else
return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
}
/**
* radeon_check_pot_argument - check that argument is a power of two
*
* @arg: value to check
*
* Validates that a certain argument is a power of two (all asics).
* Returns true if argument is valid.
*/
static bool radeon_check_pot_argument(int arg)
{
return (arg & (arg - 1)) == 0;
}
/**
* radeon_check_arguments - validate module params
*
* @rdev: radeon_device pointer
*
* Validates certain module parameters and updates
* the associated values used by the driver (all asics).
*/
static void radeon_check_arguments(struct radeon_device *rdev)
{
/* vramlimit must be a power of two */
if (!radeon_check_pot_argument(radeon_vram_limit)) {
dev_warn(rdev->dev, "vram limit (%d) must be a power of 2\n",
radeon_vram_limit);
radeon_vram_limit = 0;
}
if (radeon_gart_size == -1) {
/* default to a larger gart size on newer asics */
if (rdev->family >= CHIP_RV770)
radeon_gart_size = 1024;
else
radeon_gart_size = 512;
}
/* gtt size must be power of two and greater or equal to 32M */
if (radeon_gart_size < 32) {
dev_warn(rdev->dev, "gart size (%d) too small\n",
radeon_gart_size);
if (rdev->family >= CHIP_RV770)
radeon_gart_size = 1024;
else
radeon_gart_size = 512;
} else if (!radeon_check_pot_argument(radeon_gart_size)) {
dev_warn(rdev->dev, "gart size (%d) must be a power of 2\n",
radeon_gart_size);
if (rdev->family >= CHIP_RV770)
radeon_gart_size = 1024;
else
radeon_gart_size = 512;
}
rdev->mc.gtt_size = (uint64_t)radeon_gart_size << 20;
/* AGP mode can only be -1, 1, 2, 4, 8 */
switch (radeon_agpmode) {
case -1:
case 0:
case 1:
case 2:
case 4:
case 8:
break;
default:
dev_warn(rdev->dev, "invalid AGP mode %d (valid mode: "
"-1, 0, 1, 2, 4, 8)\n", radeon_agpmode);
radeon_agpmode = 0;
break;
}
}
/**
* radeon_switcheroo_quirk_long_wakeup - return true if longer d3 delay is
* needed for waking up.
*
* @pdev: pci dev pointer
*/
static bool radeon_switcheroo_quirk_long_wakeup(struct pci_dev *pdev)
{
/* 6600m in a macbook pro */
if (pdev->subsystem_vendor == PCI_VENDOR_ID_APPLE &&
pdev->subsystem_device == 0x00e2) {
printk(KERN_INFO "radeon: quirking longer d3 wakeup delay\n");
return true;
}
return false;
}
/**
* radeon_switcheroo_set_state - set switcheroo state
*
* @pdev: pci dev pointer
* @state: vga switcheroo state
*
* Callback for the switcheroo driver. Suspends or resumes the
* the asics before or after it is powered up using ACPI methods.
*/
static void radeon_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
{
struct drm_device *dev = pci_get_drvdata(pdev);
if (radeon_is_px(dev) && state == VGA_SWITCHEROO_OFF)
return;
if (state == VGA_SWITCHEROO_ON) {
unsigned d3_delay = dev->pdev->d3_delay;
printk(KERN_INFO "radeon: switched on\n");
/* don't suspend or resume card normally */
dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
if (d3_delay < 20 && radeon_switcheroo_quirk_long_wakeup(pdev))
dev->pdev->d3_delay = 20;
radeon_resume_kms(dev, true, true);
dev->pdev->d3_delay = d3_delay;
dev->switch_power_state = DRM_SWITCH_POWER_ON;
drm_kms_helper_poll_enable(dev);
} else {
printk(KERN_INFO "radeon: switched off\n");
drm_kms_helper_poll_disable(dev);
dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
radeon_suspend_kms(dev, true, true);
dev->switch_power_state = DRM_SWITCH_POWER_OFF;
}
}
/**
* radeon_switcheroo_can_switch - see if switcheroo state can change
*
* @pdev: pci dev pointer
*
* Callback for the switcheroo driver. Check of the switcheroo
* state can be changed.
* Returns true if the state can be changed, false if not.
*/
static bool radeon_switcheroo_can_switch(struct pci_dev *pdev)
{
struct drm_device *dev = pci_get_drvdata(pdev);
/*
* FIXME: open_count is protected by drm_global_mutex but that would lead to
* locking inversion with the driver load path. And the access here is
* completely racy anyway. So don't bother with locking for now.
*/
return dev->open_count == 0;
}
static const struct vga_switcheroo_client_ops radeon_switcheroo_ops = {
.set_gpu_state = radeon_switcheroo_set_state,
.reprobe = NULL,
.can_switch = radeon_switcheroo_can_switch,
};
/**
* radeon_device_init - initialize the driver
*
* @rdev: radeon_device pointer
* @pdev: drm dev pointer
* @pdev: pci dev pointer
* @flags: driver flags
*
* Initializes the driver info and hw (all asics).
* Returns 0 for success or an error on failure.
* Called at driver startup.
*/
int radeon_device_init(struct radeon_device *rdev,
struct drm_device *ddev,
struct pci_dev *pdev,
uint32_t flags)
{
int r, i;
int dma_bits;
bool runtime = false;
rdev->shutdown = false;
rdev->dev = &pdev->dev;
rdev->ddev = ddev;
rdev->pdev = pdev;
rdev->flags = flags;
rdev->family = flags & RADEON_FAMILY_MASK;
rdev->is_atom_bios = false;
rdev->usec_timeout = RADEON_MAX_USEC_TIMEOUT;
rdev->mc.gtt_size = 512 * 1024 * 1024;
rdev->accel_working = false;
/* set up ring ids */
for (i = 0; i < RADEON_NUM_RINGS; i++) {
rdev->ring[i].idx = i;
}
DRM_INFO("initializing kernel modesetting (%s 0x%04X:0x%04X 0x%04X:0x%04X).\n",
radeon_family_name[rdev->family], pdev->vendor, pdev->device,
pdev->subsystem_vendor, pdev->subsystem_device);
/* mutex initialization are all done here so we
* can recall function without having locking issues */
mutex_init(&rdev->ring_lock);
mutex_init(&rdev->dc_hw_i2c_mutex);
atomic_set(&rdev->ih.lock, 0);
mutex_init(&rdev->gem.mutex);
mutex_init(&rdev->pm.mutex);
mutex_init(&rdev->gpu_clock_mutex);
mutex_init(&rdev->srbm_mutex);
init_rwsem(&rdev->pm.mclk_lock);
init_rwsem(&rdev->exclusive_lock);
init_waitqueue_head(&rdev->irq.vblank_queue);
r = radeon_gem_init(rdev);
if (r)
return r;
/* Adjust VM size here.
* Currently set to 4GB ((1 << 20) 4k pages).
* Max GPUVM size for cayman and SI is 40 bits.
*/
rdev->vm_manager.max_pfn = 1 << 20;
/* Set asic functions */
r = radeon_asic_init(rdev);
if (r)
return r;
radeon_check_arguments(rdev);
/* all of the newer IGP chips have an internal gart
* However some rs4xx report as AGP, so remove that here.
*/
if ((rdev->family >= CHIP_RS400) &&
(rdev->flags & RADEON_IS_IGP)) {
rdev->flags &= ~RADEON_IS_AGP;
}
if (rdev->flags & RADEON_IS_AGP && radeon_agpmode == -1) {
radeon_agp_disable(rdev);
}
/* Set the internal MC address mask
* This is the max address of the GPU's
* internal address space.
*/
if (rdev->family >= CHIP_CAYMAN)
rdev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */
else if (rdev->family >= CHIP_CEDAR)
rdev->mc.mc_mask = 0xfffffffffULL; /* 36 bit MC */
else
rdev->mc.mc_mask = 0xffffffffULL; /* 32 bit MC */
/* set DMA mask + need_dma32 flags.
* PCIE - can handle 40-bits.
* IGP - can handle 40-bits
* AGP - generally dma32 is safest
* PCI - dma32 for legacy pci gart, 40 bits on newer asics
*/
rdev->need_dma32 = false;
if (rdev->flags & RADEON_IS_AGP)
rdev->need_dma32 = true;
if ((rdev->flags & RADEON_IS_PCI) &&
(rdev->family <= CHIP_RS740))
rdev->need_dma32 = true;
dma_bits = rdev->need_dma32 ? 32 : 40;
r = pci_set_dma_mask(rdev->pdev, DMA_BIT_MASK(dma_bits));
if (r) {
rdev->need_dma32 = true;
dma_bits = 32;
printk(KERN_WARNING "radeon: No suitable DMA available.\n");
}
r = pci_set_consistent_dma_mask(rdev->pdev, DMA_BIT_MASK(dma_bits));
if (r) {
pci_set_consistent_dma_mask(rdev->pdev, DMA_BIT_MASK(32));
printk(KERN_WARNING "radeon: No coherent DMA available.\n");
}
/* Registers mapping */
/* TODO: block userspace mapping of io register */
spin_lock_init(&rdev->mmio_idx_lock);
spin_lock_init(&rdev->smc_idx_lock);
spin_lock_init(&rdev->pll_idx_lock);
spin_lock_init(&rdev->mc_idx_lock);
spin_lock_init(&rdev->pcie_idx_lock);
spin_lock_init(&rdev->pciep_idx_lock);
spin_lock_init(&rdev->pif_idx_lock);
spin_lock_init(&rdev->cg_idx_lock);
spin_lock_init(&rdev->uvd_idx_lock);
spin_lock_init(&rdev->rcu_idx_lock);
spin_lock_init(&rdev->didt_idx_lock);
spin_lock_init(&rdev->end_idx_lock);
if (rdev->family >= CHIP_BONAIRE) {
rdev->rmmio_base = pci_resource_start(rdev->pdev, 5);
rdev->rmmio_size = pci_resource_len(rdev->pdev, 5);
} else {
rdev->rmmio_base = pci_resource_start(rdev->pdev, 2);
rdev->rmmio_size = pci_resource_len(rdev->pdev, 2);
}
rdev->rmmio = ioremap(rdev->rmmio_base, rdev->rmmio_size);
if (rdev->rmmio == NULL) {
return -ENOMEM;
}
DRM_INFO("register mmio base: 0x%08X\n", (uint32_t)rdev->rmmio_base);
DRM_INFO("register mmio size: %u\n", (unsigned)rdev->rmmio_size);
/* doorbell bar mapping */
if (rdev->family >= CHIP_BONAIRE)
radeon_doorbell_init(rdev);
/* io port mapping */
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
if (pci_resource_flags(rdev->pdev, i) & IORESOURCE_IO) {
rdev->rio_mem_size = pci_resource_len(rdev->pdev, i);
rdev->rio_mem = pci_iomap(rdev->pdev, i, rdev->rio_mem_size);
break;
}
}
if (rdev->rio_mem == NULL)
DRM_ERROR("Unable to find PCI I/O BAR\n");
/* if we have > 1 VGA cards, then disable the radeon VGA resources */
/* this will fail for cards that aren't VGA class devices, just
* ignore it */
vga_client_register(rdev->pdev, rdev, NULL, radeon_vga_set_decode);
if (rdev->flags & RADEON_IS_PX)
runtime = true;
vga_switcheroo_register_client(rdev->pdev, &radeon_switcheroo_ops, runtime);
if (runtime)
vga_switcheroo_init_domain_pm_ops(rdev->dev, &rdev->vga_pm_domain);
r = radeon_init(rdev);
if (r)
return r;
r = radeon_ib_ring_tests(rdev);
if (r)
DRM_ERROR("ib ring test failed (%d).\n", r);
r = radeon_gem_debugfs_init(rdev);
if (r) {
DRM_ERROR("registering gem debugfs failed (%d).\n", r);
}
if (rdev->flags & RADEON_IS_AGP && !rdev->accel_working) {
/* Acceleration not working on AGP card try again
* with fallback to PCI or PCIE GART
*/
radeon_asic_reset(rdev);
radeon_fini(rdev);
radeon_agp_disable(rdev);
r = radeon_init(rdev);
if (r)
return r;
}
if ((radeon_testing & 1)) {
if (rdev->accel_working)
radeon_test_moves(rdev);
else
DRM_INFO("radeon: acceleration disabled, skipping move tests\n");
}
if ((radeon_testing & 2)) {
if (rdev->accel_working)
radeon_test_syncing(rdev);
else
DRM_INFO("radeon: acceleration disabled, skipping sync tests\n");
}
if (radeon_benchmarking) {
if (rdev->accel_working)
radeon_benchmark(rdev, radeon_benchmarking);
else
DRM_INFO("radeon: acceleration disabled, skipping benchmarks\n");
}
return 0;
}
static void radeon_debugfs_remove_files(struct radeon_device *rdev);
/**
* radeon_device_fini - tear down the driver
*
* @rdev: radeon_device pointer
*
* Tear down the driver info (all asics).
* Called at driver shutdown.
*/
void radeon_device_fini(struct radeon_device *rdev)
{
DRM_INFO("radeon: finishing device.\n");
rdev->shutdown = true;
/* evict vram memory */
radeon_bo_evict_vram(rdev);
radeon_fini(rdev);
vga_switcheroo_unregister_client(rdev->pdev);
vga_client_register(rdev->pdev, NULL, NULL, NULL);
if (rdev->rio_mem)
pci_iounmap(rdev->pdev, rdev->rio_mem);
rdev->rio_mem = NULL;
iounmap(rdev->rmmio);
rdev->rmmio = NULL;
if (rdev->family >= CHIP_BONAIRE)
radeon_doorbell_fini(rdev);
radeon_debugfs_remove_files(rdev);
}
/*
* Suspend & resume.
*/
/**
* radeon_suspend_kms - initiate device suspend
*
* @pdev: drm dev pointer
* @state: suspend state
*
* Puts the hw in the suspend state (all asics).
* Returns 0 for success or an error on failure.
* Called at driver suspend.
*/
int radeon_suspend_kms(struct drm_device *dev, bool suspend, bool fbcon)
{
struct radeon_device *rdev;
struct drm_crtc *crtc;
struct drm_connector *connector;
int i, r;
bool force_completion = false;
if (dev == NULL || dev->dev_private == NULL) {
return -ENODEV;
}
rdev = dev->dev_private;
if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
return 0;
drm_kms_helper_poll_disable(dev);
/* turn off display hw */
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
drm_helper_connector_dpms(connector, DRM_MODE_DPMS_OFF);
}
/* unpin the front buffers */
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
struct radeon_framebuffer *rfb = to_radeon_framebuffer(crtc->primary->fb);
struct radeon_bo *robj;
if (rfb == NULL || rfb->obj == NULL) {
continue;
}
robj = gem_to_radeon_bo(rfb->obj);
/* don't unpin kernel fb objects */
if (!radeon_fbdev_robj_is_fb(rdev, robj)) {
r = radeon_bo_reserve(robj, false);
if (r == 0) {
radeon_bo_unpin(robj);
radeon_bo_unreserve(robj);
}
}
}
/* evict vram memory */
radeon_bo_evict_vram(rdev);
/* wait for gpu to finish processing current batch */
for (i = 0; i < RADEON_NUM_RINGS; i++) {
r = radeon_fence_wait_empty(rdev, i);
if (r) {
/* delay GPU reset to resume */
force_completion = true;
}
}
if (force_completion) {
radeon_fence_driver_force_completion(rdev);
}
radeon_save_bios_scratch_regs(rdev);
radeon_suspend(rdev);
radeon_hpd_fini(rdev);
/* evict remaining vram memory */
radeon_bo_evict_vram(rdev);
radeon_agp_suspend(rdev);
pci_save_state(dev->pdev);
if (suspend) {
/* Shut down the device */
pci_disable_device(dev->pdev);
pci_set_power_state(dev->pdev, PCI_D3hot);
}
if (fbcon) {
console_lock();
radeon_fbdev_set_suspend(rdev, 1);
console_unlock();
}
return 0;
}
/**
* radeon_resume_kms - initiate device resume
*
* @pdev: drm dev pointer
*
* Bring the hw back to operating state (all asics).
* Returns 0 for success or an error on failure.
* Called at driver resume.
*/
int radeon_resume_kms(struct drm_device *dev, bool resume, bool fbcon)
{
struct drm_connector *connector;
struct radeon_device *rdev = dev->dev_private;
int r;
if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
return 0;
if (fbcon) {
console_lock();
}
if (resume) {
pci_set_power_state(dev->pdev, PCI_D0);
pci_restore_state(dev->pdev);
if (pci_enable_device(dev->pdev)) {
if (fbcon)
console_unlock();
return -1;
}
}
/* resume AGP if in use */
radeon_agp_resume(rdev);
radeon_resume(rdev);
r = radeon_ib_ring_tests(rdev);
if (r)
DRM_ERROR("ib ring test failed (%d).\n", r);
if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) {
/* do dpm late init */
r = radeon_pm_late_init(rdev);
if (r) {
rdev->pm.dpm_enabled = false;
DRM_ERROR("radeon_pm_late_init failed, disabling dpm\n");
}
} else {
/* resume old pm late */
radeon_pm_resume(rdev);
}
radeon_restore_bios_scratch_regs(rdev);
if (fbcon) {
radeon_fbdev_set_suspend(rdev, 0);
console_unlock();
}
/* init dig PHYs, disp eng pll */
if (rdev->is_atom_bios) {
radeon_atom_encoder_init(rdev);
radeon_atom_disp_eng_pll_init(rdev);
/* turn on the BL */
if (rdev->mode_info.bl_encoder) {
u8 bl_level = radeon_get_backlight_level(rdev,
rdev->mode_info.bl_encoder);
radeon_set_backlight_level(rdev, rdev->mode_info.bl_encoder,
bl_level);
}
}
/* reset hpd state */
radeon_hpd_init(rdev);
/* blat the mode back in */
if (fbcon) {
drm_helper_resume_force_mode(dev);
/* turn on display hw */
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
drm_helper_connector_dpms(connector, DRM_MODE_DPMS_ON);
}
}
drm_kms_helper_poll_enable(dev);
return 0;
}
/**
* radeon_gpu_reset - reset the asic
*
* @rdev: radeon device pointer
*
* Attempt the reset the GPU if it has hung (all asics).
* Returns 0 for success or an error on failure.
*/
int radeon_gpu_reset(struct radeon_device *rdev)
{
unsigned ring_sizes[RADEON_NUM_RINGS];
uint32_t *ring_data[RADEON_NUM_RINGS];
bool saved = false;
int i, r;
int resched;
down_write(&rdev->exclusive_lock);
if (!rdev->needs_reset) {
up_write(&rdev->exclusive_lock);
return 0;
}
rdev->needs_reset = false;
radeon_save_bios_scratch_regs(rdev);
/* block TTM */
resched = ttm_bo_lock_delayed_workqueue(&rdev->mman.bdev);
radeon_pm_suspend(rdev);
radeon_suspend(rdev);
for (i = 0; i < RADEON_NUM_RINGS; ++i) {
ring_sizes[i] = radeon_ring_backup(rdev, &rdev->ring[i],
&ring_data[i]);
if (ring_sizes[i]) {
saved = true;
dev_info(rdev->dev, "Saved %d dwords of commands "
"on ring %d.\n", ring_sizes[i], i);
}
}
retry:
r = radeon_asic_reset(rdev);
if (!r) {
dev_info(rdev->dev, "GPU reset succeeded, trying to resume\n");
radeon_resume(rdev);
}
radeon_restore_bios_scratch_regs(rdev);
if (!r) {
for (i = 0; i < RADEON_NUM_RINGS; ++i) {
radeon_ring_restore(rdev, &rdev->ring[i],
ring_sizes[i], ring_data[i]);
ring_sizes[i] = 0;
ring_data[i] = NULL;
}
r = radeon_ib_ring_tests(rdev);
if (r) {
dev_err(rdev->dev, "ib ring test failed (%d).\n", r);
if (saved) {
saved = false;
radeon_suspend(rdev);
goto retry;
}
}
} else {
radeon_fence_driver_force_completion(rdev);
for (i = 0; i < RADEON_NUM_RINGS; ++i) {
kfree(ring_data[i]);
}
}
radeon_pm_resume(rdev);
drm_helper_resume_force_mode(rdev->ddev);
ttm_bo_unlock_delayed_workqueue(&rdev->mman.bdev, resched);
if (r) {
/* bad news, how to tell it to userspace ? */
dev_info(rdev->dev, "GPU reset failed\n");
}
up_write(&rdev->exclusive_lock);
return r;
}
/*
* Debugfs
*/
int radeon_debugfs_add_files(struct radeon_device *rdev,
struct drm_info_list *files,
unsigned nfiles)
{
unsigned i;
for (i = 0; i < rdev->debugfs_count; i++) {
if (rdev->debugfs[i].files == files) {
/* Already registered */
return 0;
}
}
i = rdev->debugfs_count + 1;
if (i > RADEON_DEBUGFS_MAX_COMPONENTS) {
DRM_ERROR("Reached maximum number of debugfs components.\n");
DRM_ERROR("Report so we increase "
"RADEON_DEBUGFS_MAX_COMPONENTS.\n");
return -EINVAL;
}
rdev->debugfs[rdev->debugfs_count].files = files;
rdev->debugfs[rdev->debugfs_count].num_files = nfiles;
rdev->debugfs_count = i;
#if defined(CONFIG_DEBUG_FS)
drm_debugfs_create_files(files, nfiles,
rdev->ddev->control->debugfs_root,
rdev->ddev->control);
drm_debugfs_create_files(files, nfiles,
rdev->ddev->primary->debugfs_root,
rdev->ddev->primary);
#endif
return 0;
}
static void radeon_debugfs_remove_files(struct radeon_device *rdev)
{
#if defined(CONFIG_DEBUG_FS)
unsigned i;
for (i = 0; i < rdev->debugfs_count; i++) {
drm_debugfs_remove_files(rdev->debugfs[i].files,
rdev->debugfs[i].num_files,
rdev->ddev->control);
drm_debugfs_remove_files(rdev->debugfs[i].files,
rdev->debugfs[i].num_files,
rdev->ddev->primary);
}
#endif
}
#if defined(CONFIG_DEBUG_FS)
int radeon_debugfs_init(struct drm_minor *minor)
{
return 0;
}
void radeon_debugfs_cleanup(struct drm_minor *minor)
{
}
#endif