blob: 018145e0b87d35ee49377b23805da2435367c682 [file] [log] [blame]
/*
* Copyright (C) 2015 Broadcom
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/**
* DOC: VC4 CRTC module
*
* In VC4, the Pixel Valve is what most closely corresponds to the
* DRM's concept of a CRTC. The PV generates video timings from the
* output's clock plus its configuration. It pulls scaled pixels from
* the HVS at that timing, and feeds it to the encoder.
*
* However, the DRM CRTC also collects the configuration of all the
* DRM planes attached to it. As a result, this file also manages
* setup of the VC4 HVS's display elements on the CRTC.
*
* The 2835 has 3 different pixel valves. pv0 in the audio power
* domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
* image domain can feed either HDMI or the SDTV controller. The
* pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
* SDTV, etc.) according to which output type is chosen in the mux.
*
* For power management, the pixel valve's registers are all clocked
* by the AXI clock, while the timings and FIFOs make use of the
* output-specific clock. Since the encoders also directly consume
* the CPRMAN clocks, and know what timings they need, they are the
* ones that set the clock.
*/
#include "drm_atomic.h"
#include "drm_atomic_helper.h"
#include "drm_crtc_helper.h"
#include "linux/clk.h"
#include "drm_fb_cma_helper.h"
#include "linux/component.h"
#include "linux/of_device.h"
#include "vc4_drv.h"
#include "vc4_regs.h"
struct vc4_crtc {
struct drm_crtc base;
const struct vc4_crtc_data *data;
void __iomem *regs;
/* Which HVS channel we're using for our CRTC. */
int channel;
/* Pointer to the actual hardware display list memory for the
* crtc.
*/
u32 __iomem *dlist;
u32 dlist_size; /* in dwords */
struct drm_pending_vblank_event *event;
};
static inline struct vc4_crtc *
to_vc4_crtc(struct drm_crtc *crtc)
{
return (struct vc4_crtc *)crtc;
}
struct vc4_crtc_data {
/* Which channel of the HVS this pixelvalve sources from. */
int hvs_channel;
enum vc4_encoder_type encoder0_type;
enum vc4_encoder_type encoder1_type;
};
#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
#define CRTC_REG(reg) { reg, #reg }
static const struct {
u32 reg;
const char *name;
} crtc_regs[] = {
CRTC_REG(PV_CONTROL),
CRTC_REG(PV_V_CONTROL),
CRTC_REG(PV_VSYNCD),
CRTC_REG(PV_HORZA),
CRTC_REG(PV_HORZB),
CRTC_REG(PV_VERTA),
CRTC_REG(PV_VERTB),
CRTC_REG(PV_VERTA_EVEN),
CRTC_REG(PV_VERTB_EVEN),
CRTC_REG(PV_INTEN),
CRTC_REG(PV_INTSTAT),
CRTC_REG(PV_STAT),
CRTC_REG(PV_HACT_ACT),
};
static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
{
int i;
for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
DRM_INFO("0x%04x (%s): 0x%08x\n",
crtc_regs[i].reg, crtc_regs[i].name,
CRTC_READ(crtc_regs[i].reg));
}
}
#ifdef CONFIG_DEBUG_FS
int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *)m->private;
struct drm_device *dev = node->minor->dev;
int crtc_index = (uintptr_t)node->info_ent->data;
struct drm_crtc *crtc;
struct vc4_crtc *vc4_crtc;
int i;
i = 0;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
if (i == crtc_index)
break;
i++;
}
if (!crtc)
return 0;
vc4_crtc = to_vc4_crtc(crtc);
for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
seq_printf(m, "%s (0x%04x): 0x%08x\n",
crtc_regs[i].name, crtc_regs[i].reg,
CRTC_READ(crtc_regs[i].reg));
}
return 0;
}
#endif
static void vc4_crtc_destroy(struct drm_crtc *crtc)
{
drm_crtc_cleanup(crtc);
}
static u32 vc4_get_fifo_full_level(u32 format)
{
static const u32 fifo_len_bytes = 64;
static const u32 hvs_latency_pix = 6;
switch (format) {
case PV_CONTROL_FORMAT_DSIV_16:
case PV_CONTROL_FORMAT_DSIC_16:
return fifo_len_bytes - 2 * hvs_latency_pix;
case PV_CONTROL_FORMAT_DSIV_18:
return fifo_len_bytes - 14;
case PV_CONTROL_FORMAT_24:
case PV_CONTROL_FORMAT_DSIV_24:
default:
return fifo_len_bytes - 3 * hvs_latency_pix;
}
}
/*
* Returns the clock select bit for the connector attached to the
* CRTC.
*/
static int vc4_get_clock_select(struct drm_crtc *crtc)
{
struct drm_connector *connector;
drm_for_each_connector(connector, crtc->dev) {
if (connector->state->crtc == crtc) {
struct drm_encoder *encoder = connector->encoder;
struct vc4_encoder *vc4_encoder =
to_vc4_encoder(encoder);
return vc4_encoder->clock_select;
}
}
return -1;
}
static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
{
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct drm_crtc_state *state = crtc->state;
struct drm_display_mode *mode = &state->adjusted_mode;
bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0));
u32 format = PV_CONTROL_FORMAT_24;
bool debug_dump_regs = false;
int clock_select = vc4_get_clock_select(crtc);
if (debug_dump_regs) {
DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
vc4_crtc_dump_regs(vc4_crtc);
}
/* Reset the PV fifo. */
CRTC_WRITE(PV_CONTROL, 0);
CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
CRTC_WRITE(PV_CONTROL, 0);
CRTC_WRITE(PV_HORZA,
VC4_SET_FIELD(mode->htotal - mode->hsync_end,
PV_HORZA_HBP) |
VC4_SET_FIELD(mode->hsync_end - mode->hsync_start,
PV_HORZA_HSYNC));
CRTC_WRITE(PV_HORZB,
VC4_SET_FIELD(mode->hsync_start - mode->hdisplay,
PV_HORZB_HFP) |
VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE));
if (interlace) {
CRTC_WRITE(PV_VERTA_EVEN,
VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1,
PV_VERTA_VBP) |
VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
PV_VERTA_VSYNC));
CRTC_WRITE(PV_VERTB_EVEN,
VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
PV_VERTB_VFP) |
VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
}
CRTC_WRITE(PV_HACT_ACT, mode->hdisplay);
CRTC_WRITE(PV_V_CONTROL,
PV_VCONTROL_CONTINUOUS |
(interlace ? PV_VCONTROL_INTERLACE : 0));
CRTC_WRITE(PV_CONTROL,
VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
VC4_SET_FIELD(vc4_get_fifo_full_level(format),
PV_CONTROL_FIFO_LEVEL) |
PV_CONTROL_CLR_AT_START |
PV_CONTROL_TRIGGER_UNDERFLOW |
PV_CONTROL_WAIT_HSTART |
VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
PV_CONTROL_FIFO_CLR |
PV_CONTROL_EN);
if (debug_dump_regs) {
DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
vc4_crtc_dump_regs(vc4_crtc);
}
}
static void require_hvs_enabled(struct drm_device *dev)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
SCALER_DISPCTRL_ENABLE);
}
static void vc4_crtc_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
u32 chan = vc4_crtc->channel;
int ret;
require_hvs_enabled(dev);
CRTC_WRITE(PV_V_CONTROL,
CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
if (HVS_READ(SCALER_DISPCTRLX(chan)) &
SCALER_DISPCTRLX_ENABLE) {
HVS_WRITE(SCALER_DISPCTRLX(chan),
SCALER_DISPCTRLX_RESET);
/* While the docs say that reset is self-clearing, it
* seems it doesn't actually.
*/
HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
}
/* Once we leave, the scaler should be disabled and its fifo empty. */
WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
SCALER_DISPSTATX_MODE) !=
SCALER_DISPSTATX_MODE_DISABLED);
WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
(SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
SCALER_DISPSTATX_EMPTY);
}
static void vc4_crtc_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct drm_crtc_state *state = crtc->state;
struct drm_display_mode *mode = &state->adjusted_mode;
require_hvs_enabled(dev);
/* Turn on the scaler, which will wait for vstart to start
* compositing.
*/
HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
SCALER_DISPCTRLX_ENABLE);
/* Turn on the pixel valve, which will emit the vstart signal. */
CRTC_WRITE(PV_V_CONTROL,
CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
}
static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_plane *plane;
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
u32 dlist_count = 0;
/* The pixelvalve can only feed one encoder (and encoders are
* 1:1 with connectors.)
*/
if (hweight32(state->connector_mask) > 1)
return -EINVAL;
drm_atomic_crtc_state_for_each_plane(plane, state) {
struct drm_plane_state *plane_state =
state->state->plane_states[drm_plane_index(plane)];
/* plane might not have changed, in which case take
* current state:
*/
if (!plane_state)
plane_state = plane->state;
dlist_count += vc4_plane_dlist_size(plane_state);
}
dlist_count++; /* Account for SCALER_CTL0_END. */
if (!vc4_crtc->dlist || dlist_count > vc4_crtc->dlist_size) {
vc4_crtc->dlist = ((u32 __iomem *)vc4->hvs->dlist +
HVS_BOOTLOADER_DLIST_END);
vc4_crtc->dlist_size = ((SCALER_DLIST_SIZE >> 2) -
HVS_BOOTLOADER_DLIST_END);
if (dlist_count > vc4_crtc->dlist_size) {
DRM_DEBUG_KMS("dlist too large for CRTC (%d > %d).\n",
dlist_count, vc4_crtc->dlist_size);
return -EINVAL;
}
}
return 0;
}
static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
struct drm_crtc_state *old_state)
{
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct drm_plane *plane;
bool debug_dump_regs = false;
u32 __iomem *dlist_next = vc4_crtc->dlist;
if (debug_dump_regs) {
DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
vc4_hvs_dump_state(dev);
}
/* Copy all the active planes' dlist contents to the hardware dlist.
*
* XXX: If the new display list was large enough that it
* overlapped a currently-read display list, we need to do
* something like disable scanout before putting in the new
* list. For now, we're safe because we only have the two
* planes.
*/
drm_atomic_crtc_for_each_plane(plane, crtc) {
dlist_next += vc4_plane_write_dlist(plane, dlist_next);
}
if (dlist_next == vc4_crtc->dlist) {
/* If no planes were enabled, use the SCALER_CTL0_END
* at the start of the display list memory (in the
* bootloader section). We'll rewrite that
* SCALER_CTL0_END, just in case, though.
*/
writel(SCALER_CTL0_END, vc4->hvs->dlist);
HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 0);
} else {
writel(SCALER_CTL0_END, dlist_next);
dlist_next++;
HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
(u32 __iomem *)vc4_crtc->dlist -
(u32 __iomem *)vc4->hvs->dlist);
/* Make the next display list start after ours. */
vc4_crtc->dlist_size -= (dlist_next - vc4_crtc->dlist);
vc4_crtc->dlist = dlist_next;
}
if (debug_dump_regs) {
DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
vc4_hvs_dump_state(dev);
}
if (crtc->state->event) {
unsigned long flags;
crtc->state->event->pipe = drm_crtc_index(crtc);
WARN_ON(drm_crtc_vblank_get(crtc) != 0);
spin_lock_irqsave(&dev->event_lock, flags);
vc4_crtc->event = crtc->state->event;
spin_unlock_irqrestore(&dev->event_lock, flags);
crtc->state->event = NULL;
}
}
int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
return 0;
}
void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
CRTC_WRITE(PV_INTEN, 0);
}
static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
{
struct drm_crtc *crtc = &vc4_crtc->base;
struct drm_device *dev = crtc->dev;
unsigned long flags;
spin_lock_irqsave(&dev->event_lock, flags);
if (vc4_crtc->event) {
drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
vc4_crtc->event = NULL;
}
spin_unlock_irqrestore(&dev->event_lock, flags);
}
static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
{
struct vc4_crtc *vc4_crtc = data;
u32 stat = CRTC_READ(PV_INTSTAT);
irqreturn_t ret = IRQ_NONE;
if (stat & PV_INT_VFP_START) {
CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
drm_crtc_handle_vblank(&vc4_crtc->base);
vc4_crtc_handle_page_flip(vc4_crtc);
ret = IRQ_HANDLED;
}
return ret;
}
struct vc4_async_flip_state {
struct drm_crtc *crtc;
struct drm_framebuffer *fb;
struct drm_pending_vblank_event *event;
struct vc4_seqno_cb cb;
};
/* Called when the V3D execution for the BO being flipped to is done, so that
* we can actually update the plane's address to point to it.
*/
static void
vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
{
struct vc4_async_flip_state *flip_state =
container_of(cb, struct vc4_async_flip_state, cb);
struct drm_crtc *crtc = flip_state->crtc;
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_plane *plane = crtc->primary;
vc4_plane_async_set_fb(plane, flip_state->fb);
if (flip_state->event) {
unsigned long flags;
spin_lock_irqsave(&dev->event_lock, flags);
drm_crtc_send_vblank_event(crtc, flip_state->event);
spin_unlock_irqrestore(&dev->event_lock, flags);
}
drm_framebuffer_unreference(flip_state->fb);
kfree(flip_state);
up(&vc4->async_modeset);
}
/* Implements async (non-vblank-synced) page flips.
*
* The page flip ioctl needs to return immediately, so we grab the
* modeset semaphore on the pipe, and queue the address update for
* when V3D is done with the BO being flipped to.
*/
static int vc4_async_page_flip(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_pending_vblank_event *event,
uint32_t flags)
{
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_plane *plane = crtc->primary;
int ret = 0;
struct vc4_async_flip_state *flip_state;
struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
if (!flip_state)
return -ENOMEM;
drm_framebuffer_reference(fb);
flip_state->fb = fb;
flip_state->crtc = crtc;
flip_state->event = event;
/* Make sure all other async modesetes have landed. */
ret = down_interruptible(&vc4->async_modeset);
if (ret) {
kfree(flip_state);
return ret;
}
/* Immediately update the plane's legacy fb pointer, so that later
* modeset prep sees the state that will be present when the semaphore
* is released.
*/
drm_atomic_set_fb_for_plane(plane->state, fb);
plane->fb = fb;
vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
vc4_async_page_flip_complete);
/* Driver takes ownership of state on successful async commit. */
return 0;
}
static int vc4_page_flip(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_pending_vblank_event *event,
uint32_t flags)
{
if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
return vc4_async_page_flip(crtc, fb, event, flags);
else
return drm_atomic_helper_page_flip(crtc, fb, event, flags);
}
static const struct drm_crtc_funcs vc4_crtc_funcs = {
.set_config = drm_atomic_helper_set_config,
.destroy = vc4_crtc_destroy,
.page_flip = vc4_page_flip,
.set_property = NULL,
.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
.reset = drm_atomic_helper_crtc_reset,
.atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
};
static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
.mode_set_nofb = vc4_crtc_mode_set_nofb,
.disable = vc4_crtc_disable,
.enable = vc4_crtc_enable,
.atomic_check = vc4_crtc_atomic_check,
.atomic_flush = vc4_crtc_atomic_flush,
};
/* Frees the page flip event when the DRM device is closed with the
* event still outstanding.
*/
void vc4_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
{
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct drm_device *dev = crtc->dev;
unsigned long flags;
spin_lock_irqsave(&dev->event_lock, flags);
if (vc4_crtc->event && vc4_crtc->event->base.file_priv == file) {
vc4_crtc->event->base.destroy(&vc4_crtc->event->base);
drm_crtc_vblank_put(crtc);
vc4_crtc->event = NULL;
}
spin_unlock_irqrestore(&dev->event_lock, flags);
}
static const struct vc4_crtc_data pv0_data = {
.hvs_channel = 0,
.encoder0_type = VC4_ENCODER_TYPE_DSI0,
.encoder1_type = VC4_ENCODER_TYPE_DPI,
};
static const struct vc4_crtc_data pv1_data = {
.hvs_channel = 2,
.encoder0_type = VC4_ENCODER_TYPE_DSI1,
.encoder1_type = VC4_ENCODER_TYPE_SMI,
};
static const struct vc4_crtc_data pv2_data = {
.hvs_channel = 1,
.encoder0_type = VC4_ENCODER_TYPE_VEC,
.encoder1_type = VC4_ENCODER_TYPE_HDMI,
};
static const struct of_device_id vc4_crtc_dt_match[] = {
{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
{}
};
static void vc4_set_crtc_possible_masks(struct drm_device *drm,
struct drm_crtc *crtc)
{
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct drm_encoder *encoder;
drm_for_each_encoder(encoder, drm) {
struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
vc4_encoder->clock_select = 0;
encoder->possible_crtcs |= drm_crtc_mask(crtc);
} else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
vc4_encoder->clock_select = 1;
encoder->possible_crtcs |= drm_crtc_mask(crtc);
}
}
}
static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct drm_device *drm = dev_get_drvdata(master);
struct vc4_dev *vc4 = to_vc4_dev(drm);
struct vc4_crtc *vc4_crtc;
struct drm_crtc *crtc;
struct drm_plane *primary_plane, *cursor_plane;
const struct of_device_id *match;
int ret;
vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
if (!vc4_crtc)
return -ENOMEM;
crtc = &vc4_crtc->base;
match = of_match_device(vc4_crtc_dt_match, dev);
if (!match)
return -ENODEV;
vc4_crtc->data = match->data;
vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
if (IS_ERR(vc4_crtc->regs))
return PTR_ERR(vc4_crtc->regs);
/* For now, we create just the primary and the legacy cursor
* planes. We should be able to stack more planes on easily,
* but to do that we would need to compute the bandwidth
* requirement of the plane configuration, and reject ones
* that will take too much.
*/
primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
if (IS_ERR(primary_plane)) {
dev_err(dev, "failed to construct primary plane\n");
ret = PTR_ERR(primary_plane);
goto err;
}
cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
if (IS_ERR(cursor_plane)) {
dev_err(dev, "failed to construct cursor plane\n");
ret = PTR_ERR(cursor_plane);
goto err_primary;
}
drm_crtc_init_with_planes(drm, crtc, primary_plane, cursor_plane,
&vc4_crtc_funcs, NULL);
drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
primary_plane->crtc = crtc;
cursor_plane->crtc = crtc;
vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
vc4_crtc->channel = vc4_crtc->data->hvs_channel;
CRTC_WRITE(PV_INTEN, 0);
CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
if (ret)
goto err_cursor;
vc4_set_crtc_possible_masks(drm, crtc);
platform_set_drvdata(pdev, vc4_crtc);
return 0;
err_cursor:
cursor_plane->funcs->destroy(cursor_plane);
err_primary:
primary_plane->funcs->destroy(primary_plane);
err:
return ret;
}
static void vc4_crtc_unbind(struct device *dev, struct device *master,
void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
vc4_crtc_destroy(&vc4_crtc->base);
CRTC_WRITE(PV_INTEN, 0);
platform_set_drvdata(pdev, NULL);
}
static const struct component_ops vc4_crtc_ops = {
.bind = vc4_crtc_bind,
.unbind = vc4_crtc_unbind,
};
static int vc4_crtc_dev_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &vc4_crtc_ops);
}
static int vc4_crtc_dev_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &vc4_crtc_ops);
return 0;
}
struct platform_driver vc4_crtc_driver = {
.probe = vc4_crtc_dev_probe,
.remove = vc4_crtc_dev_remove,
.driver = {
.name = "vc4_crtc",
.of_match_table = vc4_crtc_dt_match,
},
};