blob: ce5b3dc348ce04d56542871af3d741cb7edca930 [file] [log] [blame]
/*
* Kernel-based Virtual Machine driver for Linux
*
* derived from drivers/kvm/kvm_main.c
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright (C) 2008 Qumranet, Inc.
* Copyright IBM Corporation, 2008
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
* Amit Shah <amit.shah@qumranet.com>
* Ben-Ami Yassour <benami@il.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include <linux/kvm_host.h>
#include "irq.h"
#include "mmu.h"
#include "i8254.h"
#include "tss.h"
#include "kvm_cache_regs.h"
#include "x86.h"
#include "cpuid.h"
#include "pmu.h"
#include "hyperv.h"
#include <linux/clocksource.h>
#include <linux/interrupt.h>
#include <linux/kvm.h>
#include <linux/fs.h>
#include <linux/vmalloc.h>
#include <linux/export.h>
#include <linux/moduleparam.h>
#include <linux/mman.h>
#include <linux/highmem.h>
#include <linux/iommu.h>
#include <linux/intel-iommu.h>
#include <linux/cpufreq.h>
#include <linux/user-return-notifier.h>
#include <linux/srcu.h>
#include <linux/slab.h>
#include <linux/perf_event.h>
#include <linux/uaccess.h>
#include <linux/hash.h>
#include <linux/pci.h>
#include <linux/timekeeper_internal.h>
#include <linux/pvclock_gtod.h>
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
#include <linux/sched/stat.h>
#include <linux/mem_encrypt.h>
#include <trace/events/kvm.h>
#include <asm/debugreg.h>
#include <asm/msr.h>
#include <asm/desc.h>
#include <asm/mce.h>
#include <linux/kernel_stat.h>
#include <asm/fpu/internal.h> /* Ugh! */
#include <asm/pvclock.h>
#include <asm/div64.h>
#include <asm/irq_remapping.h>
#define CREATE_TRACE_POINTS
#include "trace.h"
#define MAX_IO_MSRS 256
#define KVM_MAX_MCE_BANKS 32
u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
#define emul_to_vcpu(ctxt) \
container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
/* EFER defaults:
* - enable syscall per default because its emulated by KVM
* - enable LME and LMA per default on 64 bit KVM
*/
#ifdef CONFIG_X86_64
static
u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
#else
static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
#endif
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
static void update_cr8_intercept(struct kvm_vcpu *vcpu);
static void process_nmi(struct kvm_vcpu *vcpu);
static void enter_smm(struct kvm_vcpu *vcpu);
static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
struct kvm_x86_ops *kvm_x86_ops __read_mostly;
EXPORT_SYMBOL_GPL(kvm_x86_ops);
static bool __read_mostly ignore_msrs = 0;
module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
unsigned int min_timer_period_us = 500;
module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
static bool __read_mostly kvmclock_periodic_sync = true;
module_param(kvmclock_periodic_sync, bool, S_IRUGO);
bool __read_mostly kvm_has_tsc_control;
EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
u32 __read_mostly kvm_max_guest_tsc_khz;
EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
u64 __read_mostly kvm_max_tsc_scaling_ratio;
EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
u64 __read_mostly kvm_default_tsc_scaling_ratio;
EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
static u32 __read_mostly tsc_tolerance_ppm = 250;
module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
/* lapic timer advance (tscdeadline mode only) in nanoseconds */
unsigned int __read_mostly lapic_timer_advance_ns = 0;
module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
static bool __read_mostly vector_hashing = true;
module_param(vector_hashing, bool, S_IRUGO);
#define KVM_NR_SHARED_MSRS 16
struct kvm_shared_msrs_global {
int nr;
u32 msrs[KVM_NR_SHARED_MSRS];
};
struct kvm_shared_msrs {
struct user_return_notifier urn;
bool registered;
struct kvm_shared_msr_values {
u64 host;
u64 curr;
} values[KVM_NR_SHARED_MSRS];
};
static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
static struct kvm_shared_msrs __percpu *shared_msrs;
struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "pf_fixed", VCPU_STAT(pf_fixed) },
{ "pf_guest", VCPU_STAT(pf_guest) },
{ "tlb_flush", VCPU_STAT(tlb_flush) },
{ "invlpg", VCPU_STAT(invlpg) },
{ "exits", VCPU_STAT(exits) },
{ "io_exits", VCPU_STAT(io_exits) },
{ "mmio_exits", VCPU_STAT(mmio_exits) },
{ "signal_exits", VCPU_STAT(signal_exits) },
{ "irq_window", VCPU_STAT(irq_window_exits) },
{ "nmi_window", VCPU_STAT(nmi_window_exits) },
{ "halt_exits", VCPU_STAT(halt_exits) },
{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
{ "hypercalls", VCPU_STAT(hypercalls) },
{ "request_irq", VCPU_STAT(request_irq_exits) },
{ "irq_exits", VCPU_STAT(irq_exits) },
{ "host_state_reload", VCPU_STAT(host_state_reload) },
{ "efer_reload", VCPU_STAT(efer_reload) },
{ "fpu_reload", VCPU_STAT(fpu_reload) },
{ "insn_emulation", VCPU_STAT(insn_emulation) },
{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
{ "irq_injections", VCPU_STAT(irq_injections) },
{ "nmi_injections", VCPU_STAT(nmi_injections) },
{ "req_event", VCPU_STAT(req_event) },
{ "l1d_flush", VCPU_STAT(l1d_flush) },
{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
{ "mmu_flooded", VM_STAT(mmu_flooded) },
{ "mmu_recycled", VM_STAT(mmu_recycled) },
{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
{ "mmu_unsync", VM_STAT(mmu_unsync) },
{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
{ "largepages", VM_STAT(lpages) },
{ "max_mmu_page_hash_collisions",
VM_STAT(max_mmu_page_hash_collisions) },
{ NULL }
};
u64 __read_mostly host_xcr0;
static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
{
int i;
for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
vcpu->arch.apf.gfns[i] = ~0;
}
static void kvm_on_user_return(struct user_return_notifier *urn)
{
unsigned slot;
struct kvm_shared_msrs *locals
= container_of(urn, struct kvm_shared_msrs, urn);
struct kvm_shared_msr_values *values;
unsigned long flags;
/*
* Disabling irqs at this point since the following code could be
* interrupted and executed through kvm_arch_hardware_disable()
*/
local_irq_save(flags);
if (locals->registered) {
locals->registered = false;
user_return_notifier_unregister(urn);
}
local_irq_restore(flags);
for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
values = &locals->values[slot];
if (values->host != values->curr) {
wrmsrl(shared_msrs_global.msrs[slot], values->host);
values->curr = values->host;
}
}
}
static void shared_msr_update(unsigned slot, u32 msr)
{
u64 value;
unsigned int cpu = smp_processor_id();
struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
/* only read, and nobody should modify it at this time,
* so don't need lock */
if (slot >= shared_msrs_global.nr) {
printk(KERN_ERR "kvm: invalid MSR slot!");
return;
}
rdmsrl_safe(msr, &value);
smsr->values[slot].host = value;
smsr->values[slot].curr = value;
}
void kvm_define_shared_msr(unsigned slot, u32 msr)
{
BUG_ON(slot >= KVM_NR_SHARED_MSRS);
shared_msrs_global.msrs[slot] = msr;
if (slot >= shared_msrs_global.nr)
shared_msrs_global.nr = slot + 1;
}
EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
static void kvm_shared_msr_cpu_online(void)
{
unsigned i;
for (i = 0; i < shared_msrs_global.nr; ++i)
shared_msr_update(i, shared_msrs_global.msrs[i]);
}
int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
{
unsigned int cpu = smp_processor_id();
struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
int err;
if (((value ^ smsr->values[slot].curr) & mask) == 0)
return 0;
smsr->values[slot].curr = value;
err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
if (err)
return 1;
if (!smsr->registered) {
smsr->urn.on_user_return = kvm_on_user_return;
user_return_notifier_register(&smsr->urn);
smsr->registered = true;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
static void drop_user_return_notifiers(void)
{
unsigned int cpu = smp_processor_id();
struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
if (smsr->registered)
kvm_on_user_return(&smsr->urn);
}
u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
{
return vcpu->arch.apic_base;
}
EXPORT_SYMBOL_GPL(kvm_get_apic_base);
int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
u64 old_state = vcpu->arch.apic_base &
(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
u64 new_state = msr_info->data &
(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
return 1;
if (!msr_info->host_initiated &&
((new_state == MSR_IA32_APICBASE_ENABLE &&
old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
(new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
old_state == 0)))
return 1;
kvm_lapic_set_base(vcpu, msr_info->data);
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_apic_base);
asmlinkage __visible void kvm_spurious_fault(void)
{
/* Fault while not rebooting. We want the trace. */
BUG();
}
EXPORT_SYMBOL_GPL(kvm_spurious_fault);
#define EXCPT_BENIGN 0
#define EXCPT_CONTRIBUTORY 1
#define EXCPT_PF 2
static int exception_class(int vector)
{
switch (vector) {
case PF_VECTOR:
return EXCPT_PF;
case DE_VECTOR:
case TS_VECTOR:
case NP_VECTOR:
case SS_VECTOR:
case GP_VECTOR:
return EXCPT_CONTRIBUTORY;
default:
break;
}
return EXCPT_BENIGN;
}
#define EXCPT_FAULT 0
#define EXCPT_TRAP 1
#define EXCPT_ABORT 2
#define EXCPT_INTERRUPT 3
static int exception_type(int vector)
{
unsigned int mask;
if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
return EXCPT_INTERRUPT;
mask = 1 << vector;
/* #DB is trap, as instruction watchpoints are handled elsewhere */
if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
return EXCPT_TRAP;
if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
return EXCPT_ABORT;
/* Reserved exceptions will result in fault */
return EXCPT_FAULT;
}
static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
unsigned nr, bool has_error, u32 error_code,
bool reinject)
{
u32 prev_nr;
int class1, class2;
kvm_make_request(KVM_REQ_EVENT, vcpu);
if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
queue:
if (has_error && !is_protmode(vcpu))
has_error = false;
if (reinject) {
/*
* On vmentry, vcpu->arch.exception.pending is only
* true if an event injection was blocked by
* nested_run_pending. In that case, however,
* vcpu_enter_guest requests an immediate exit,
* and the guest shouldn't proceed far enough to
* need reinjection.
*/
WARN_ON_ONCE(vcpu->arch.exception.pending);
vcpu->arch.exception.injected = true;
} else {
vcpu->arch.exception.pending = true;
vcpu->arch.exception.injected = false;
}
vcpu->arch.exception.has_error_code = has_error;
vcpu->arch.exception.nr = nr;
vcpu->arch.exception.error_code = error_code;
return;
}
/* to check exception */
prev_nr = vcpu->arch.exception.nr;
if (prev_nr == DF_VECTOR) {
/* triple fault -> shutdown */
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
return;
}
class1 = exception_class(prev_nr);
class2 = exception_class(nr);
if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
/*
* Generate double fault per SDM Table 5-5. Set
* exception.pending = true so that the double fault
* can trigger a nested vmexit.
*/
vcpu->arch.exception.pending = true;
vcpu->arch.exception.injected = false;
vcpu->arch.exception.has_error_code = true;
vcpu->arch.exception.nr = DF_VECTOR;
vcpu->arch.exception.error_code = 0;
} else
/* replace previous exception with a new one in a hope
that instruction re-execution will regenerate lost
exception */
goto queue;
}
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
kvm_multiple_exception(vcpu, nr, false, 0, false);
}
EXPORT_SYMBOL_GPL(kvm_queue_exception);
void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
kvm_multiple_exception(vcpu, nr, false, 0, true);
}
EXPORT_SYMBOL_GPL(kvm_requeue_exception);
int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
{
if (err)
kvm_inject_gp(vcpu, 0);
else
return kvm_skip_emulated_instruction(vcpu);
return 1;
}
EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
{
++vcpu->stat.pf_guest;
vcpu->arch.exception.nested_apf =
is_guest_mode(vcpu) && fault->async_page_fault;
if (vcpu->arch.exception.nested_apf)
vcpu->arch.apf.nested_apf_token = fault->address;
else
vcpu->arch.cr2 = fault->address;
kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
}
EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
{
if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
else
vcpu->arch.mmu.inject_page_fault(vcpu, fault);
return fault->nested_page_fault;
}
void kvm_inject_nmi(struct kvm_vcpu *vcpu)
{
atomic_inc(&vcpu->arch.nmi_queued);
kvm_make_request(KVM_REQ_NMI, vcpu);
}
EXPORT_SYMBOL_GPL(kvm_inject_nmi);
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
{
kvm_multiple_exception(vcpu, nr, true, error_code, false);
}
EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
{
kvm_multiple_exception(vcpu, nr, true, error_code, true);
}
EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
/*
* Checks if cpl <= required_cpl; if true, return true. Otherwise queue
* a #GP and return false.
*/
bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
{
if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
return true;
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
return false;
}
EXPORT_SYMBOL_GPL(kvm_require_cpl);
bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
{
if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
return true;
kvm_queue_exception(vcpu, UD_VECTOR);
return false;
}
EXPORT_SYMBOL_GPL(kvm_require_dr);
/*
* This function will be used to read from the physical memory of the currently
* running guest. The difference to kvm_vcpu_read_guest_page is that this function
* can read from guest physical or from the guest's guest physical memory.
*/
int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
gfn_t ngfn, void *data, int offset, int len,
u32 access)
{
struct x86_exception exception;
gfn_t real_gfn;
gpa_t ngpa;
ngpa = gfn_to_gpa(ngfn);
real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
if (real_gfn == UNMAPPED_GVA)
return -EFAULT;
real_gfn = gpa_to_gfn(real_gfn);
return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
}
EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
void *data, int offset, int len, u32 access)
{
return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
data, offset, len, access);
}
/*
* Load the pae pdptrs. Return true is they are all valid.
*/
int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
{
gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
int i;
int ret;
u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
offset * sizeof(u64), sizeof(pdpte),
PFERR_USER_MASK|PFERR_WRITE_MASK);
if (ret < 0) {
ret = 0;
goto out;
}
for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
if ((pdpte[i] & PT_PRESENT_MASK) &&
(pdpte[i] &
vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
ret = 0;
goto out;
}
}
ret = 1;
memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
__set_bit(VCPU_EXREG_PDPTR,
(unsigned long *)&vcpu->arch.regs_avail);
__set_bit(VCPU_EXREG_PDPTR,
(unsigned long *)&vcpu->arch.regs_dirty);
out:
return ret;
}
EXPORT_SYMBOL_GPL(load_pdptrs);
bool pdptrs_changed(struct kvm_vcpu *vcpu)
{
u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
bool changed = true;
int offset;
gfn_t gfn;
int r;
if (is_long_mode(vcpu) || !is_pae(vcpu))
return false;
if (!test_bit(VCPU_EXREG_PDPTR,
(unsigned long *)&vcpu->arch.regs_avail))
return true;
gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
PFERR_USER_MASK | PFERR_WRITE_MASK);
if (r < 0)
goto out;
changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
out:
return changed;
}
EXPORT_SYMBOL_GPL(pdptrs_changed);
int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
unsigned long old_cr0 = kvm_read_cr0(vcpu);
unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
cr0 |= X86_CR0_ET;
#ifdef CONFIG_X86_64
if (cr0 & 0xffffffff00000000UL)
return 1;
#endif
cr0 &= ~CR0_RESERVED_BITS;
if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
return 1;
if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
return 1;
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
#ifdef CONFIG_X86_64
if ((vcpu->arch.efer & EFER_LME)) {
int cs_db, cs_l;
if (!is_pae(vcpu))
return 1;
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
if (cs_l)
return 1;
} else
#endif
if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
kvm_read_cr3(vcpu)))
return 1;
}
if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
return 1;
kvm_x86_ops->set_cr0(vcpu, cr0);
if ((cr0 ^ old_cr0) & X86_CR0_PG) {
kvm_clear_async_pf_completion_queue(vcpu);
kvm_async_pf_hash_reset(vcpu);
}
if ((cr0 ^ old_cr0) & update_bits)
kvm_mmu_reset_context(vcpu);
if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_cr0);
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
{
(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
}
EXPORT_SYMBOL_GPL(kvm_lmsw);
static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
{
if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
!vcpu->guest_xcr0_loaded) {
/* kvm_set_xcr() also depends on this */
xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
vcpu->guest_xcr0_loaded = 1;
}
}
static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
{
if (vcpu->guest_xcr0_loaded) {
if (vcpu->arch.xcr0 != host_xcr0)
xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
vcpu->guest_xcr0_loaded = 0;
}
}
static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
{
u64 xcr0 = xcr;
u64 old_xcr0 = vcpu->arch.xcr0;
u64 valid_bits;
/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
if (index != XCR_XFEATURE_ENABLED_MASK)
return 1;
if (!(xcr0 & XFEATURE_MASK_FP))
return 1;
if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
return 1;
/*
* Do not allow the guest to set bits that we do not support
* saving. However, xcr0 bit 0 is always set, even if the
* emulated CPU does not support XSAVE (see fx_init).
*/
valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
if (xcr0 & ~valid_bits)
return 1;
if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
(!(xcr0 & XFEATURE_MASK_BNDCSR)))
return 1;
if (xcr0 & XFEATURE_MASK_AVX512) {
if (!(xcr0 & XFEATURE_MASK_YMM))
return 1;
if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
return 1;
}
vcpu->arch.xcr0 = xcr0;
if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
kvm_update_cpuid(vcpu);
return 0;
}
int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
{
if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
__kvm_set_xcr(vcpu, index, xcr)) {
kvm_inject_gp(vcpu, 0);
return 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_xcr);
int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
unsigned long old_cr4 = kvm_read_cr4(vcpu);
unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
if (cr4 & CR4_RESERVED_BITS)
return 1;
if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
return 1;
if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
return 1;
if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
return 1;
if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
return 1;
if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
return 1;
if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
return 1;
if (is_long_mode(vcpu)) {
if (!(cr4 & X86_CR4_PAE))
return 1;
} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
&& ((cr4 ^ old_cr4) & pdptr_bits)
&& !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
kvm_read_cr3(vcpu)))
return 1;
if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
return 1;
/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
return 1;
}
if (kvm_x86_ops->set_cr4(vcpu, cr4))
return 1;
if (((cr4 ^ old_cr4) & pdptr_bits) ||
(!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
kvm_mmu_reset_context(vcpu);
if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
kvm_update_cpuid(vcpu);
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_cr4);
int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
{
#ifdef CONFIG_X86_64
cr3 &= ~CR3_PCID_INVD;
#endif
if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
kvm_mmu_sync_roots(vcpu);
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
return 0;
}
if (is_long_mode(vcpu) &&
(cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
return 1;
else if (is_pae(vcpu) && is_paging(vcpu) &&
!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
return 1;
vcpu->arch.cr3 = cr3;
__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
kvm_mmu_new_cr3(vcpu);
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_cr3);
int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
{
if (cr8 & CR8_RESERVED_BITS)
return 1;
if (lapic_in_kernel(vcpu))
kvm_lapic_set_tpr(vcpu, cr8);
else
vcpu->arch.cr8 = cr8;
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_cr8);
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
{
if (lapic_in_kernel(vcpu))
return kvm_lapic_get_cr8(vcpu);
else
return vcpu->arch.cr8;
}
EXPORT_SYMBOL_GPL(kvm_get_cr8);
static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
{
int i;
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
for (i = 0; i < KVM_NR_DB_REGS; i++)
vcpu->arch.eff_db[i] = vcpu->arch.db[i];
vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
}
}
static void kvm_update_dr6(struct kvm_vcpu *vcpu)
{
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
}
static void kvm_update_dr7(struct kvm_vcpu *vcpu)
{
unsigned long dr7;
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
dr7 = vcpu->arch.guest_debug_dr7;
else
dr7 = vcpu->arch.dr7;
kvm_x86_ops->set_dr7(vcpu, dr7);
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
if (dr7 & DR7_BP_EN_MASK)
vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
}
static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
{
u64 fixed = DR6_FIXED_1;
if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
fixed |= DR6_RTM;
return fixed;
}
static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
{
switch (dr) {
case 0 ... 3:
vcpu->arch.db[dr] = val;
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
vcpu->arch.eff_db[dr] = val;
break;
case 4:
/* fall through */
case 6:
if (val & 0xffffffff00000000ULL)
return -1; /* #GP */
vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
kvm_update_dr6(vcpu);
break;
case 5:
/* fall through */
default: /* 7 */
if (val & 0xffffffff00000000ULL)
return -1; /* #GP */
vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
kvm_update_dr7(vcpu);
break;
}
return 0;
}
int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
{
if (__kvm_set_dr(vcpu, dr, val)) {
kvm_inject_gp(vcpu, 0);
return 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_dr);
int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
{
switch (dr) {
case 0 ... 3:
*val = vcpu->arch.db[dr];
break;
case 4:
/* fall through */
case 6:
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
*val = vcpu->arch.dr6;
else
*val = kvm_x86_ops->get_dr6(vcpu);
break;
case 5:
/* fall through */
default: /* 7 */
*val = vcpu->arch.dr7;
break;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_get_dr);
bool kvm_rdpmc(struct kvm_vcpu *vcpu)
{
u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
u64 data;
int err;
err = kvm_pmu_rdpmc(vcpu, ecx, &data);
if (err)
return err;
kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
return err;
}
EXPORT_SYMBOL_GPL(kvm_rdpmc);
/*
* List of msr numbers which we expose to userspace through KVM_GET_MSRS
* and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
*
* This list is modified at module load time to reflect the
* capabilities of the host cpu. This capabilities test skips MSRs that are
* kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
* may depend on host virtualization features rather than host cpu features.
*/
static u32 msrs_to_save[] = {
MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
MSR_STAR,
#ifdef CONFIG_X86_64
MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
#endif
MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
};
static unsigned num_msrs_to_save;
static u32 emulated_msrs[] = {
MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
HV_X64_MSR_RESET,
HV_X64_MSR_VP_INDEX,
HV_X64_MSR_VP_RUNTIME,
HV_X64_MSR_SCONTROL,
HV_X64_MSR_STIMER0_CONFIG,
HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
MSR_KVM_PV_EOI_EN,
MSR_IA32_TSC_ADJUST,
MSR_IA32_TSCDEADLINE,
MSR_IA32_MISC_ENABLE,
MSR_IA32_MCG_STATUS,
MSR_IA32_MCG_CTL,
MSR_IA32_MCG_EXT_CTL,
MSR_IA32_SMBASE,
MSR_PLATFORM_INFO,
MSR_MISC_FEATURES_ENABLES,
MSR_AMD64_VIRT_SPEC_CTRL,
};
static unsigned num_emulated_msrs;
/*
* List of msr numbers which are used to expose MSR-based features that
* can be used by a hypervisor to validate requested CPU features.
*/
static u32 msr_based_features[] = {
MSR_F10H_DECFG,
MSR_IA32_UCODE_REV,
MSR_IA32_ARCH_CAPABILITIES,
};
static unsigned int num_msr_based_features;
u64 kvm_get_arch_capabilities(void)
{
u64 data;
rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
/*
* If we're doing cache flushes (either "always" or "cond")
* we will do one whenever the guest does a vmlaunch/vmresume.
* If an outer hypervisor is doing the cache flush for us
* (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
* capability to the guest too, and if EPT is disabled we're not
* vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
* require a nested hypervisor to do a flush of its own.
*/
if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
return data;
}
EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
{
switch (msr->index) {
case MSR_IA32_ARCH_CAPABILITIES:
msr->data = kvm_get_arch_capabilities();
break;
case MSR_IA32_UCODE_REV:
rdmsrl_safe(msr->index, &msr->data);
break;
default:
if (kvm_x86_ops->get_msr_feature(msr))
return 1;
}
return 0;
}
static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
{
struct kvm_msr_entry msr;
int r;
msr.index = index;
r = kvm_get_msr_feature(&msr);
if (r)
return r;
*data = msr.data;
return 0;
}
bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
{
if (efer & efer_reserved_bits)
return false;
if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
return false;
if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
return false;
return true;
}
EXPORT_SYMBOL_GPL(kvm_valid_efer);
static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
u64 old_efer = vcpu->arch.efer;
if (!kvm_valid_efer(vcpu, efer))
return 1;
if (is_paging(vcpu)
&& (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
return 1;
efer &= ~EFER_LMA;
efer |= vcpu->arch.efer & EFER_LMA;
kvm_x86_ops->set_efer(vcpu, efer);
/* Update reserved bits */
if ((efer ^ old_efer) & EFER_NX)
kvm_mmu_reset_context(vcpu);
return 0;
}
void kvm_enable_efer_bits(u64 mask)
{
efer_reserved_bits &= ~mask;
}
EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
/*
* Writes msr value into into the appropriate "register".
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
{
switch (msr->index) {
case MSR_FS_BASE:
case MSR_GS_BASE:
case MSR_KERNEL_GS_BASE:
case MSR_CSTAR:
case MSR_LSTAR:
if (is_noncanonical_address(msr->data, vcpu))
return 1;
break;
case MSR_IA32_SYSENTER_EIP:
case MSR_IA32_SYSENTER_ESP:
/*
* IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
* non-canonical address is written on Intel but not on
* AMD (which ignores the top 32-bits, because it does
* not implement 64-bit SYSENTER).
*
* 64-bit code should hence be able to write a non-canonical
* value on AMD. Making the address canonical ensures that
* vmentry does not fail on Intel after writing a non-canonical
* value, and that something deterministic happens if the guest
* invokes 64-bit SYSENTER.
*/
msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
}
return kvm_x86_ops->set_msr(vcpu, msr);
}
EXPORT_SYMBOL_GPL(kvm_set_msr);
/*
* Adapt set_msr() to msr_io()'s calling convention
*/
static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
{
struct msr_data msr;
int r;
msr.index = index;
msr.host_initiated = true;
r = kvm_get_msr(vcpu, &msr);
if (r)
return r;
*data = msr.data;
return 0;
}
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
{
struct msr_data msr;
msr.data = *data;
msr.index = index;
msr.host_initiated = true;
return kvm_set_msr(vcpu, &msr);
}
#ifdef CONFIG_X86_64
struct pvclock_gtod_data {
seqcount_t seq;
struct { /* extract of a clocksource struct */
int vclock_mode;
u64 cycle_last;
u64 mask;
u32 mult;
u32 shift;
} clock;
u64 boot_ns;
u64 nsec_base;
u64 wall_time_sec;
};
static struct pvclock_gtod_data pvclock_gtod_data;
static void update_pvclock_gtod(struct timekeeper *tk)
{
struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
u64 boot_ns;
boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
write_seqcount_begin(&vdata->seq);
/* copy pvclock gtod data */
vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
vdata->clock.mask = tk->tkr_mono.mask;
vdata->clock.mult = tk->tkr_mono.mult;
vdata->clock.shift = tk->tkr_mono.shift;
vdata->boot_ns = boot_ns;
vdata->nsec_base = tk->tkr_mono.xtime_nsec;
vdata->wall_time_sec = tk->xtime_sec;
write_seqcount_end(&vdata->seq);
}
#endif
void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
{
/*
* Note: KVM_REQ_PENDING_TIMER is implicitly checked in
* vcpu_enter_guest. This function is only called from
* the physical CPU that is running vcpu.
*/
kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
}
static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
{
int version;
int r;
struct pvclock_wall_clock wc;
struct timespec64 boot;
if (!wall_clock)
return;
r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
if (r)
return;
if (version & 1)
++version; /* first time write, random junk */
++version;
if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
return;
/*
* The guest calculates current wall clock time by adding
* system time (updated by kvm_guest_time_update below) to the
* wall clock specified here. guest system time equals host
* system time for us, thus we must fill in host boot time here.
*/
getboottime64(&boot);
if (kvm->arch.kvmclock_offset) {
struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
boot = timespec64_sub(boot, ts);
}
wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
wc.nsec = boot.tv_nsec;
wc.version = version;
kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
version++;
kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
}
static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
{
do_shl32_div32(dividend, divisor);
return dividend;
}
static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
s8 *pshift, u32 *pmultiplier)
{
uint64_t scaled64;
int32_t shift = 0;
uint64_t tps64;
uint32_t tps32;
tps64 = base_hz;
scaled64 = scaled_hz;
while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
tps64 >>= 1;
shift--;
}
tps32 = (uint32_t)tps64;
while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
scaled64 >>= 1;
else
tps32 <<= 1;
shift++;
}
*pshift = shift;
*pmultiplier = div_frac(scaled64, tps32);
pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
__func__, base_hz, scaled_hz, shift, *pmultiplier);
}
#ifdef CONFIG_X86_64
static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
#endif
static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
static unsigned long max_tsc_khz;
static u32 adjust_tsc_khz(u32 khz, s32 ppm)
{
u64 v = (u64)khz * (1000000 + ppm);
do_div(v, 1000000);
return v;
}
static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
{
u64 ratio;
/* Guest TSC same frequency as host TSC? */
if (!scale) {
vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
return 0;
}
/* TSC scaling supported? */
if (!kvm_has_tsc_control) {
if (user_tsc_khz > tsc_khz) {
vcpu->arch.tsc_catchup = 1;
vcpu->arch.tsc_always_catchup = 1;
return 0;
} else {
WARN(1, "user requested TSC rate below hardware speed\n");
return -1;
}
}
/* TSC scaling required - calculate ratio */
ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
user_tsc_khz, tsc_khz);
if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
user_tsc_khz);
return -1;
}
vcpu->arch.tsc_scaling_ratio = ratio;
return 0;
}
static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
{
u32 thresh_lo, thresh_hi;
int use_scaling = 0;
/* tsc_khz can be zero if TSC calibration fails */
if (user_tsc_khz == 0) {
/* set tsc_scaling_ratio to a safe value */
vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
return -1;
}
/* Compute a scale to convert nanoseconds in TSC cycles */
kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
&vcpu->arch.virtual_tsc_shift,
&vcpu->arch.virtual_tsc_mult);
vcpu->arch.virtual_tsc_khz = user_tsc_khz;
/*
* Compute the variation in TSC rate which is acceptable
* within the range of tolerance and decide if the
* rate being applied is within that bounds of the hardware
* rate. If so, no scaling or compensation need be done.
*/
thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
use_scaling = 1;
}
return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
}
static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
{
u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
vcpu->arch.virtual_tsc_mult,
vcpu->arch.virtual_tsc_shift);
tsc += vcpu->arch.this_tsc_write;
return tsc;
}
static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_X86_64
bool vcpus_matched;
struct kvm_arch *ka = &vcpu->kvm->arch;
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
atomic_read(&vcpu->kvm->online_vcpus));
/*
* Once the masterclock is enabled, always perform request in
* order to update it.
*
* In order to enable masterclock, the host clocksource must be TSC
* and the vcpus need to have matched TSCs. When that happens,
* perform request to enable masterclock.
*/
if (ka->use_master_clock ||
(gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
atomic_read(&vcpu->kvm->online_vcpus),
ka->use_master_clock, gtod->clock.vclock_mode);
#endif
}
static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
{
u64 curr_offset = vcpu->arch.tsc_offset;
vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
}
/*
* Multiply tsc by a fixed point number represented by ratio.
*
* The most significant 64-N bits (mult) of ratio represent the
* integral part of the fixed point number; the remaining N bits
* (frac) represent the fractional part, ie. ratio represents a fixed
* point number (mult + frac * 2^(-N)).
*
* N equals to kvm_tsc_scaling_ratio_frac_bits.
*/
static inline u64 __scale_tsc(u64 ratio, u64 tsc)
{
return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
}
u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
{
u64 _tsc = tsc;
u64 ratio = vcpu->arch.tsc_scaling_ratio;
if (ratio != kvm_default_tsc_scaling_ratio)
_tsc = __scale_tsc(ratio, tsc);
return _tsc;
}
EXPORT_SYMBOL_GPL(kvm_scale_tsc);
static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
{
u64 tsc;
tsc = kvm_scale_tsc(vcpu, rdtsc());
return target_tsc - tsc;
}
u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
{
return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
}
EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
{
kvm_x86_ops->write_tsc_offset(vcpu, offset);
vcpu->arch.tsc_offset = offset;
}
void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
{
struct kvm *kvm = vcpu->kvm;
u64 offset, ns, elapsed;
unsigned long flags;
bool matched;
bool already_matched;
u64 data = msr->data;
bool synchronizing = false;
raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
offset = kvm_compute_tsc_offset(vcpu, data);
ns = ktime_get_boot_ns();
elapsed = ns - kvm->arch.last_tsc_nsec;
if (vcpu->arch.virtual_tsc_khz) {
if (data == 0 && msr->host_initiated) {
/*
* detection of vcpu initialization -- need to sync
* with other vCPUs. This particularly helps to keep
* kvm_clock stable after CPU hotplug
*/
synchronizing = true;
} else {
u64 tsc_exp = kvm->arch.last_tsc_write +
nsec_to_cycles(vcpu, elapsed);
u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
/*
* Special case: TSC write with a small delta (1 second)
* of virtual cycle time against real time is
* interpreted as an attempt to synchronize the CPU.
*/
synchronizing = data < tsc_exp + tsc_hz &&
data + tsc_hz > tsc_exp;
}
}
/*
* For a reliable TSC, we can match TSC offsets, and for an unstable
* TSC, we add elapsed time in this computation. We could let the
* compensation code attempt to catch up if we fall behind, but
* it's better to try to match offsets from the beginning.
*/
if (synchronizing &&
vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
if (!check_tsc_unstable()) {
offset = kvm->arch.cur_tsc_offset;
pr_debug("kvm: matched tsc offset for %llu\n", data);
} else {
u64 delta = nsec_to_cycles(vcpu, elapsed);
data += delta;
offset = kvm_compute_tsc_offset(vcpu, data);
pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
}
matched = true;
already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
} else {
/*
* We split periods of matched TSC writes into generations.
* For each generation, we track the original measured
* nanosecond time, offset, and write, so if TSCs are in
* sync, we can match exact offset, and if not, we can match
* exact software computation in compute_guest_tsc()
*
* These values are tracked in kvm->arch.cur_xxx variables.
*/
kvm->arch.cur_tsc_generation++;
kvm->arch.cur_tsc_nsec = ns;
kvm->arch.cur_tsc_write = data;
kvm->arch.cur_tsc_offset = offset;
matched = false;
pr_debug("kvm: new tsc generation %llu, clock %llu\n",
kvm->arch.cur_tsc_generation, data);
}
/*
* We also track th most recent recorded KHZ, write and time to
* allow the matching interval to be extended at each write.
*/
kvm->arch.last_tsc_nsec = ns;
kvm->arch.last_tsc_write = data;
kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
vcpu->arch.last_guest_tsc = data;
/* Keep track of which generation this VCPU has synchronized to */
vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
update_ia32_tsc_adjust_msr(vcpu, offset);
kvm_vcpu_write_tsc_offset(vcpu, offset);
raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
if (!matched) {
kvm->arch.nr_vcpus_matched_tsc = 0;
} else if (!already_matched) {
kvm->arch.nr_vcpus_matched_tsc++;
}
kvm_track_tsc_matching(vcpu);
spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
}
EXPORT_SYMBOL_GPL(kvm_write_tsc);
static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
s64 adjustment)
{
kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
}
static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
{
if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
WARN_ON(adjustment < 0);
adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
adjust_tsc_offset_guest(vcpu, adjustment);
}
#ifdef CONFIG_X86_64
static u64 read_tsc(void)
{
u64 ret = (u64)rdtsc_ordered();
u64 last = pvclock_gtod_data.clock.cycle_last;
if (likely(ret >= last))
return ret;
/*
* GCC likes to generate cmov here, but this branch is extremely
* predictable (it's just a function of time and the likely is
* very likely) and there's a data dependence, so force GCC
* to generate a branch instead. I don't barrier() because
* we don't actually need a barrier, and if this function
* ever gets inlined it will generate worse code.
*/
asm volatile ("");
return last;
}
static inline u64 vgettsc(u64 *cycle_now)
{
long v;
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
*cycle_now = read_tsc();
v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
return v * gtod->clock.mult;
}
static int do_monotonic_boot(s64 *t, u64 *cycle_now)
{
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
unsigned long seq;
int mode;
u64 ns;
do {
seq = read_seqcount_begin(&gtod->seq);
mode = gtod->clock.vclock_mode;
ns = gtod->nsec_base;
ns += vgettsc(cycle_now);
ns >>= gtod->clock.shift;
ns += gtod->boot_ns;
} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
*t = ns;
return mode;
}
static int do_realtime(struct timespec *ts, u64 *cycle_now)
{
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
unsigned long seq;
int mode;
u64 ns;
do {
seq = read_seqcount_begin(&gtod->seq);
mode = gtod->clock.vclock_mode;
ts->tv_sec = gtod->wall_time_sec;
ns = gtod->nsec_base;
ns += vgettsc(cycle_now);
ns >>= gtod->clock.shift;
} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
ts->tv_nsec = ns;
return mode;
}
/* returns true if host is using tsc clocksource */
static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
{
/* checked again under seqlock below */
if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
return false;
return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
}
/* returns true if host is using tsc clocksource */
static bool kvm_get_walltime_and_clockread(struct timespec *ts,
u64 *cycle_now)
{
/* checked again under seqlock below */
if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
return false;
return do_realtime(ts, cycle_now) == VCLOCK_TSC;
}
#endif
/*
*
* Assuming a stable TSC across physical CPUS, and a stable TSC
* across virtual CPUs, the following condition is possible.
* Each numbered line represents an event visible to both
* CPUs at the next numbered event.
*
* "timespecX" represents host monotonic time. "tscX" represents
* RDTSC value.
*
* VCPU0 on CPU0 | VCPU1 on CPU1
*
* 1. read timespec0,tsc0
* 2. | timespec1 = timespec0 + N
* | tsc1 = tsc0 + M
* 3. transition to guest | transition to guest
* 4. ret0 = timespec0 + (rdtsc - tsc0) |
* 5. | ret1 = timespec1 + (rdtsc - tsc1)
* | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
*
* Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
*
* - ret0 < ret1
* - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
* ...
* - 0 < N - M => M < N
*
* That is, when timespec0 != timespec1, M < N. Unfortunately that is not
* always the case (the difference between two distinct xtime instances
* might be smaller then the difference between corresponding TSC reads,
* when updating guest vcpus pvclock areas).
*
* To avoid that problem, do not allow visibility of distinct
* system_timestamp/tsc_timestamp values simultaneously: use a master
* copy of host monotonic time values. Update that master copy
* in lockstep.
*
* Rely on synchronization of host TSCs and guest TSCs for monotonicity.
*
*/
static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
{
#ifdef CONFIG_X86_64
struct kvm_arch *ka = &kvm->arch;
int vclock_mode;
bool host_tsc_clocksource, vcpus_matched;
vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
atomic_read(&kvm->online_vcpus));
/*
* If the host uses TSC clock, then passthrough TSC as stable
* to the guest.
*/
host_tsc_clocksource = kvm_get_time_and_clockread(
&ka->master_kernel_ns,
&ka->master_cycle_now);
ka->use_master_clock = host_tsc_clocksource && vcpus_matched
&& !ka->backwards_tsc_observed
&& !ka->boot_vcpu_runs_old_kvmclock;
if (ka->use_master_clock)
atomic_set(&kvm_guest_has_master_clock, 1);
vclock_mode = pvclock_gtod_data.clock.vclock_mode;
trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
vcpus_matched);
#endif
}
void kvm_make_mclock_inprogress_request(struct kvm *kvm)
{
kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
}
static void kvm_gen_update_masterclock(struct kvm *kvm)
{
#ifdef CONFIG_X86_64
int i;
struct kvm_vcpu *vcpu;
struct kvm_arch *ka = &kvm->arch;
spin_lock(&ka->pvclock_gtod_sync_lock);
kvm_make_mclock_inprogress_request(kvm);
/* no guest entries from this point */
pvclock_update_vm_gtod_copy(kvm);
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
/* guest entries allowed */
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
spin_unlock(&ka->pvclock_gtod_sync_lock);
#endif
}
u64 get_kvmclock_ns(struct kvm *kvm)
{
struct kvm_arch *ka = &kvm->arch;
struct pvclock_vcpu_time_info hv_clock;
u64 ret;
spin_lock(&ka->pvclock_gtod_sync_lock);
if (!ka->use_master_clock) {
spin_unlock(&ka->pvclock_gtod_sync_lock);
return ktime_get_boot_ns() + ka->kvmclock_offset;
}
hv_clock.tsc_timestamp = ka->master_cycle_now;
hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
spin_unlock(&ka->pvclock_gtod_sync_lock);
/* both __this_cpu_read() and rdtsc() should be on the same cpu */
get_cpu();
if (__this_cpu_read(cpu_tsc_khz)) {
kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
&hv_clock.tsc_shift,
&hv_clock.tsc_to_system_mul);
ret = __pvclock_read_cycles(&hv_clock, rdtsc());
} else
ret = ktime_get_boot_ns() + ka->kvmclock_offset;
put_cpu();
return ret;
}
static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
{
struct kvm_vcpu_arch *vcpu = &v->arch;
struct pvclock_vcpu_time_info guest_hv_clock;
if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
&guest_hv_clock, sizeof(guest_hv_clock))))
return;
/* This VCPU is paused, but it's legal for a guest to read another
* VCPU's kvmclock, so we really have to follow the specification where
* it says that version is odd if data is being modified, and even after
* it is consistent.
*
* Version field updates must be kept separate. This is because
* kvm_write_guest_cached might use a "rep movs" instruction, and
* writes within a string instruction are weakly ordered. So there
* are three writes overall.
*
* As a small optimization, only write the version field in the first
* and third write. The vcpu->pv_time cache is still valid, because the
* version field is the first in the struct.
*/
BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
if (guest_hv_clock.version & 1)
++guest_hv_clock.version; /* first time write, random junk */
vcpu->hv_clock.version = guest_hv_clock.version + 1;
kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
&vcpu->hv_clock,
sizeof(vcpu->hv_clock.version));
smp_wmb();
/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
if (vcpu->pvclock_set_guest_stopped_request) {
vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
vcpu->pvclock_set_guest_stopped_request = false;
}
trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
&vcpu->hv_clock,
sizeof(vcpu->hv_clock));
smp_wmb();
vcpu->hv_clock.version++;
kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
&vcpu->hv_clock,
sizeof(vcpu->hv_clock.version));
}
static int kvm_guest_time_update(struct kvm_vcpu *v)
{
unsigned long flags, tgt_tsc_khz;
struct kvm_vcpu_arch *vcpu = &v->arch;
struct kvm_arch *ka = &v->kvm->arch;
s64 kernel_ns;
u64 tsc_timestamp, host_tsc;
u8 pvclock_flags;
bool use_master_clock;
kernel_ns = 0;
host_tsc = 0;
/*
* If the host uses TSC clock, then passthrough TSC as stable
* to the guest.
*/
spin_lock(&ka->pvclock_gtod_sync_lock);
use_master_clock = ka->use_master_clock;
if (use_master_clock) {
host_tsc = ka->master_cycle_now;
kernel_ns = ka->master_kernel_ns;
}
spin_unlock(&ka->pvclock_gtod_sync_lock);
/* Keep irq disabled to prevent changes to the clock */
local_irq_save(flags);
tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
if (unlikely(tgt_tsc_khz == 0)) {
local_irq_restore(flags);
kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
return 1;
}
if (!use_master_clock) {
host_tsc = rdtsc();
kernel_ns = ktime_get_boot_ns();
}
tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
/*
* We may have to catch up the TSC to match elapsed wall clock
* time for two reasons, even if kvmclock is used.
* 1) CPU could have been running below the maximum TSC rate
* 2) Broken TSC compensation resets the base at each VCPU
* entry to avoid unknown leaps of TSC even when running
* again on the same CPU. This may cause apparent elapsed
* time to disappear, and the guest to stand still or run
* very slowly.
*/
if (vcpu->tsc_catchup) {
u64 tsc = compute_guest_tsc(v, kernel_ns);
if (tsc > tsc_timestamp) {
adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
tsc_timestamp = tsc;
}
}
local_irq_restore(flags);
/* With all the info we got, fill in the values */
if (kvm_has_tsc_control)
tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
&vcpu->hv_clock.tsc_shift,
&vcpu->hv_clock.tsc_to_system_mul);
vcpu->hw_tsc_khz = tgt_tsc_khz;
}
vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
vcpu->last_guest_tsc = tsc_timestamp;
/* If the host uses TSC clocksource, then it is stable */
pvclock_flags = 0;
if (use_master_clock)
pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
vcpu->hv_clock.flags = pvclock_flags;
if (vcpu->pv_time_enabled)
kvm_setup_pvclock_page(v);
if (v == kvm_get_vcpu(v->kvm, 0))
kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
return 0;
}
/*
* kvmclock updates which are isolated to a given vcpu, such as
* vcpu->cpu migration, should not allow system_timestamp from
* the rest of the vcpus to remain static. Otherwise ntp frequency
* correction applies to one vcpu's system_timestamp but not
* the others.
*
* So in those cases, request a kvmclock update for all vcpus.
* We need to rate-limit these requests though, as they can
* considerably slow guests that have a large number of vcpus.
* The time for a remote vcpu to update its kvmclock is bound
* by the delay we use to rate-limit the updates.
*/
#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
static void kvmclock_update_fn(struct work_struct *work)
{
int i;
struct delayed_work *dwork = to_delayed_work(work);
struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
kvmclock_update_work);
struct kvm *kvm = container_of(ka, struct kvm, arch);
struct kvm_vcpu *vcpu;
kvm_for_each_vcpu(i, vcpu, kvm) {
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
kvm_vcpu_kick(vcpu);
}
}
static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
{
struct kvm *kvm = v->kvm;
kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
schedule_delayed_work(&kvm->arch.kvmclock_update_work,
KVMCLOCK_UPDATE_DELAY);
}
#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
static void kvmclock_sync_fn(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
kvmclock_sync_work);
struct kvm *kvm = container_of(ka, struct kvm, arch);
if (!kvmclock_periodic_sync)
return;
schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
KVMCLOCK_SYNC_PERIOD);
}
static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
u64 mcg_cap = vcpu->arch.mcg_cap;
unsigned bank_num = mcg_cap & 0xff;
switch (msr) {
case MSR_IA32_MCG_STATUS:
vcpu->arch.mcg_status = data;
break;
case MSR_IA32_MCG_CTL:
if (!(mcg_cap & MCG_CTL_P))
return 1;
if (data != 0 && data != ~(u64)0)
return -1;
vcpu->arch.mcg_ctl = data;
break;
default:
if (msr >= MSR_IA32_MC0_CTL &&
msr < MSR_IA32_MCx_CTL(bank_num)) {
u32 offset = msr - MSR_IA32_MC0_CTL;
/* only 0 or all 1s can be written to IA32_MCi_CTL
* some Linux kernels though clear bit 10 in bank 4 to
* workaround a BIOS/GART TBL issue on AMD K8s, ignore
* this to avoid an uncatched #GP in the guest
*/
if ((offset & 0x3) == 0 &&
data != 0 && (data | (1 << 10)) != ~(u64)0)
return -1;
vcpu->arch.mce_banks[offset] = data;
break;
}
return 1;
}
return 0;
}
static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
{
struct kvm *kvm = vcpu->kvm;
int lm = is_long_mode(vcpu);
u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
: kvm->arch.xen_hvm_config.blob_size_32;
u32 page_num = data & ~PAGE_MASK;
u64 page_addr = data & PAGE_MASK;
u8 *page;
int r;
r = -E2BIG;
if (page_num >= blob_size)
goto out;
r = -ENOMEM;
page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
if (IS_ERR(page)) {
r = PTR_ERR(page);
goto out;
}
if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
goto out_free;
r = 0;
out_free:
kfree(page);
out:
return r;
}
static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
{
gpa_t gpa = data & ~0x3f;
/* Bits 3:5 are reserved, Should be zero */
if (data & 0x38)
return 1;
vcpu->arch.apf.msr_val = data;
if (!(data & KVM_ASYNC_PF_ENABLED)) {
kvm_clear_async_pf_completion_queue(vcpu);
kvm_async_pf_hash_reset(vcpu);
return 0;
}
if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
sizeof(u32)))
return 1;
vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
kvm_async_pf_wakeup_all(vcpu);
return 0;
}
static void kvmclock_reset(struct kvm_vcpu *vcpu)
{
vcpu->arch.pv_time_enabled = false;
}
static void record_steal_time(struct kvm_vcpu *vcpu)
{
if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
return;
if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
return;
vcpu->arch.st.steal.preempted = 0;
if (vcpu->arch.st.steal.version & 1)
vcpu->arch.st.steal.version += 1; /* first time write, random junk */
vcpu->arch.st.steal.version += 1;
kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
smp_wmb();
vcpu->arch.st.steal.steal += current->sched_info.run_delay -
vcpu->arch.st.last_steal;
vcpu->arch.st.last_steal = current->sched_info.run_delay;
kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
smp_wmb();
vcpu->arch.st.steal.version += 1;
kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
}
int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
bool pr = false;
u32 msr = msr_info->index;
u64 data = msr_info->data;
switch (msr) {
case MSR_AMD64_NB_CFG:
case MSR_IA32_UCODE_WRITE:
case MSR_VM_HSAVE_PA:
case MSR_AMD64_PATCH_LOADER:
case MSR_AMD64_BU_CFG2:
case MSR_AMD64_DC_CFG:
case MSR_F15H_EX_CFG:
break;
case MSR_IA32_UCODE_REV:
if (msr_info->host_initiated)
vcpu->arch.microcode_version = data;
break;
case MSR_EFER:
return set_efer(vcpu, data);
case MSR_K7_HWCR:
data &= ~(u64)0x40; /* ignore flush filter disable */
data &= ~(u64)0x100; /* ignore ignne emulation enable */
data &= ~(u64)0x8; /* ignore TLB cache disable */
data &= ~(u64)0x40000; /* ignore Mc status write enable */
if (data != 0) {
vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
data);
return 1;
}
break;
case MSR_FAM10H_MMIO_CONF_BASE:
if (data != 0) {
vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
"0x%llx\n", data);
return 1;
}
break;
case MSR_IA32_DEBUGCTLMSR:
if (!data) {
/* We support the non-activated case already */
break;
} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
/* Values other than LBR and BTF are vendor-specific,
thus reserved and should throw a #GP */
return 1;
}
vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
__func__, data);
break;
case 0x200 ... 0x2ff:
return kvm_mtrr_set_msr(vcpu, msr, data);
case MSR_IA32_APICBASE:
return kvm_set_apic_base(vcpu, msr_info);
case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
return kvm_x2apic_msr_write(vcpu, msr, data);
case MSR_IA32_TSCDEADLINE:
kvm_set_lapic_tscdeadline_msr(vcpu, data);
break;
case MSR_IA32_TSC_ADJUST:
if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
if (!msr_info->host_initiated) {
s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
adjust_tsc_offset_guest(vcpu, adj);
}
vcpu->arch.ia32_tsc_adjust_msr = data;
}
break;
case MSR_IA32_MISC_ENABLE:
vcpu->arch.ia32_misc_enable_msr = data;
break;
case MSR_IA32_SMBASE:
if (!msr_info->host_initiated)
return 1;
vcpu->arch.smbase = data;
break;
case MSR_KVM_WALL_CLOCK_NEW:
case MSR_KVM_WALL_CLOCK:
vcpu->kvm->arch.wall_clock = data;
kvm_write_wall_clock(vcpu->kvm, data);
break;
case MSR_KVM_SYSTEM_TIME_NEW:
case MSR_KVM_SYSTEM_TIME: {
struct kvm_arch *ka = &vcpu->kvm->arch;
kvmclock_reset(vcpu);
if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
if (ka->boot_vcpu_runs_old_kvmclock != tmp)
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
ka->boot_vcpu_runs_old_kvmclock = tmp;
}
vcpu->arch.time = data;
kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
/* we verify if the enable bit is set... */
if (!(data & 1))
break;
if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
&vcpu->arch.pv_time, data & ~1ULL,
sizeof(struct pvclock_vcpu_time_info)))
vcpu->arch.pv_time_enabled = false;
else
vcpu->arch.pv_time_enabled = true;
break;
}
case MSR_KVM_ASYNC_PF_EN:
if (kvm_pv_enable_async_pf(vcpu, data))
return 1;
break;
case MSR_KVM_STEAL_TIME:
if (unlikely(!sched_info_on()))
return 1;
if (data & KVM_STEAL_RESERVED_MASK)
return 1;
if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
data & KVM_STEAL_VALID_BITS,
sizeof(struct kvm_steal_time)))
return 1;
vcpu->arch.st.msr_val = data;
if (!(data & KVM_MSR_ENABLED))
break;
kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
break;
case MSR_KVM_PV_EOI_EN:
if (kvm_lapic_enable_pv_eoi(vcpu, data))
return 1;
break;
case MSR_IA32_MCG_CTL:
case MSR_IA32_MCG_STATUS:
case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
return set_msr_mce(vcpu, msr, data);
case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
pr = true; /* fall through */
case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
if (kvm_pmu_is_valid_msr(vcpu, msr))
return kvm_pmu_set_msr(vcpu, msr_info);
if (pr || data != 0)
vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
"0x%x data 0x%llx\n", msr, data);
break;
case MSR_K7_CLK_CTL:
/*
* Ignore all writes to this no longer documented MSR.
* Writes are only relevant for old K7 processors,
* all pre-dating SVM, but a recommended workaround from
* AMD for these chips. It is possible to specify the
* affected processor models on the command line, hence
* the need to ignore the workaround.
*/
break;
case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
case HV_X64_MSR_CRASH_CTL:
case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
return kvm_hv_set_msr_common(vcpu, msr, data,
msr_info->host_initiated);
case MSR_IA32_BBL_CR_CTL3:
/* Drop writes to this legacy MSR -- see rdmsr
* counterpart for further detail.
*/
vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
break;
case MSR_AMD64_OSVW_ID_LENGTH:
if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
return 1;
vcpu->arch.osvw.length = data;
break;
case MSR_AMD64_OSVW_STATUS:
if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
return 1;
vcpu->arch.osvw.status = data;
break;
case MSR_PLATFORM_INFO:
if (!msr_info->host_initiated ||
data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
(!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
cpuid_fault_enabled(vcpu)))
return 1;
vcpu->arch.msr_platform_info = data;
break;
case MSR_MISC_FEATURES_ENABLES:
if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
(data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
!supports_cpuid_fault(vcpu)))
return 1;
vcpu->arch.msr_misc_features_enables = data;
break;
default:
if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
return xen_hvm_config(vcpu, data);
if (kvm_pmu_is_valid_msr(vcpu, msr))
return kvm_pmu_set_msr(vcpu, msr_info);
if (!ignore_msrs) {
vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
msr, data);
return 1;
} else {
vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
msr, data);
break;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_msr_common);
/*
* Reads an msr value (of 'msr_index') into 'pdata'.
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
{
return kvm_x86_ops->get_msr(vcpu, msr);
}
EXPORT_SYMBOL_GPL(kvm_get_msr);
static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
u64 data;
u64 mcg_cap = vcpu->arch.mcg_cap;
unsigned bank_num = mcg_cap & 0xff;
switch (msr) {
case MSR_IA32_P5_MC_ADDR:
case MSR_IA32_P5_MC_TYPE:
data = 0;
break;
case MSR_IA32_MCG_CAP:
data = vcpu->arch.mcg_cap;
break;
case MSR_IA32_MCG_CTL:
if (!(mcg_cap & MCG_CTL_P))
return 1;
data = vcpu->arch.mcg_ctl;
break;
case MSR_IA32_MCG_STATUS:
data = vcpu->arch.mcg_status;
break;
default:
if (msr >= MSR_IA32_MC0_CTL &&
msr < MSR_IA32_MCx_CTL(bank_num)) {
u32 offset = msr - MSR_IA32_MC0_CTL;
data = vcpu->arch.mce_banks[offset];
break;
}
return 1;
}
*pdata = data;
return 0;
}
int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
switch (msr_info->index) {
case MSR_IA32_PLATFORM_ID:
case MSR_IA32_EBL_CR_POWERON:
case MSR_IA32_DEBUGCTLMSR:
case MSR_IA32_LASTBRANCHFROMIP:
case MSR_IA32_LASTBRANCHTOIP:
case MSR_IA32_LASTINTFROMIP:
case MSR_IA32_LASTINTTOIP:
case MSR_K8_SYSCFG:
case MSR_K8_TSEG_ADDR:
case MSR_K8_TSEG_MASK:
case MSR_K7_HWCR:
case MSR_VM_HSAVE_PA:
case MSR_K8_INT_PENDING_MSG:
case MSR_AMD64_NB_CFG:
case MSR_FAM10H_MMIO_CONF_BASE:
case MSR_AMD64_BU_CFG2:
case MSR_IA32_PERF_CTL:
case MSR_AMD64_DC_CFG:
case MSR_F15H_EX_CFG:
msr_info->data = 0;
break;
case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
msr_info->data = 0;
break;
case MSR_IA32_UCODE_REV:
msr_info->data = vcpu->arch.microcode_version;
break;
case MSR_MTRRcap:
case 0x200 ... 0x2ff:
return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
case 0xcd: /* fsb frequency */
msr_info->data = 3;
break;
/*
* MSR_EBC_FREQUENCY_ID
* Conservative value valid for even the basic CPU models.
* Models 0,1: 000 in bits 23:21 indicating a bus speed of
* 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
* and 266MHz for model 3, or 4. Set Core Clock
* Frequency to System Bus Frequency Ratio to 1 (bits
* 31:24) even though these are only valid for CPU
* models > 2, however guests may end up dividing or
* multiplying by zero otherwise.
*/
case MSR_EBC_FREQUENCY_ID:
msr_info->data = 1 << 24;
break;
case MSR_IA32_APICBASE:
msr_info->data = kvm_get_apic_base(vcpu);
break;
case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
break;
case MSR_IA32_TSCDEADLINE:
msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
break;
case MSR_IA32_TSC_ADJUST:
msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
break;
case MSR_IA32_MISC_ENABLE:
msr_info->data = vcpu->arch.ia32_misc_enable_msr;
break;
case MSR_IA32_SMBASE:
if (!msr_info->host_initiated)
return 1;
msr_info->data = vcpu->arch.smbase;
break;
case MSR_IA32_PERF_STATUS:
/* TSC increment by tick */
msr_info->data = 1000ULL;
/* CPU multiplier */
msr_info->data |= (((uint64_t)4ULL) << 40);
break;
case MSR_EFER:
msr_info->data = vcpu->arch.efer;
break;
case MSR_KVM_WALL_CLOCK:
case MSR_KVM_WALL_CLOCK_NEW:
msr_info->data = vcpu->kvm->arch.wall_clock;
break;
case MSR_KVM_SYSTEM_TIME:
case MSR_KVM_SYSTEM_TIME_NEW:
msr_info->data = vcpu->arch.time;
break;
case MSR_KVM_ASYNC_PF_EN:
msr_info->data = vcpu->arch.apf.msr_val;
break;
case MSR_KVM_STEAL_TIME:
msr_info->data = vcpu->arch.st.msr_val;
break;
case MSR_KVM_PV_EOI_EN:
msr_info->data = vcpu->arch.pv_eoi.msr_val;
break;
case MSR_IA32_P5_MC_ADDR:
case MSR_IA32_P5_MC_TYPE:
case MSR_IA32_MCG_CAP:
case MSR_IA32_MCG_CTL:
case MSR_IA32_MCG_STATUS:
case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
case MSR_K7_CLK_CTL:
/*
* Provide expected ramp-up count for K7. All other
* are set to zero, indicating minimum divisors for
* every field.
*
* This prevents guest kernels on AMD host with CPU
* type 6, model 8 and higher from exploding due to
* the rdmsr failing.
*/
msr_info->data = 0x20000000;
break;
case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
case HV_X64_MSR_CRASH_CTL:
case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
return kvm_hv_get_msr_common(vcpu,
msr_info->index, &msr_info->data);
break;
case MSR_IA32_BBL_CR_CTL3:
/* This legacy MSR exists but isn't fully documented in current
* silicon. It is however accessed by winxp in very narrow
* scenarios where it sets bit #19, itself documented as
* a "reserved" bit. Best effort attempt to source coherent
* read data here should the balance of the register be
* interpreted by the guest:
*
* L2 cache control register 3: 64GB range, 256KB size,
* enabled, latency 0x1, configured
*/
msr_info->data = 0xbe702111;
break;
case MSR_AMD64_OSVW_ID_LENGTH:
if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
return 1;
msr_info->data = vcpu->arch.osvw.length;
break;
case MSR_AMD64_OSVW_STATUS:
if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
return 1;
msr_info->data = vcpu->arch.osvw.status;
break;
case MSR_PLATFORM_INFO:
msr_info->data = vcpu->arch.msr_platform_info;
break;
case MSR_MISC_FEATURES_ENABLES:
msr_info->data = vcpu->arch.msr_misc_features_enables;
break;
default:
if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
if (!ignore_msrs) {
vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
msr_info->index);
return 1;
} else {
vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
msr_info->data = 0;
}
break;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_get_msr_common);
/*
* Read or write a bunch of msrs. All parameters are kernel addresses.
*
* @return number of msrs set successfully.
*/
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
struct kvm_msr_entry *entries,
int (*do_msr)(struct kvm_vcpu *vcpu,
unsigned index, u64 *data))
{
int i;
for (i = 0; i < msrs->nmsrs; ++i)
if (do_msr(vcpu, entries[i].index, &entries[i].data))
break;
return i;
}
/*
* Read or write a bunch of msrs. Parameters are user addresses.
*
* @return number of msrs set successfully.
*/
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
int (*do_msr)(struct kvm_vcpu *vcpu,
unsigned index, u64 *data),
int writeback)
{
struct kvm_msrs msrs;
struct kvm_msr_entry *entries;
int r, n;
unsigned size;
r = -EFAULT;
if (copy_from_user(&msrs, user_msrs, sizeof msrs))
goto out;
r = -E2BIG;
if (msrs.nmsrs >= MAX_IO_MSRS)
goto out;
size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
entries = memdup_user(user_msrs->entries, size);
if (IS_ERR(entries)) {
r = PTR_ERR(entries);
goto out;
}
r = n = __msr_io(vcpu, &msrs, entries, do_msr);
if (r < 0)
goto out_free;
r = -EFAULT;
if (writeback && copy_to_user(user_msrs->entries, entries, size))
goto out_free;
r = n;
out_free:
kfree(entries);
out:
return r;
}
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
{
int r;
switch (ext) {
case KVM_CAP_IRQCHIP:
case KVM_CAP_HLT:
case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
case KVM_CAP_SET_TSS_ADDR:
case KVM_CAP_EXT_CPUID:
case KVM_CAP_EXT_EMUL_CPUID:
case KVM_CAP_CLOCKSOURCE:
case KVM_CAP_PIT:
case KVM_CAP_NOP_IO_DELAY:
case KVM_CAP_MP_STATE:
case KVM_CAP_SYNC_MMU:
case KVM_CAP_USER_NMI:
case KVM_CAP_REINJECT_CONTROL:
case KVM_CAP_IRQ_INJECT_STATUS:
case KVM_CAP_IOEVENTFD:
case KVM_CAP_IOEVENTFD_NO_LENGTH:
case KVM_CAP_PIT2:
case KVM_CAP_PIT_STATE2:
case KVM_CAP_SET_IDENTITY_MAP_ADDR:
case KVM_CAP_XEN_HVM:
case KVM_CAP_VCPU_EVENTS:
case KVM_CAP_HYPERV:
case KVM_CAP_HYPERV_VAPIC:
case KVM_CAP_HYPERV_SPIN:
case KVM_CAP_HYPERV_SYNIC:
case KVM_CAP_HYPERV_SYNIC2:
case KVM_CAP_HYPERV_VP_INDEX:
case KVM_CAP_PCI_SEGMENT:
case KVM_CAP_DEBUGREGS:
case KVM_CAP_X86_ROBUST_SINGLESTEP:
case KVM_CAP_XSAVE:
case KVM_CAP_ASYNC_PF:
case KVM_CAP_GET_TSC_KHZ:
case KVM_CAP_KVMCLOCK_CTRL:
case KVM_CAP_READONLY_MEM:
case KVM_CAP_HYPERV_TIME:
case KVM_CAP_IOAPIC_POLARITY_IGNORED:
case KVM_CAP_TSC_DEADLINE_TIMER:
case KVM_CAP_ENABLE_CAP_VM:
case KVM_CAP_DISABLE_QUIRKS:
case KVM_CAP_SET_BOOT_CPU_ID:
case KVM_CAP_SPLIT_IRQCHIP:
case KVM_CAP_IMMEDIATE_EXIT:
case KVM_CAP_GET_MSR_FEATURES:
r = 1;
break;
case KVM_CAP_ADJUST_CLOCK:
r = KVM_CLOCK_TSC_STABLE;
break;
case KVM_CAP_X86_GUEST_MWAIT:
r = kvm_mwait_in_guest();
break;
case KVM_CAP_X86_SMM:
/* SMBASE is usually relocated above 1M on modern chipsets,
* and SMM handlers might indeed rely on 4G segment limits,
* so do not report SMM to be available if real mode is
* emulated via vm86 mode. Still, do not go to great lengths
* to avoid userspace's usage of the feature, because it is a
* fringe case that is not enabled except via specific settings
* of the module parameters.
*/
r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
break;
case KVM_CAP_VAPIC:
r = !kvm_x86_ops->cpu_has_accelerated_tpr();
break;
case KVM_CAP_NR_VCPUS:
r = KVM_SOFT_MAX_VCPUS;
break;
case KVM_CAP_MAX_VCPUS:
r = KVM_MAX_VCPUS;
break;
case KVM_CAP_NR_MEMSLOTS:
r = KVM_USER_MEM_SLOTS;
break;
case KVM_CAP_PV_MMU: /* obsolete */
r = 0;
break;
case KVM_CAP_MCE:
r = KVM_MAX_MCE_BANKS;
break;
case KVM_CAP_XCRS:
r = boot_cpu_has(X86_FEATURE_XSAVE);
break;
case KVM_CAP_TSC_CONTROL:
r = kvm_has_tsc_control;
break;
case KVM_CAP_X2APIC_API:
r = KVM_X2APIC_API_VALID_FLAGS;
break;
default:
r = 0;
break;
}
return r;
}
long kvm_arch_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
void __user *argp = (void __user *)arg;
long r;
switch (ioctl) {
case KVM_GET_MSR_INDEX_LIST: {
struct kvm_msr_list __user *user_msr_list = argp;
struct kvm_msr_list msr_list;
unsigned n;
r = -EFAULT;
if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
goto out;
n = msr_list.nmsrs;
msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
goto out;
r = -E2BIG;
if (n < msr_list.nmsrs)
goto out;
r = -EFAULT;
if (copy_to_user(user_msr_list->indices, &msrs_to_save,
num_msrs_to_save * sizeof(u32)))
goto out;
if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
&emulated_msrs,
num_emulated_msrs * sizeof(u32)))
goto out;
r = 0;
break;
}
case KVM_GET_SUPPORTED_CPUID:
case KVM_GET_EMULATED_CPUID: {
struct kvm_cpuid2 __user *cpuid_arg = argp;
struct kvm_cpuid2 cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
goto out;
r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
ioctl);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
goto out;
r = 0;
break;
}
case KVM_X86_GET_MCE_CAP_SUPPORTED: {
r = -EFAULT;
if (copy_to_user(argp, &kvm_mce_cap_supported,
sizeof(kvm_mce_cap_supported)))
goto out;
r = 0;
break;
case KVM_GET_MSR_FEATURE_INDEX_LIST: {
struct kvm_msr_list __user *user_msr_list = argp;
struct kvm_msr_list msr_list;
unsigned int n;
r = -EFAULT;
if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
goto out;
n = msr_list.nmsrs;
msr_list.nmsrs = num_msr_based_features;
if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
goto out;
r = -E2BIG;
if (n < msr_list.nmsrs)
goto out;
r = -EFAULT;
if (copy_to_user(user_msr_list->indices, &msr_based_features,
num_msr_based_features * sizeof(u32)))
goto out;
r = 0;
break;
}
case KVM_GET_MSRS:
r = msr_io(NULL, argp, do_get_msr_feature, 1);
break;
}
default:
r = -EINVAL;
}
out:
return r;
}
static void wbinvd_ipi(void *garbage)
{
wbinvd();
}
static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
{
return kvm_arch_has_noncoherent_dma(vcpu->kvm);
}
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
/* Address WBINVD may be executed by guest */
if (need_emulate_wbinvd(vcpu)) {
if (kvm_x86_ops->has_wbinvd_exit())
cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
smp_call_function_single(vcpu->cpu,
wbinvd_ipi, NULL, 1);
}
kvm_x86_ops->vcpu_load(vcpu, cpu);
/* Apply any externally detected TSC adjustments (due to suspend) */
if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
vcpu->arch.tsc_offset_adjustment = 0;
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
}
if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
rdtsc() - vcpu->arch.last_host_tsc;
if (tsc_delta < 0)
mark_tsc_unstable("KVM discovered backwards TSC");
if (check_tsc_unstable()) {
u64 offset = kvm_compute_tsc_offset(vcpu,
vcpu->arch.last_guest_tsc);
kvm_vcpu_write_tsc_offset(vcpu, offset);
vcpu->arch.tsc_catchup = 1;
}
if (kvm_lapic_hv_timer_in_use(vcpu))
kvm_lapic_restart_hv_timer(vcpu);
/*
* On a host with synchronized TSC, there is no need to update
* kvmclock on vcpu->cpu migration
*/
if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
if (vcpu->cpu != cpu)
kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
vcpu->cpu = cpu;
}
kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
}
static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
{
if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
return;
vcpu->arch.st.steal.preempted = 1;
kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
&vcpu->arch.st.steal.preempted,
offsetof(struct kvm_steal_time, preempted),
sizeof(vcpu->arch.st.steal.preempted));
}
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
int idx;
if (vcpu->preempted)
vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
/*
* Disable page faults because we're in atomic context here.
* kvm_write_guest_offset_cached() would call might_fault()
* that relies on pagefault_disable() to tell if there's a
* bug. NOTE: the write to guest memory may not go through if
* during postcopy live migration or if there's heavy guest
* paging.
*/
pagefault_disable();
/*
* kvm_memslots() will be called by
* kvm_write_guest_offset_cached() so take the srcu lock.
*/
idx = srcu_read_lock(&vcpu->kvm->srcu);
kvm_steal_time_set_preempted(vcpu);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
pagefault_enable();
kvm_x86_ops->vcpu_put(vcpu);
vcpu->arch.last_host_tsc = rdtsc();
/*
* If userspace has set any breakpoints or watchpoints, dr6 is restored
* on every vmexit, but if not, we might have a stale dr6 from the
* guest. do_debug expects dr6 to be cleared after it runs, do the same.
*/
set_debugreg(0, 6);
}
static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
struct kvm_lapic_state *s)
{
if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
kvm_x86_ops->sync_pir_to_irr(vcpu);
return kvm_apic_get_state(vcpu, s);
}
static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
struct kvm_lapic_state *s)
{
int r;
r = kvm_apic_set_state(vcpu, s);
if (r)
return r;
update_cr8_intercept(vcpu);
return 0;
}
static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
{
return (!lapic_in_kernel(vcpu) ||
kvm_apic_accept_pic_intr(vcpu));
}
/*
* if userspace requested an interrupt window, check that the
* interrupt window is open.
*
* No need to exit to userspace if we already have an interrupt queued.
*/
static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
{
return kvm_arch_interrupt_allowed(vcpu) &&
!kvm_cpu_has_interrupt(vcpu) &&
!kvm_event_needs_reinjection(vcpu) &&
kvm_cpu_accept_dm_intr(vcpu);
}
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
struct kvm_interrupt *irq)
{
if (irq->irq >= KVM_NR_INTERRUPTS)
return -EINVAL;
if (!irqchip_in_kernel(vcpu->kvm)) {
kvm_queue_interrupt(vcpu, irq->irq, false);
kvm_make_request(KVM_REQ_EVENT, vcpu);
return 0;
}
/*
* With in-kernel LAPIC, we only use this to inject EXTINT, so
* fail for in-kernel 8259.
*/
if (pic_in_kernel(vcpu->kvm))
return -ENXIO;
if (vcpu->arch.pending_external_vector != -1)
return -EEXIST;
vcpu->arch.pending_external_vector = irq->irq;
kvm_make_request(KVM_REQ_EVENT, vcpu);
return 0;
}
static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
{
kvm_inject_nmi(vcpu);
return 0;
}
static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
{
kvm_make_request(KVM_REQ_SMI, vcpu);
return 0;
}
static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
struct kvm_tpr_access_ctl *tac)
{
if (tac->flags)
return -EINVAL;
vcpu->arch.tpr_access_reporting = !!tac->enabled;
return 0;
}
static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
u64 mcg_cap)
{
int r;
unsigned bank_num = mcg_cap & 0xff, bank;
r = -EINVAL;
if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
goto out;
if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
goto out;
r = 0;
vcpu->arch.mcg_cap = mcg_cap;
/* Init IA32_MCG_CTL to all 1s */
if (mcg_cap & MCG_CTL_P)
vcpu->arch.mcg_ctl = ~(u64)0;
/* Init IA32_MCi_CTL to all 1s */
for (bank = 0; bank < bank_num; bank++)
vcpu->arch.mce_banks[bank*4] = ~(u64)0;
if (kvm_x86_ops->setup_mce)
kvm_x86_ops->setup_mce(vcpu);
out:
return r;
}
static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
struct kvm_x86_mce *mce)
{
u64 mcg_cap = vcpu->arch.mcg_cap;
unsigned bank_num = mcg_cap & 0xff;
u64 *banks = vcpu->arch.mce_banks;
if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
return -EINVAL;
/*
* if IA32_MCG_CTL is not all 1s, the uncorrected error
* reporting is disabled
*/
if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
vcpu->arch.mcg_ctl != ~(u64)0)
return 0;
banks += 4 * mce->bank;
/*
* if IA32_MCi_CTL is not all 1s, the uncorrected error
* reporting is disabled for the bank
*/
if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
return 0;
if (mce->status & MCI_STATUS_UC) {
if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
!kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
return 0;
}
if (banks[1] & MCI_STATUS_VAL)
mce->status |= MCI_STATUS_OVER;
banks[2] = mce->addr;
banks[3] = mce->misc;
vcpu->arch.mcg_status = mce->mcg_status;
banks[1] = mce->status;
kvm_queue_exception(vcpu, MC_VECTOR);
} else if (!(banks[1] & MCI_STATUS_VAL)
|| !(banks[1] & MCI_STATUS_UC)) {
if (banks[1] & MCI_STATUS_VAL)
mce->status |= MCI_STATUS_OVER;
banks[2] = mce->addr;
banks[3] = mce->misc;
banks[1] = mce->status;
} else
banks[1] |= MCI_STATUS_OVER;
return 0;
}
static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events)
{
process_nmi(vcpu);
/*
* FIXME: pass injected and pending separately. This is only
* needed for nested virtualization, whose state cannot be
* migrated yet. For now we can combine them.
*/
events->exception.injected =
(vcpu->arch.exception.pending ||
vcpu->arch.exception.injected) &&
!kvm_exception_is_soft(vcpu->arch.exception.nr);
events->exception.nr = vcpu->arch.exception.nr;
events->exception.has_error_code = vcpu->arch.exception.has_error_code;
events->exception.pad = 0;
events->exception.error_code = vcpu->arch.exception.error_code;
events->interrupt.injected =
vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
events->interrupt.nr = vcpu->arch.interrupt.nr;
events->interrupt.soft = 0;
events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
events->nmi.injected = vcpu->arch.nmi_injected;
events->nmi.pending = vcpu->arch.nmi_pending != 0;
events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
events->nmi.pad = 0;
events->sipi_vector = 0; /* never valid when reporting to user space */
events->smi.smm = is_smm(vcpu);
events->smi.pending = vcpu->arch.smi_pending;
events->smi.smm_inside_nmi =
!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
events->smi.latched_init = kvm_lapic_latched_init(vcpu);
events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SHADOW
| KVM_VCPUEVENT_VALID_SMM);
memset(&events->reserved, 0, sizeof(events->reserved));
}
static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events)
{
if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
| KVM_VCPUEVENT_VALID_SHADOW
| KVM_VCPUEVENT_VALID_SMM))
return -EINVAL;
if (events->exception.injected &&
(events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
is_guest_mode(vcpu)))
return -EINVAL;
/* INITs are latched while in SMM */
if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
(events->smi.smm || events->smi.pending) &&
vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
return -EINVAL;
process_nmi(vcpu);
vcpu->arch.exception.injected = false;
vcpu->arch.exception.pending = events->exception.injected;
vcpu->arch.exception.nr = events->exception.nr;
vcpu->arch.exception.has_error_code = events->exception.has_error_code;
vcpu->arch.exception.error_code = events->exception.error_code;
vcpu->arch.interrupt.pending = events->interrupt.injected;
vcpu->arch.interrupt.nr = events->interrupt.nr;
vcpu->arch.interrupt.soft = events->interrupt.soft;
if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
kvm_x86_ops->set_interrupt_shadow(vcpu,
events->interrupt.shadow);
vcpu->arch.nmi_injected = events->nmi.injected;
if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
vcpu->arch.nmi_pending = events->nmi.pending;
kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
lapic_in_kernel(vcpu))
vcpu->arch.apic->sipi_vector = events->sipi_vector;
if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
u32 hflags = vcpu->arch.hflags;
if (events->smi.smm)
hflags |= HF_SMM_MASK;
else
hflags &= ~HF_SMM_MASK;
kvm_set_hflags(vcpu, hflags);
vcpu->arch.smi_pending = events->smi.pending;
if (events->smi.smm) {
if (events->smi.smm_inside_nmi)
vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
else
vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
if (lapic_in_kernel(vcpu)) {
if (events->smi.latched_init)
set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
else
clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
}
}
}
kvm_make_request(KVM_REQ_EVENT, vcpu);
return 0;
}
static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
struct kvm_debugregs *dbgregs)
{
unsigned long val;
memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
kvm_get_dr(vcpu, 6, &val);
dbgregs->dr6 = val;
dbgregs->dr7 = vcpu->arch.dr7;
dbgregs->flags = 0;
memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
}
static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
struct kvm_debugregs *dbgregs)
{
if (dbgregs->flags)
return -EINVAL;
if (dbgregs->dr6 & ~0xffffffffull)
return -EINVAL;
if (dbgregs->dr7 & ~0xffffffffull)
return -EINVAL;
memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
kvm_update_dr0123(vcpu);
vcpu->arch.dr6 = dbgregs->dr6;
kvm_update_dr6(vcpu);
vcpu->arch.dr7 = dbgregs->dr7;
kvm_update_dr7(vcpu);
return 0;
}
#define XSTATE_COMPACTION_ENABLED (1ULL << 63)
static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
{
struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
u64 xstate_bv = xsave->header.xfeatures;
u64 valid;
/*
* Copy legacy XSAVE area, to avoid complications with CPUID
* leaves 0 and 1 in the loop below.
*/
memcpy(dest, xsave, XSAVE_HDR_OFFSET);
/* Set XSTATE_BV */
xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
/*
* Copy each region from the possibly compacted offset to the
* non-compacted offset.
*/
valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
while (valid) {
u64 feature = valid & -valid;
int index = fls64(feature) - 1;
void *src = get_xsave_addr(xsave, feature);
if (src) {
u32 size, offset, ecx, edx;
cpuid_count(XSTATE_CPUID, index,
&size, &offset, &ecx, &edx);
if (feature == XFEATURE_MASK_PKRU)
memcpy(dest + offset, &vcpu->arch.pkru,
sizeof(vcpu->arch.pkru));
else
memcpy(dest + offset, src, size);
}
valid -= feature;
}
}
static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
{
struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
u64 valid;
/*
* Copy legacy XSAVE area, to avoid complications with CPUID
* leaves 0 and 1 in the loop below.
*/
memcpy(xsave, src, XSAVE_HDR_OFFSET);
/* Set XSTATE_BV and possibly XCOMP_BV. */
xsave->header.xfeatures = xstate_bv;
if (boot_cpu_has(X86_FEATURE_XSAVES))
xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
/*
* Copy each region from the non-compacted offset to the
* possibly compacted offset.
*/
valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
while (valid) {
u64 feature = valid & -valid;
int index = fls64(feature) - 1;
void *dest = get_xsave_addr(xsave, feature);
if (dest) {
u32 size, offset, ecx, edx;
cpuid_count(XSTATE_CPUID, index,
&size, &offset, &ecx, &edx);
if (feature == XFEATURE_MASK_PKRU)
memcpy(&vcpu->arch.pkru, src + offset,
sizeof(vcpu->arch.pkru));
else
memcpy(dest, src + offset, size);
}
valid -= feature;
}
}
static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
struct kvm_xsave *guest_xsave)
{
if (boot_cpu_has(X86_FEATURE_XSAVE)) {
memset(guest_xsave, 0, sizeof(struct kvm_xsave));
fill_xsave((u8 *) guest_xsave->region, vcpu);
} else {
memcpy(guest_xsave->region,
&vcpu->arch.guest_fpu.state.fxsave,
sizeof(struct fxregs_state));
*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
XFEATURE_MASK_FPSSE;
}
}
#define XSAVE_MXCSR_OFFSET 24
static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
struct kvm_xsave *guest_xsave)
{
u64 xstate_bv =
*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
if (boot_cpu_has(X86_FEATURE_XSAVE)) {
/*
* Here we allow setting states that are not present in
* CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
* with old userspace.
*/
if (xstate_bv & ~kvm_supported_xcr0() ||
mxcsr & ~mxcsr_feature_mask)
return -EINVAL;
load_xsave(vcpu, (u8 *)guest_xsave->region);
} else {
if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
mxcsr & ~mxcsr_feature_mask)
return -EINVAL;
memcpy(&vcpu->arch.guest_fpu.state.fxsave,
guest_xsave->region, sizeof(struct fxregs_state));
}
return 0;
}
static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
struct kvm_xcrs *guest_xcrs)
{
if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
guest_xcrs->nr_xcrs = 0;
return;
}
guest_xcrs->nr_xcrs = 1;
guest_xcrs->flags = 0;
guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
}
static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
struct kvm_xcrs *guest_xcrs)
{
int i, r = 0;
if (!boot_cpu_has(X86_FEATURE_XSAVE))
return -EINVAL;
if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
return -EINVAL;
for (i = 0; i < guest_xcrs->nr_xcrs; i++)
/* Only support XCR0 currently */
if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
guest_xcrs->xcrs[i].value);
break;
}
if (r)
r = -EINVAL;
return r;
}
/*
* kvm_set_guest_paused() indicates to the guest kernel that it has been
* stopped by the hypervisor. This function will be called from the host only.
* EINVAL is returned when the host attempts to set the flag for a guest that
* does not support pv clocks.
*/
static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
{
if (!vcpu->arch.pv_time_enabled)
return -EINVAL;
vcpu->arch.pvclock_set_guest_stopped_request = true;
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
return 0;
}
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
struct kvm_enable_cap *cap)
{
if (cap->flags)
return -EINVAL;
switch (cap->cap) {
case KVM_CAP_HYPERV_SYNIC2:
if (cap->args[0])
return -EINVAL;
case KVM_CAP_HYPERV_SYNIC:
if (!irqchip_in_kernel(vcpu->kvm))
return -EINVAL;
return kvm_hv_activate_synic(vcpu, cap->cap ==
KVM_CAP_HYPERV_SYNIC2);
default:
return -EINVAL;
}
}
long kvm_arch_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = (void __user *)arg;
int r;
union {
struct kvm_lapic_state *lapic;
struct kvm_xsave *xsave;
struct kvm_xcrs *xcrs;
void *buffer;
} u;
u.buffer = NULL;
switch (ioctl) {
case KVM_GET_LAPIC: {
r = -EINVAL;
if (!lapic_in_kernel(vcpu))
goto out;
u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
r = -ENOMEM;
if (!u.lapic)
goto out;
r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
goto out;
r = 0;
break;
}
case KVM_SET_LAPIC: {
r = -EINVAL;
if (!lapic_in_kernel(vcpu))
goto out;
u.lapic = memdup_user(argp, sizeof(*u.lapic));
if (IS_ERR(u.lapic))
return PTR_ERR(u.lapic);
r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
break;
}
case KVM_INTERRUPT: {
struct kvm_interrupt irq;
r = -EFAULT;
if (copy_from_user(&irq, argp, sizeof irq))
goto out;
r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
break;
}
case KVM_NMI: {
r = kvm_vcpu_ioctl_nmi(vcpu);
break;
}
case KVM_SMI: {
r = kvm_vcpu_ioctl_smi(vcpu);
break;
}
case KVM_SET_CPUID: {
struct kvm_cpuid __user *cpuid_arg = argp;
struct kvm_cpuid cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
goto out;
r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
break;
}
case KVM_SET_CPUID2: {
struct kvm_cpuid2 __user *cpuid_arg = argp;
struct kvm_cpuid2 cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
goto out;
r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
cpuid_arg->entries);
break;
}
case KVM_GET_CPUID2: {
struct kvm_cpuid2 __user *cpuid_arg = argp;
struct kvm_cpuid2 cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
goto out;
r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
cpuid_arg->entries);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
goto out;
r = 0;
break;
}
case KVM_GET_MSRS: {
int idx = srcu_read_lock(&vcpu->kvm->srcu);
r = msr_io(vcpu, argp, do_get_msr, 1);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
break;
}
case KVM_SET_MSRS: {
int idx = srcu_read_lock(&vcpu->kvm->srcu);
r = msr_io(vcpu, argp, do_set_msr, 0);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
break;
}
case KVM_TPR_ACCESS_REPORTING: {
struct kvm_tpr_access_ctl tac;
r = -EFAULT;
if (copy_from_user(&tac, argp, sizeof tac))
goto out;
r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &tac, sizeof tac))
goto out;
r = 0;
break;
};
case KVM_SET_VAPIC_ADDR: {
struct kvm_vapic_addr va;
int idx;
r = -EINVAL;
if (!lapic_in_kernel(vcpu))
goto out;
r = -EFAULT;
if (copy_from_user(&va, argp, sizeof va))
goto out;
idx = srcu_read_lock(&vcpu->kvm->srcu);
r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
break;
}
case KVM_X86_SETUP_MCE: {
u64 mcg_cap;
r = -EFAULT;
if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
goto out;
r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
break;
}
case KVM_X86_SET_MCE: {
struct kvm_x86_mce mce;
r = -EFAULT;
if (copy_from_user(&mce, argp, sizeof mce))
goto out;
r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
break;
}
case KVM_GET_VCPU_EVENTS: {
struct kvm_vcpu_events events;
kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
r = -EFAULT;
if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
break;
r = 0;
break;
}
case KVM_SET_VCPU_EVENTS: {
struct kvm_vcpu_events events;
r = -EFAULT;
if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
break;
r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
break;
}
case KVM_GET_DEBUGREGS: {
struct kvm_debugregs dbgregs;
kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
r = -EFAULT;
if (copy_to_user(argp, &dbgregs,
sizeof(struct kvm_debugregs)))
break;
r = 0;
break;
}
case KVM_SET_DEBUGREGS: {
struct kvm_debugregs dbgregs;
r = -EFAULT;
if (copy_from_user(&dbgregs, argp,
sizeof(struct kvm_debugregs)))
break;
r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
break;
}
case KVM_GET_XSAVE: {
u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
r = -ENOMEM;
if (!u.xsave)
break;
kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
r = -EFAULT;
if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
break;
r = 0;
break;
}
case KVM_SET_XSAVE: {
u.xsave = memdup_user(argp, sizeof(*u.xsave));
if (IS_ERR(u.xsave))
return PTR_ERR(u.xsave);
r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
break;
}
case KVM_GET_XCRS: {
u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
r = -ENOMEM;
if (!u.xcrs)
break;
kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
r = -EFAULT;
if (copy_to_user(argp, u.xcrs,
sizeof(struct kvm_xcrs)))
break;
r = 0;
break;
}
case KVM_SET_XCRS: {
u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
if (IS_ERR(u.xcrs))
return PTR_ERR(u.xcrs);
r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
break;
}
case KVM_SET_TSC_KHZ: {
u32 user_tsc_khz;
r = -EINVAL;
user_tsc_khz = (u32)arg;
if (user_tsc_khz >= kvm_max_guest_tsc_khz)
goto out;
if (user_tsc_khz == 0)
user_tsc_khz = tsc_khz;
if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
r = 0;
goto out;
}
case KVM_GET_TSC_KHZ: {
r = vcpu->arch.virtual_tsc_khz;
goto out;
}
case KVM_KVMCLOCK_CTRL: {
r = kvm_set_guest_paused(vcpu);
goto out;
}
case KVM_ENABLE_CAP: {
struct kvm_enable_cap cap;
r = -EFAULT;
if (copy_from_user(&cap, argp, sizeof(cap)))
goto out;
r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
break;
}
default:
r = -EINVAL;
}
out:
kfree(u.buffer);
return r;
}
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
return VM_FAULT_SIGBUS;
}
static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
{
int ret;
if (addr > (unsigned int)(-3 * PAGE_SIZE))
return -EINVAL;
ret = kvm_x86_ops->set_tss_addr(kvm, addr);
return ret;
}
static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
u64 ident_addr)
{
kvm->arch.ept_identity_map_addr = ident_addr;
return 0;
}
static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
u32 kvm_nr_mmu_pages)
{
if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
return -EINVAL;
mutex_lock(&kvm->slots_lock);
kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
mutex_unlock(&kvm->slots_lock);
return 0;
}
static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
{
return kvm->arch.n_max_mmu_pages;
}
static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
struct kvm_pic *pic = kvm->arch.vpic;
int r;
r = 0;
switch (chip->chip_id) {
case KVM_IRQCHIP_PIC_MASTER:
memcpy(&chip->chip.pic, &pic->pics[0],
sizeof(struct kvm_pic_state));
break;
case KVM_IRQCHIP_PIC_SLAVE:
memcpy(&chip->chip.pic, &pic->pics[1],
sizeof(struct kvm_pic_state));
break;
case KVM_IRQCHIP_IOAPIC:
kvm_get_ioapic(kvm, &chip->chip.ioapic);
break;
default:
r = -EINVAL;
break;
}
return r;
}
static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
struct kvm_pic *pic = kvm->arch.vpic;
int r;
r = 0;
switch (chip->chip_id) {
case KVM_IRQCHIP_PIC_MASTER:
spin_lock(&pic->lock);
memcpy(&pic->pics[0], &chip->chip.pic,
sizeof(struct kvm_pic_state));
spin_unlock(&pic->lock);
break;
case KVM_IRQCHIP_PIC_SLAVE:
spin_lock(&pic->lock);
memcpy(&pic->pics[1], &chip->chip.pic,
sizeof(struct kvm_pic_state));
spin_unlock(&pic->lock);
break;
case KVM_IRQCHIP_IOAPIC:
kvm_set_ioapic(kvm, &chip->chip.ioapic);
break;
default:
r = -EINVAL;
break;
}
kvm_pic_update_irq(pic);
return r;
}
static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
mutex_lock(&kps->lock);
memcpy(ps, &kps->channels, sizeof(*ps));
mutex_unlock(&kps->lock);
return 0;
}
static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
int i;
struct kvm_pit *pit = kvm->arch.vpit;
mutex_lock(&pit->pit_state.lock);
memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
for (i = 0; i < 3; i++)
kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
mutex_unlock(&pit->pit_state.lock);
return 0;
}
static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
{
mutex_lock(&kvm->arch.vpit->pit_state.lock);
memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
sizeof(ps->channels));
ps->flags = kvm->arch.vpit->pit_state.flags;
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
memset(&ps->reserved, 0, sizeof(ps->reserved));
return 0;
}
static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
{
int start = 0;
int i;
u32 prev_legacy, cur_legacy;
struct kvm_pit *pit = kvm->arch.vpit;
mutex_lock(&pit->pit_state.lock);
prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
if (!prev_legacy && cur_legacy)
start = 1;
memcpy(&pit->pit_state.channels, &ps->channels,
sizeof(pit->pit_state.channels));
pit->pit_state.flags = ps->flags;
for (i = 0; i < 3; i++)
kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
start && i == 0);
mutex_unlock(&pit->pit_state.lock);
return 0;
}
static int kvm_vm_ioctl_reinject(struct kvm *kvm,
struct kvm_reinject_control *control)
{
struct kvm_pit *pit = kvm->arch.vpit;
if (!pit)
return -ENXIO;
/* pit->pit_state.lock was overloaded to prevent userspace from getting
* an inconsistent state after running multiple KVM_REINJECT_CONTROL
* ioctls in parallel. Use a separate lock if that ioctl isn't rare.
*/
mutex_lock(&pit->pit_state.lock);
kvm_pit_set_reinject(pit, control->pit_reinject);
mutex_unlock(&pit->pit_state.lock);
return 0;
}
/**
* kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
* @kvm: kvm instance
* @log: slot id and address to which we copy the log
*
* Steps 1-4 below provide general overview of dirty page logging. See
* kvm_get_dirty_log_protect() function description for additional details.
*
* We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
* always flush the TLB (step 4) even if previous step failed and the dirty
* bitmap may be corrupt. Regardless of previous outcome the KVM logging API
* does not preclude user space subsequent dirty log read. Flushing TLB ensures
* writes will be marked dirty for next log read.
*
* 1. Take a snapshot of the bit and clear it if needed.
* 2. Write protect the corresponding page.
* 3. Copy the snapshot to the userspace.
* 4. Flush TLB's if needed.
*/
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
bool is_dirty = false;
int r;
mutex_lock(&kvm->slots_lock);
/*
* Flush potentially hardware-cached dirty pages to dirty_bitmap.
*/
if (kvm_x86_ops->flush_log_dirty)
kvm_x86_ops->flush_log_dirty(kvm);
r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
/*
* All the TLBs can be flushed out of mmu lock, see the comments in
* kvm_mmu_slot_remove_write_access().
*/
lockdep_assert_held(&kvm->slots_lock);
if (is_dirty)
kvm_flush_remote_tlbs(kvm);
mutex_unlock(&kvm->slots_lock);
return r;
}
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
bool line_status)
{
if (!irqchip_in_kernel(kvm))
return -ENXIO;
irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
irq_event->irq, irq_event->level,
line_status);
return 0;
}
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
struct kvm_enable_cap *cap)
{
int r;
if (cap->flags)
return -EINVAL;
switch (cap->cap) {
case KVM_CAP_DISABLE_QUIRKS:
kvm->arch.disabled_quirks = cap->args[0];
r = 0;
break;
case KVM_CAP_SPLIT_IRQCHIP: {
mutex_lock(&kvm->lock);
r = -EINVAL;
if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
goto split_irqchip_unlock;
r = -EEXIST;
if (irqchip_in_kernel(kvm))
goto split_irqchip_unlock;
if (kvm->created_vcpus)
goto split_irqchip_unlock;
r = kvm_setup_empty_irq_routing(kvm);
if (r)
goto split_irqchip_unlock;
/* Pairs with irqchip_in_kernel. */
smp_wmb();
kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
r = 0;
split_irqchip_unlock:
mutex_unlock(&kvm->lock);
break;
}
case KVM_CAP_X2APIC_API:
r = -EINVAL;
if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
break;
if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
kvm->arch.x2apic_format = true;
if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
kvm->arch.x2apic_broadcast_quirk_disabled = true;
r = 0;
break;
default:
r = -EINVAL;
break;
}
return r;
}
long kvm_arch_vm_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm *kvm = filp->private_data;
void __user *argp = (void __user *)arg;
int r = -ENOTTY;
/*
* This union makes it completely explicit to gcc-3.x
* that these two variables' stack usage should be
* combined, not added together.
*/
union {
struct kvm_pit_state ps;
struct kvm_pit_state2 ps2;
struct kvm_pit_config pit_config;
} u;
switch (ioctl) {
case KVM_SET_TSS_ADDR:
r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
break;
case KVM_SET_IDENTITY_MAP_ADDR: {
u64 ident_addr;
r = -EFAULT;
if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
goto out;
r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
break;
}
case KVM_SET_NR_MMU_PAGES:
r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
break;
case KVM_GET_NR_MMU_PAGES:
r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
break;
case KVM_CREATE_IRQCHIP: {
mutex_lock(&kvm->lock);
r = -EEXIST;
if (irqchip_in_kernel(kvm))
goto create_irqchip_unlock;
r = -EINVAL;
if (kvm->created_vcpus)
goto create_irqchip_unlock;
r = kvm_pic_init(kvm);
if (r)
goto create_irqchip_unlock;
r = kvm_ioapic_init(kvm);
if (r) {
kvm_pic_destroy(kvm);
goto create_irqchip_unlock;
}
r = kvm_setup_default_irq_routing(kvm);
if (r) {
kvm_ioapic_destroy(kvm);
kvm_pic_destroy(kvm);
goto create_irqchip_unlock;
}
/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
smp_wmb();
kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
create_irqchip_unlock:
mutex_unlock(&kvm->lock);
break;
}
case KVM_CREATE_PIT:
u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
goto create_pit;
case KVM_CREATE_PIT2:
r = -EFAULT;
if (copy_from_user(&u.pit_config, argp,
sizeof(struct kvm_pit_config)))
goto out;
create_pit:
mutex_lock(&kvm->lock);
r = -EEXIST;
if (kvm->arch.vpit)
goto create_pit_unlock;
r = -ENOMEM;
kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
if (kvm->arch.vpit)
r = 0;
create_pit_unlock:
mutex_unlock(&kvm->lock);
break;
case KVM_GET_IRQCHIP: {
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
struct kvm_irqchip *chip;
chip = memdup_user(argp, sizeof(*chip));
if (IS_ERR(chip)) {
r = PTR_ERR(chip);
goto out;
}
r = -ENXIO;
if (!irqchip_kernel(kvm))
goto get_irqchip_out;
r = kvm_vm_ioctl_get_irqchip(kvm, chip);
if (r)
goto get_irqchip_out;
r = -EFAULT;
if (copy_to_user(argp, chip, sizeof *chip))
goto get_irqchip_out;
r = 0;
get_irqchip_out:
kfree(chip);
break;
}
case KVM_SET_IRQCHIP: {
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
struct kvm_irqchip *chip;
chip = memdup_user(argp, sizeof(*chip));
if (IS_ERR(chip)) {
r = PTR_ERR(chip);
goto out;
}
r = -ENXIO;
if (!irqchip_kernel(kvm))
goto set_irqchip_out;
r = kvm_vm_ioctl_set_irqchip(kvm, chip);
if (r)
goto set_irqchip_out;
r = 0;
set_irqchip_out:
kfree(chip);
break;
}
case KVM_GET_PIT: {
r = -EFAULT;
if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
goto out;
r = -ENXIO;
if (!kvm->arch.vpit)
goto out;
r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
goto out;
r = 0;
break;
}
case KVM_SET_PIT: {
r = -EFAULT;
if (copy_from_user(&u.ps, argp, sizeof u.ps))
goto out;
r = -ENXIO;
if (!kvm->arch.vpit)
goto out;
r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
break;
}
case KVM_GET_PIT2: {
r = -ENXIO;
if (!kvm->arch.vpit)
goto out;
r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
goto out;
r = 0;
break;
}
case KVM_SET_PIT2: {
r = -EFAULT;
if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
goto out;
r = -ENXIO;
if (!kvm->arch.vpit)
goto out;
r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
break;
}
case KVM_REINJECT_CONTROL: {
struct kvm_reinject_control control;
r = -EFAULT;
if (copy_from_user(&control, argp, sizeof(control)))
goto out;
r = kvm_vm_ioctl_reinject(kvm, &control);
break;
}
case KVM_SET_BOOT_CPU_ID:
r = 0;
mutex_lock(&kvm->lock);
if (kvm->created_vcpus)
r = -EBUSY;
else
kvm->arch.bsp_vcpu_id = arg;
mutex_unlock(&kvm->lock);
break;
case KVM_XEN_HVM_CONFIG: {
struct kvm_xen_hvm_config xhc;
r = -EFAULT;
if (copy_from_user(&xhc, argp, sizeof(xhc)))
goto out;
r = -EINVAL;
if (xhc.flags)
goto out;
memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
r = 0;
break;
}
case KVM_SET_CLOCK: {
struct kvm_clock_data user_ns;
u64 now_ns;
r = -EFAULT;
if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
goto out;
r = -EINVAL;
if (user_ns.flags)
goto out;
r = 0;
/*
* TODO: userspace has to take care of races with VCPU_RUN, so
* kvm_gen_update_masterclock() can be cut down to locked
* pvclock_update_vm_gtod_copy().
*/
kvm_gen_update_masterclock(kvm);
now_ns = get_kvmclock_ns(kvm);
kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
break;
}
case KVM_GET_CLOCK: {
struct kvm_clock_data user_ns;
u64 now_ns;
now_ns = get_kvmclock_ns(kvm);
user_ns.clock = now_ns;
user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
memset(&user_ns.pad, 0, sizeof(user_ns.pad));
r = -EFAULT;
if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
goto out;
r = 0;
break;
}
case KVM_ENABLE_CAP: {
struct kvm_enable_cap cap;
r = -EFAULT;
if (copy_from_user(&cap, argp, sizeof(cap)))
goto out;
r = kvm_vm_ioctl_enable_cap(kvm, &cap);
break;
}
default:
r = -ENOTTY;
}
out:
return r;
}
static void kvm_init_msr_list(void)
{
u32 dummy[2];
unsigned i, j;
for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
continue;
/*
* Even MSRs that are valid in the host may not be exposed
* to the guests in some cases.
*/
switch (msrs_to_save[i]) {
case MSR_IA32_BNDCFGS:
if (!kvm_x86_ops->mpx_supported())
continue;
break;
case MSR_TSC_AUX:
if (!kvm_x86_ops->rdtscp_supported())
continue;
break;
default:
break;
}
if (j < i)
msrs_to_save[j] = msrs_to_save[i];
j++;
}
num_msrs_to_save = j;
for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
continue;
if (j < i)
emulated_msrs[j] = emulated_msrs[i];
j++;
}
num_emulated_msrs = j;
for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
struct kvm_msr_entry msr;
msr.index = msr_based_features[i];
if (kvm_get_msr_feature(&msr))
continue;
if (j < i)
msr_based_features[j] = msr_based_features[i];
j++;
}
num_msr_based_features = j;
}
static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
const void *v)
{
int handled = 0;
int n;
do {
n = min(len, 8);
if (!(lapic_in_kernel(vcpu) &&
!kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
&& kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
break;
handled += n;
addr += n;
len -= n;
v += n;
} while (len);
return handled;
}
static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
{
int handled = 0;
int n;
do {
n = min(len, 8);
if (!(lapic_in_kernel(vcpu) &&
!kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
addr, n, v))
&& kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
break;
trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
handled += n;
addr += n;
len -= n;
v += n;
} while (len);
return handled;
}
static void kvm_set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
kvm_x86_ops->set_segment(vcpu, var, seg);
}
void kvm_get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
kvm_x86_ops->get_segment(vcpu, var, seg);
}
gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
struct x86_exception *exception)
{
gpa_t t_gpa;
BUG_ON(!mmu_is_nested(vcpu));
/* NPT walks are always user-walks */
access |= PFERR_USER_MASK;
t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
return t_gpa;
}
gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
struct x86_exception *exception)
{
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
}
gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
struct x86_exception *exception)
{
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
access |= PFERR_FETCH_MASK;
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
}
gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
struct x86_exception *exception)
{
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
access |= PFERR_WRITE_MASK;
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
}
/* uses this to access any guest's mapped memory without checking CPL */
gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
struct x86_exception *exception)
{
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
}
static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
struct kvm_vcpu *vcpu, u32 access,
struct x86_exception *exception)
{
void *data = val;
int r = X86EMUL_CONTINUE;
while (bytes) {
gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
exception);
unsigned offset = addr & (PAGE_SIZE-1);
unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
int ret;
if (gpa == UNMAPPED_GVA)
return X86EMUL_PROPAGATE_FAULT;
ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
offset, toread);
if (ret < 0) {
r = X86EMUL_IO_NEEDED;
goto out;
}
bytes -= toread;
data += toread;
addr += toread;
}
out:
return r;
}
/* used for instruction fetching */
static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
gva_t addr, void *val, unsigned int bytes,
struct x86_exception *exception)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
unsigned offset;
int ret;
/* Inline kvm_read_guest_virt_helper for speed. */
gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
exception);
if (unlikely(gpa == UNMAPPED_GVA))
return X86EMUL_PROPAGATE_FAULT;
offset = addr & (PAGE_SIZE-1);
if (WARN_ON(offset + bytes > PAGE_SIZE))
bytes = (unsigned)PAGE_SIZE - offset;
ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
offset, bytes);
if (unlikely(ret < 0))
return X86EMUL_IO_NEEDED;
return X86EMUL_CONTINUE;
}
int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
gva_t addr, void *val, unsigned int bytes,
struct x86_exception *exception)
{
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
/*
* FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
* is returned, but our callers are not ready for that and they blindly
* call kvm_inject_page_fault. Ensure that they at least do not leak
* uninitialized kernel stack memory into cr2 and error code.
*/
memset(exception, 0, sizeof(*exception));
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
exception);
}
EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
gva_t addr, void *val, unsigned int bytes,
struct x86_exception *exception, bool system)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
u32 access = 0;
if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
access |= PFERR_USER_MASK;
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
}
static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
unsigned long addr, void *val, unsigned int bytes)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
}
static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
struct kvm_vcpu *vcpu, u32 access,
struct x86_exception *exception)
{
void *data = val;
int r = X86EMUL_CONTINUE;
while (bytes) {
gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
access,
exception);
unsigned offset = addr & (PAGE_SIZE-1);
unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
int ret;
if (gpa == UNMAPPED_GVA)
return X86EMUL_PROPAGATE_FAULT;
ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
if (ret < 0) {
r = X86EMUL_IO_NEEDED;
goto out;
}
bytes -= towrite;
data += towrite;
addr += towrite;
}
out:
return r;
}
static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
unsigned int bytes, struct x86_exception *exception,
bool system)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
u32 access = PFERR_WRITE_MASK;
if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
access |= PFERR_USER_MASK;
return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
access, exception);
}
int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
unsigned int bytes, struct x86_exception *exception)
{
/* kvm_write_guest_virt_system can pull in tons of pages. */
vcpu->arch.l1tf_flush_l1d = true;
return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
PFERR_WRITE_MASK, exception);
}
EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
gpa_t gpa, bool write)
{
/* For APIC access vmexit */
if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
return 1;
if (vcpu_match_mmio_gpa(vcpu, gpa)) {
trace_vcpu_match_mmio(gva, gpa, write, true);
return 1;
}
return 0;
}
static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
gpa_t *gpa, struct x86_exception *exception,
bool write)
{
u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
| (write ? PFERR_WRITE_MASK : 0);
/*
* currently PKRU is only applied to ept enabled guest so
* there is no pkey in EPT page table for L1 guest or EPT
* shadow page table for L2 guest.
*/
if (vcpu_match_mmio_gva(vcpu, gva)
&& !permission_fault(vcpu, vcpu->arch.walk_mmu,
vcpu->arch.access, 0, access)) {
*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
(gva & (PAGE_SIZE - 1));
trace_vcpu_match_mmio(gva, *gpa, write, false);
return 1;
}
*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
if (*gpa == UNMAPPED_GVA)
return -1;
return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
}
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
const void *val, int bytes)
{
int ret;
ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
if (ret < 0)
return 0;
kvm_page_track_write(vcpu, gpa, val, bytes);
return 1;
}
struct read_write_emulator_ops {
int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
int bytes);
int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
void *val, int bytes);
int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
int bytes, void *val);
int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
void *val, int bytes);
bool write;
};
static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
{
if (vcpu->mmio_read_completed) {
trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
vcpu->mmio_fragments[0].gpa, val);
vcpu->mmio_read_completed = 0;
return 1;
}
return 0;
}
static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
void *val, int bytes)
{
return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
}
static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
void *val, int bytes)
{
return emulator_write_phys(vcpu, gpa, val, bytes);
}
static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
{
trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
return vcpu_mmio_write(vcpu, gpa, bytes, val);
}
static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
void *val, int bytes)
{
trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
return X86EMUL_IO_NEEDED;
}
static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
void *val, int bytes)
{
struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
return X86EMUL_CONTINUE;
}
static const struct read_write_emulator_ops read_emultor = {
.read_write_prepare = read_prepare,
.read_write_emulate = read_emulate,
.read_write_mmio = vcpu_mmio_read,
.read_write_exit_mmio = read_exit_mmio,
};
static const struct read_write_emulator_ops write_emultor = {
.read_write_emulate = write_emulate,
.read_write_mmio = write_mmio,
.read_write_exit_mmio = write_exit_mmio,
.write = true,
};
static int emulator_read_write_onepage(unsigned long addr, void *val,
unsigned int bytes,
struct x86_exception *exception,
struct kvm_vcpu *vcpu,
const struct read_write_emulator_ops *ops)
{
gpa_t gpa;
int handled, ret;
bool write = ops->write;
struct kvm_mmio_fragment *frag;
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
/*
* If the exit was due to a NPF we may already have a GPA.
* If the GPA is present, use it to avoid the GVA to GPA table walk.
* Note, this cannot be used on string operations since string
* operation using rep will only have the initial GPA from the NPF
* occurred.
*/
if (vcpu->arch.gpa_available &&
emulator_can_use_gpa(ctxt) &&
(addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
gpa = vcpu->arch.gpa_val;
ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
} else {
ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
if (ret < 0)
return X86EMUL_PROPAGATE_FAULT;
}
if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
return X86EMUL_CONTINUE;
/*
* Is this MMIO handled locally?
*/
handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
if (handled == bytes)
return X86EMUL_CONTINUE;
gpa += handled;
bytes -= handled;
val += handled;
WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
frag->gpa = gpa;
frag->data = val;
frag->len = bytes;
return X86EMUL_CONTINUE;
}
static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
unsigned long addr,
void *val, unsigned int bytes,
struct x86_exception *exception,
const struct read_write_emulator_ops *ops)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
gpa_t gpa;
int rc;
if (ops->read_write_prepare &&
ops->read_write_prepare(vcpu, val, bytes))
return X86EMUL_CONTINUE;
vcpu->mmio_nr_fragments = 0;
/* Crossing a page boundary? */
if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
int now;
now = -addr & ~PAGE_MASK;
rc = emulator_read_write_onepage(addr, val, now, exception,
vcpu, ops);
if (rc != X86EMUL_CONTINUE)
return rc;
addr += now;
if (ctxt->mode != X86EMUL_MODE_PROT64)
addr = (u32)addr;
val += now;
bytes -= now;
}
rc = emulator_read_write_onepage(addr, val, bytes, exception,
vcpu, ops);
if (rc != X86EMUL_CONTINUE)
return rc;
if (!vcpu->mmio_nr_fragments)
return rc;
gpa = vcpu->mmio_fragments[0].gpa;
vcpu->mmio_needed = 1;
vcpu->mmio_cur_fragment = 0;
vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
vcpu->run->exit_reason = KVM_EXIT_MMIO;
vcpu->run->mmio.phys_addr = gpa;
return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
}
static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
unsigned long addr,
void *val,
unsigned int bytes,
struct x86_exception *exception)
{
return emulator_read_write(ctxt, addr, val, bytes,
exception, &read_emultor);
}
static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
unsigned long addr,
const void *val,
unsigned int bytes,
struct x86_exception *exception)
{
return emulator_read_write(ctxt, addr, (void *)val, bytes,
exception, &write_emultor);
}
#define CMPXCHG_TYPE(t, ptr, old, new) \
(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
#ifdef CONFIG_X86_64
# define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
#else
# define CMPXCHG64(ptr, old, new) \
(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
#endif
static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
unsigned long addr,
const void *old,
const void *new,
unsigned int bytes,
struct x86_exception *exception)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
gpa_t gpa;
struct page *page;
char *kaddr;
bool exchanged;
/* guests cmpxchg8b have to be emulated atomically */
if (bytes > 8 || (bytes & (bytes - 1)))
goto emul_write;
gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
if (gpa == UNMAPPED_GVA ||
(gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
goto emul_write;
if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
goto emul_write;
page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
if (is_error_page(page))
goto emul_write;
kaddr = kmap_atomic(page);
kaddr += offset_in_page(gpa);
switch (bytes) {
case 1:
exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
break;
case 2:
exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
break;
case 4:
exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
break;
case 8:
exchanged = CMPXCHG64(kaddr, old, new);
break;
default:
BUG();
}
kunmap_atomic(kaddr);
kvm_release_page_dirty(page);
if (!exchanged)
return X86EMUL_CMPXCHG_FAILED;
kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
kvm_page_track_write(vcpu, gpa, new, bytes);
return X86EMUL_CONTINUE;
emul_write:
printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
return emulator_write_emulated(ctxt, addr, new, bytes, exception);
}
static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
{
int r = 0, i;
for (i = 0; i < vcpu->arch.pio.count; i++) {
if (vcpu->arch.pio.in)
r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
vcpu->arch.pio.size, pd);
else
r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
vcpu->arch.pio.port, vcpu->arch.pio.size,
pd);
if (r)
break;
pd += vcpu->arch.pio.size;
}
return r;
}
static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
unsigned short port, void *val,
unsigned int count, bool in)
{
vcpu->arch.pio.port = port;
vcpu->arch.pio.in = in;
vcpu->arch.pio.count = count;
vcpu->arch.pio.size = size;
if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
vcpu->arch.pio.count = 0;
return 1;
}
vcpu->run->exit_reason = KVM_EXIT_IO;
vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
vcpu->run->io.size = size;
vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
vcpu->run->io.count = count;
vcpu->run->io.port = port;
return 0;
}
static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
int size, unsigned short port, void *val,
unsigned int count)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
int ret;
if (vcpu->arch.pio.count)
goto data_avail;
memset(vcpu->arch.pio_data, 0, size * count);
ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
if (ret) {
data_avail:
memcpy(val, vcpu->arch.pio_data, size * count);
trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
vcpu->arch.pio.count = 0;
return 1;
}
return 0;
}
static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
int size, unsigned short port,
const void *val, unsigned int count)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
memcpy(vcpu->arch.pio_data, val, size * count);
trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
}
static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
return kvm_x86_ops->get_segment_base(vcpu, seg);
}
static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
{
kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
}
static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
{
if (!need_emulate_wbinvd(vcpu))
return X86EMUL_CONTINUE;
if (kvm_x86_ops->has_wbinvd_exit()) {
int cpu = get_cpu();
cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
wbinvd_ipi, NULL, 1);
put_cpu();
cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
} else
wbinvd();
return X86EMUL_CONTINUE;
}
int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
{
kvm_emulate_wbinvd_noskip(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
{
kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
}
static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
unsigned long *dest)
{
return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
}
static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
unsigned long value)
{
return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
}
static u64 mk_cr_64(u64 curr_cr, u32 new_val)
{
return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
}
static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
unsigned long value;
switch (cr) {
case 0:
value = kvm_read_cr0(vcpu);
break;
case 2:
value = vcpu->arch.cr2;
break;
case 3:
value = kvm_read_cr3(vcpu);
break;
case 4:
value = kvm_read_cr4(vcpu);
break;
case 8:
value = kvm_get_cr8(vcpu);
break;
default:
kvm_err("%s: unexpected cr %u\n", __func__, cr);
return 0;
}
return value;
}
static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
int res = 0;
switch (cr) {
case 0:
res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
break;
case 2:
vcpu->arch.cr2 = val;
break;
case 3:
res = kvm_set_cr3(vcpu, val);
break;
case 4:
res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
break;
case 8:
res = kvm_set_cr8(vcpu, val);
break;
default:
kvm_err("%s: unexpected cr %u\n", __func__, cr);
res = -1;
}
return res;
}
static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
{
return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
}
static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
{
kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
}
static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
{
kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
}
static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
{
kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
}
static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
{
kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
}
static unsigned long emulator_get_cached_segment_base(
struct x86_emulate_ctxt *ctxt, int seg)
{
return get_segment_base(emul_to_vcpu(ctxt), seg);
}
static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
struct desc_struct *desc, u32 *base3,
int seg)
{
struct kvm_segment var;
kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
*selector = var.selector;
if (var.unusable) {
memset(desc, 0, sizeof(*desc));
if (base3)
*base3 = 0;
return false;
}
if (var.g)
var.limit >>= 12;
set_desc_limit(desc, var.limit);
set_desc_base(desc, (unsigned long)var.base);
#ifdef CONFIG_X86_64
if (base3)
*base3 = var.base >> 32;
#endif
desc->type = var.type;
desc->s = var.s;
desc->dpl = var.dpl;
desc->p = var.present;
desc->avl = var.avl;
desc->l = var.l;
desc->d = var.db;
desc->g = var.g;
return true;
}
static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
struct desc_struct *desc, u32 base3,
int seg)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
struct kvm_segment var;
var.selector = selector;
var.base = get_desc_base(desc);
#ifdef CONFIG_X86_64
var.base |= ((u64)base3) << 32;
#endif
var.limit = get_desc_limit(desc);
if (desc->g)
var.limit = (var.limit << 12) | 0xfff;
var.type = desc->type;
var.dpl = desc->dpl;
var.db = desc->d;
var.s = desc->s;
var.l = desc->l;
var.g = desc->g;
var.avl = desc->avl;
var.present = desc->p;
var.unusable = !var.present;
var.padding = 0;
kvm_set_segment(vcpu, &var, seg);
return;
}
static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
u32 msr_index, u64 *pdata)
{
struct msr_data msr;
int r;
msr.index = msr_index;
msr.host_initiated = false;
r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
if (r)
return r;
*pdata = msr.data;
return 0;
}
static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
u32 msr_index, u64 data)
{
struct msr_data msr;
msr.data = data;
msr.index = msr_index;
msr.host_initiated = false;
return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
}
static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
return vcpu->arch.smbase;
}
static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
vcpu->arch.smbase = smbase;
}
static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
u32 pmc)
{
return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
}
static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
u32 pmc, u64 *pdata)
{
return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
}
static void emulator_halt(struct x86_emulate_ctxt *ctxt)
{
emul_to_vcpu(ctxt)->arch.halt_request = 1;
}
static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
{
}
static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
{
}
static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
struct x86_instruction_info *info,
enum x86_intercept_stage stage)
{
return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
}
static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
{
return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
}
static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
{
return kvm_register_read(emul_to_vcpu(ctxt), reg);
}
static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
{
kvm_register_write(emul_to_vcpu(ctxt), reg, val);
}
static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
{
kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
}
static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
{
return emul_to_vcpu(ctxt)->arch.hflags;
}
static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
{
kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
}
static const struct x86_emulate_ops emulate_ops = {
.read_gpr = emulator_read_gpr,
.write_gpr = emulator_write_gpr,
.read_std = emulator_read_std,
.write_std = emulator_write_std,
.read_phys = kvm_read_guest_phys_system,
.fetch = kvm_fetch_guest_virt,
.read_emulated = emulator_read_emulated,
.write_emulated = emulator_write_emulated,
.cmpxchg_emulated = emulator_cmpxchg_emulated,
.invlpg = emulator_invlpg,
.pio_in_emulated = emulator_pio_in_emulated,
.pio_out_emulated = emulator_pio_out_emulated,
.get_segment = emulator_get_segment,
.set_segment = emulator_set_segment,
.get_cached_segment_base = emulator_get_cached_segment_base,
.get_gdt = emulator_get_gdt,
.get_idt = emulator_get_idt,
.set_gdt = emulator_set_gdt,
.set_idt = emulator_set_idt,
.get_cr = emulator_get_cr,
.set_cr = emulator_set_cr,
.cpl = emulator_get_cpl,
.get_dr = emulator_get_dr,
.set_dr = emulator_set_dr,
.get_smbase = emulator_get_smbase,
.set_smbase = emulator_set_smbase,
.set_msr = emulator_set_msr,
.get_msr = emulator_get_msr,
.check_pmc = emulator_check_pmc,
.read_pmc = emulator_read_pmc,
.halt = emulator_halt,
.wbinvd = emulator_wbinvd,
.fix_hypercall = emulator_fix_hypercall,
.get_fpu = emulator_get_fpu,
.put_fpu = emulator_put_fpu,
.intercept = emulator_intercept,
.get_cpuid = emulator_get_cpuid,
.set_nmi_mask = emulator_set_nmi_mask,
.get_hflags = emulator_get_hflags,
.set_hflags = emulator_set_hflags,
};
static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
{
u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
/*
* an sti; sti; sequence only disable interrupts for the first
* instruction. So, if the last instruction, be it emulated or
* not, left the system with the INT_STI flag enabled, it
* means that the last instruction is an sti. We should not
* leave the flag on in this case. The same goes for mov ss
*/
if (int_shadow & mask)
mask = 0;
if (unlikely(int_shadow || mask)) {
kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
if (!mask)
kvm_make_request(KVM_REQ_EVENT, vcpu);
}
}
static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
{
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
if (ctxt->exception.vector == PF_VECTOR)
return kvm_propagate_fault(vcpu, &ctxt->exception);
if (ctxt->exception.error_code_valid)
kvm_queue_exception_e(vcpu, ctxt->exception.vector,
ctxt->exception.error_code);
else
kvm_queue_exception(vcpu, ctxt->exception.vector);
return false;
}
static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
{
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
int cs_db, cs_l;
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
ctxt->eflags = kvm_get_rflags(vcpu);
ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
ctxt->eip = kvm_rip_read(vcpu);
ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
(ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
(cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
cs_db ? X86EMUL_MODE_PROT32 :
X86EMUL_MODE_PROT16;
BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
init_decode_cache(ctxt);
vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
}
int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
{
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
int ret;
init_emulate_ctxt(vcpu);
ctxt->op_bytes = 2;
ctxt->ad_bytes = 2;
ctxt->_eip = ctxt->eip + inc_eip;
ret = emulate_int_real(ctxt, irq);
if (ret != X86EMUL_CONTINUE)
return EMULATE_FAIL;
ctxt->eip = ctxt->_eip;
kvm_rip_write(vcpu, ctxt->eip);
kvm_set_rflags(vcpu, ctxt->eflags);
if (irq == NMI_VECTOR)
vcpu->arch.nmi_pending = 0;
else
vcpu->arch.interrupt.pending = false;
return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
static int handle_emulation_failure(struct kvm_vcpu *vcpu)
{
int r = EMULATE_DONE;
++vcpu->stat.insn_emulation_fail;
trace_kvm_emulate_insn_failed(vcpu);
if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
vcpu->run->internal.ndata = 0;
r = EMULATE_USER_EXIT;
}
kvm_queue_exception(vcpu, UD_VECTOR);
return r;
}
static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
bool write_fault_to_shadow_pgtable,
int emulation_type)
{
gpa_t gpa = cr2;
kvm_pfn_t pfn;
if (emulation_type & EMULTYPE_NO_REEXECUTE)
return false;
if (!vcpu->arch.mmu.direct_map) {
/*
* Write permission should be allowed since only
* write access need to be emulated.
*/
gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
/*
* If the mapping is invalid in guest, let cpu retry
* it to generate fault.
*/
if (gpa == UNMAPPED_GVA)
return true;
}
/*
* Do not retry the unhandleable instruction if it faults on the
* readonly host memory, otherwise it will goto a infinite loop:
* retry instruction -> write #PF -> emulation fail -> retry
* instruction -> ...
*/
pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
/*
* If the instruction failed on the error pfn, it can not be fixed,
* report the error to userspace.
*/
if (is_error_noslot_pfn(pfn))
return false;
kvm_release_pfn_clean(pfn);
/* The instructions are well-emulated on direct mmu. */
if (vcpu->arch.mmu.direct_map) {
unsigned int indirect_shadow_pages;
spin_lock(&vcpu->kvm->mmu_lock);
indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
spin_unlock(&vcpu->kvm->mmu_lock);
if (indirect_shadow_pages)
kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
return true;
}
/*
* if emulation was due to access to shadowed page table
* and it failed try to unshadow page and re-enter the
* guest to let CPU execute the instruction.
*/
kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
/*
* If the access faults on its page table, it can not
* be fixed by unprotecting shadow page and it should
* be reported to userspace.
*/
return !write_fault_to_shadow_pgtable;
}
static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
unsigned long cr2, int emulation_type)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
last_retry_eip = vcpu->arch.last_retry_eip;
last_retry_addr = vcpu->arch.last_retry_addr;
/*
* If the emulation is caused by #PF and it is non-page_table
* writing instruction, it means the VM-EXIT is caused by shadow
* page protected, we can zap the shadow page and retry this
* instruction directly.
*
* Note: if the guest uses a non-page-table modifying instruction
* on the PDE that points to the instruction, then we will unmap
* the instruction and go to an infinite loop. So, we cache the
* last retried eip and the last fault address, if we meet the eip
* and the address again, we can break out of the potential infinite
* loop.
*/
vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
if (!(emulation_type & EMULTYPE_RETRY))
return false;
if (x86_page_table_writing_insn(ctxt))
return false;
if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
return false;
vcpu->arch.last_retry_eip = ctxt->eip;
vcpu->arch.last_retry_addr = cr2;
if (!vcpu->arch.mmu.direct_map)
gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
return true;
}
static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
static int complete_emulated_pio(struct kvm_vcpu *vcpu);
static void kvm_smm_changed(struct kvm_vcpu *vcpu)
{
if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
/* This is a good place to trace that we are exiting SMM. */
trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
/* Process a latched INIT or SMI, if any. */
kvm_make_request(KVM_REQ_EVENT, vcpu);
}
kvm_mmu_reset_context(vcpu);
}
static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
{
unsigned changed = vcpu->arch.hflags ^ emul_flags;
vcpu->arch.hflags = emul_flags;
if (changed & HF_SMM_MASK)
kvm_smm_changed(vcpu);
}
static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
unsigned long *db)
{
u32 dr6 = 0;
int i;
u32 enable, rwlen;
enable = dr7;
rwlen = dr7 >> 16;
for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
dr6 |= (1 << i);
return dr6;
}
static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
{
struct kvm_run *kvm_run = vcpu->run;
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
kvm_run->debug.arch.exception = DB_VECTOR;
kvm_run->exit_reason = KVM_EXIT_DEBUG;
*r = EMULATE_USER_EXIT;
} else {
/*
* "Certain debug exceptions may clear bit 0-3. The
* remaining contents of the DR6 register are never
* cleared by the processor".
*/
vcpu->arch.dr6 &= ~15;
vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
kvm_queue_exception(vcpu, DB_VECTOR);
}
}
int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
int r = EMULATE_DONE;
kvm_x86_ops->skip_emulated_instruction(vcpu);
/*
* rflags is the old, "raw" value of the flags. The new value has
* not been saved yet.
*
* This is correct even for TF set by the guest, because "the
* processor will not generate this exception after the instruction
* that sets the TF flag".
*/
if (unlikely(rflags & X86_EFLAGS_TF))
kvm_vcpu_do_singlestep(vcpu, &r);
return r == EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
{
if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
(vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
struct kvm_run *kvm_run = vcpu->run;
unsigned long eip = kvm_get_linear_rip(vcpu);
u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
vcpu->arch.guest_debug_dr7,
vcpu->arch.eff_db);
if (dr6 != 0) {
kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
kvm_run->debug.arch.pc = eip;
kvm_run->debug.arch.exception = DB_VECTOR;
kvm_run->exit_reason = KVM_EXIT_DEBUG;
*r = EMULATE_USER_EXIT;
return true;
}
}
if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
!(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
unsigned long eip = kvm_get_linear_rip(vcpu);
u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
vcpu->arch.dr7,
vcpu->arch.db);
if (dr6 != 0) {
vcpu->arch.dr6 &= ~15;
vcpu->arch.dr6 |= dr6 | DR6_RTM;
kvm_queue_exception(vcpu, DB_VECTOR);
*r = EMULATE_DONE;
return true;
}
}
return false;
}
int x86_emulate_instruction(struct kvm_vcpu *vcpu,
unsigned long cr2,
int emulation_type,
void *insn,
int insn_len)
{
int r;
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
bool writeback = true;
bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
vcpu->arch.l1tf_flush_l1d = true;
/*
* Clear write_fault_to_shadow_pgtable here to ensure it is
* never reused.
*/
vcpu->arch.write_fault_to_shadow_pgtable = false;
kvm_clear_exception_queue(vcpu);
if (!(emulation_type & EMULTYPE_NO_DECODE)) {
init_emulate_ctxt(vcpu);
/*
* We will reenter on the same instruction since
* we do not set complete_userspace_io. This does not
* handle watchpoints yet, those would be handled in
* the emulate_ops.
*/
if (!(emulation_type & EMULTYPE_SKIP) &&
kvm_vcpu_check_breakpoint(vcpu, &r))
return r;
ctxt->interruptibility = 0;
ctxt->have_exception = false;
ctxt->exception.vector = -1;
ctxt->perm_ok = false;
ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
r = x86_decode_insn(ctxt, insn, insn_len);
trace_kvm_emulate_insn_start(vcpu);
++vcpu->stat.insn_emulation;
if (r != EMULATION_OK) {
if (emulation_type & EMULTYPE_TRAP_UD)
return EMULATE_FAIL;
if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
emulation_type))
return EMULATE_DONE;
if (ctxt->have_exception && inject_emulated_exception(vcpu))
return EMULATE_DONE;
if (emulation_type & EMULTYPE_SKIP)
return EMULATE_FAIL;
return handle_emulation_failure(vcpu);
}
}
if (emulation_type & EMULTYPE_SKIP) {
kvm_rip_write(vcpu, ctxt->_eip);
if (ctxt->eflags & X86_EFLAGS_RF)
kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
return EMULATE_DONE;
}
if (retry_instruction(ctxt, cr2, emulation_type))
return EMULATE_DONE;
/* this is needed for vmware backdoor interface to work since it
changes registers values during IO operation */
if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
emulator_invalidate_register_cache(ctxt);
}
restart:
/* Save the faulting GPA (cr2) in the address field */
ctxt->exception.address = cr2;
r = x86_emulate_insn(ctxt);
if (r == EMULATION_INTERCEPTED)
return EMULATE_DONE;
if (r == EMULATION_FAILED) {
if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
emulation_type))
return EMULATE_DONE;
return handle_emulation_failure(vcpu);
}
if (ctxt->have_exception) {
r = EMULATE_DONE;
if (inject_emulated_exception(vcpu))
return r;
} else if (vcpu->arch.pio.count) {
if (!vcpu->arch.pio.in) {
/* FIXME: return into emulator if single-stepping. */
vcpu->arch.pio.count = 0;
} else {
writeback = false;
vcpu->arch.complete_userspace_io = complete_emulated_pio;
}
r = EMULATE_USER_EXIT;
} else if (vcpu->mmio_needed) {
if (!vcpu->mmio_is_write)
writeback = false;
r = EMULATE_USER_EXIT;
vcpu->arch.complete_userspace_io = complete_emulated_mmio;
} else if (r == EMULATION_RESTART)
goto restart;
else
r = EMULATE_DONE;
if (writeback) {
unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
toggle_interruptibility(vcpu, ctxt->interruptibility);
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
kvm_rip_write(vcpu, ctxt->eip);
if (r == EMULATE_DONE && ctxt->tf)
kvm_vcpu_do_singlestep(vcpu, &r);
if (!ctxt->have_exception ||
exception_type(ctxt->exception.vector) == EXCPT_TRAP)
__kvm_set_rflags(vcpu, ctxt->eflags);
/*
* For STI, interrupts are shadowed; so KVM_REQ_EVENT will
* do nothing, and it will be requested again as soon as
* the shadow expires. But we still need to check here,
* because POPF has no interrupt shadow.
*/
if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
kvm_make_request(KVM_REQ_EVENT, vcpu);
} else
vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
return r;
}
EXPORT_SYMBOL_GPL(x86_emulate_instruction);
int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
{
unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
size, port, &val, 1);
/* do not return to emulator after return from userspace */
vcpu->arch.pio.count = 0;
return ret;
}
EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
{
unsigned long val;
/* We should only ever be called with arch.pio.count equal to 1 */
BUG_ON(vcpu->arch.pio.count != 1);
/* For size less than 4 we merge, else we zero extend */
val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
: 0;
/*
* Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
* the copy and tracing
*/
emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
vcpu->arch.pio.port, &val, 1);
kvm_register_write(vcpu, VCPU_REGS_RAX, val);
return 1;
}
int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
{
unsigned long val;
int ret;
/* For size less than 4 we merge, else we zero extend */
val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
&val, 1);
if (ret) {
kvm_register_write(vcpu, VCPU_REGS_RAX, val);
return ret;
}
vcpu->arch.complete_userspace_io = complete_fast_pio_in;
return 0;
}
EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
static int kvmclock_cpu_down_prep(unsigned int cpu)
{
__this_cpu_write(cpu_tsc_khz, 0);
return 0;
}
static void tsc_khz_changed(void *data)
{
struct cpufreq_freqs *freq = data;
unsigned long khz = 0;
if (data)
khz = freq->new;
else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
khz = cpufreq_quick_get(raw_smp_processor_id());
if (!khz)
khz = tsc_khz;
__this_cpu_write(cpu_tsc_khz, khz);
}
static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
struct cpufreq_freqs *freq = data;
struct kvm *kvm;
struct kvm_vcpu *vcpu;
int i, send_ipi = 0;
/*
* We allow guests to temporarily run on slowing clocks,
* provided we notify them after, or to run on accelerating
* clocks, provided we notify them before. Thus time never
* goes backwards.
*
* However, we have a problem. We can't atomically update
* the frequency of a given CPU from this function; it is
* merely a notifier, which can be called from any CPU.
* Changing the TSC frequency at arbitrary points in time
* requires a recomputation of local variables related to
* the TSC for each VCPU. We must flag these local variables
* to be updated and be sure the update takes place with the
* new frequency before any guests proceed.
*
* Unfortunately, the combination of hotplug CPU and frequency
* change creates an intractable locking scenario; the order
* of when these callouts happen is undefined with respect to
* CPU hotplug, and they can race with each other. As such,
* merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
* undefined; you can actually have a CPU frequency change take
* place in between the computation of X and the setting of the
* variable. To protect against this problem, all updates of
* the per_cpu tsc_khz variable are done in an interrupt
* protected IPI, and all callers wishing to update the value
* must wait for a synchronous IPI to complete (which is trivial
* if the caller is on the CPU already). This establishes the
* necessary total order on variable updates.
*
* Note that because a guest time update may take place
* anytime after the setting of the VCPU's request bit, the
* correct TSC value must be set before the request. However,
* to ensure the update actually makes it to any guest which
* starts running in hardware virtualization between the set
* and the acquisition of the spinlock, we must also ping the
* CPU after setting the request bit.
*
*/
if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
return 0;
if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
return 0;
smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
spin_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list) {
kvm_for_each_vcpu(i, vcpu, kvm) {
if (vcpu->cpu != freq->cpu)
continue;
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
if (vcpu->cpu != smp_processor_id())
send_ipi = 1;
}
}
spin_unlock(&kvm_lock);
if (freq->old < freq->new && send_ipi) {
/*
* We upscale the frequency. Must make the guest
* doesn't see old kvmclock values while running with
* the new frequency, otherwise we risk the guest sees
* time go backwards.
*
* In case we update the frequency for another cpu
* (which might be in guest context) send an interrupt
* to kick the cpu out of guest context. Next time
* guest context is entered kvmclock will be updated,
* so the guest will not see stale values.
*/
smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
}
return 0;
}
static struct notifier_block kvmclock_cpufreq_notifier_block = {
.notifier_call = kvmclock_cpufreq_notifier
};
static int kvmclock_cpu_online(unsigned int cpu)
{
tsc_khz_changed(NULL);
return 0;
}
static void kvm_timer_init(void)
{
max_tsc_khz = tsc_khz;
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
#ifdef CONFIG_CPU_FREQ
struct cpufreq_policy policy;
int cpu;
memset(&policy, 0, sizeof(policy));
cpu = get_cpu();
cpufreq_get_policy(&policy, cpu);
if (policy.cpuinfo.max_freq)
max_tsc_khz = policy.cpuinfo.max_freq;
put_cpu();
#endif
cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
}
pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
kvmclock_cpu_online, kvmclock_cpu_down_prep);
}
static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
int kvm_is_in_guest(void)
{
return __this_cpu_read(current_vcpu) != NULL;
}
static int kvm_is_user_mode(void)
{
int user_mode = 3;
if (__this_cpu_read(current_vcpu))
user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
return user_mode != 0;
}
static unsigned long kvm_get_guest_ip(void)
{
unsigned long ip = 0;
if (__this_cpu_read(current_vcpu))
ip = kvm_rip_read(__this_cpu_read(current_vcpu));
return ip;
}
static struct perf_guest_info_callbacks kvm_guest_cbs = {
.is_in_guest = kvm_is_in_guest,
.is_user_mode = kvm_is_user_mode,
.get_guest_ip = kvm_get_guest_ip,
};
void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
{
__this_cpu_write(current_vcpu, vcpu);
}
EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
{
__this_cpu_write(current_vcpu, NULL);
}
EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
static void kvm_set_mmio_spte_mask(void)
{
u64 mask;
int maxphyaddr = boot_cpu_data.x86_phys_bits;
/*
* Set the reserved bits and the present bit of an paging-structure
* entry to generate page fault with PFER.RSV = 1.
*/
/*
* Mask the uppermost physical address bit, which would be reserved as
* long as the supported physical address width is less than 52.
*/
mask = 1ull << 51;
/* Set the present bit. */
mask |= 1ull;
/*
* If reserved bit is not supported, clear the present bit to disable
* mmio page fault.
*/
if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
mask &= ~1ull;
kvm_mmu_set_mmio_spte_mask(mask, mask);
}
#ifdef CONFIG_X86_64
static void pvclock_gtod_update_fn(struct work_struct *work)
{
struct kvm *kvm;
struct kvm_vcpu *vcpu;
int i;
spin_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list)
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
atomic_set(&kvm_guest_has_master_clock, 0);
spin_unlock(&kvm_lock);
}
static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
/*
* Notification about pvclock gtod data update.
*/
static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
void *priv)
{
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
struct timekeeper *tk = priv;
update_pvclock_gtod(tk);
/* disable master clock if host does not trust, or does not
* use, TSC clocksource
*/
if (gtod->clock.vclock_mode != VCLOCK_TSC &&
atomic_read(&kvm_guest_has_master_clock) != 0)
queue_work(system_long_wq, &pvclock_gtod_work);
return 0;
}
static struct notifier_block pvclock_gtod_notifier = {
.notifier_call = pvclock_gtod_notify,
};
#endif
int kvm_arch_init(void *opaque)
{
int r;
struct kvm_x86_ops *ops = opaque;
if (kvm_x86_ops) {
printk(KERN_ERR "kvm: already loaded the other module\n");
r = -EEXIST;
goto out;
}
if (!ops->cpu_has_kvm_support()) {
printk(KERN_ERR "kvm: no hardware support\n");
r = -EOPNOTSUPP;
goto out;
}
if (ops->disabled_by_bios()) {
printk(KERN_ERR "kvm: disabled by bios\n");
r = -EOPNOTSUPP;
goto out;
}
r = -ENOMEM;
shared_msrs = alloc_percpu(struct kvm_shared_msrs);
if (!shared_msrs) {
printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
goto out;
}
r = kvm_mmu_module_init();
if (r)
goto out_free_percpu;
kvm_set_mmio_spte_mask();
kvm_x86_ops = ops;
kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
PT_DIRTY_MASK, PT64_NX_MASK, 0,
PT_PRESENT_MASK, 0, sme_me_mask);
kvm_timer_init();
perf_register_guest_info_callbacks(&kvm_guest_cbs);
if (boot_cpu_has(X86_FEATURE_XSAVE))
host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
kvm_lapic_init();
#ifdef CONFIG_X86_64
pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
#endif
return 0;
out_free_percpu:
free_percpu(shared_msrs);
out:
return r;
}
void kvm_arch_exit(void)
{
kvm_lapic_exit();
perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
#ifdef CONFIG_X86_64
pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
#endif
kvm_x86_ops = NULL;
kvm_mmu_module_exit();
free_percpu(shared_msrs);
}
int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
{
++vcpu->stat.halt_exits;
if (lapic_in_kernel(vcpu)) {
vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
return 1;
} else {
vcpu->run->exit_reason = KVM_EXIT_HLT;
return 0;
}
}
EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
{
int ret = kvm_skip_emulated_instruction(vcpu);
/*
* TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
* KVM_EXIT_DEBUG here.
*/
return kvm_vcpu_halt(vcpu) && ret;
}
EXPORT_SYMBOL_GPL(kvm_emulate_halt);
#ifdef CONFIG_X86_64
static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
unsigned long clock_type)
{
struct kvm_clock_pairing clock_pairing;
struct timespec ts;
u64 cycle;
int ret;
if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
return -KVM_EOPNOTSUPP;
if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
return -KVM_EOPNOTSUPP;
clock_pairing.sec = ts.tv_sec;
clock_pairing.nsec = ts.tv_nsec;
clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
clock_pairing.flags = 0;
memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
ret = 0;
if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
sizeof(struct kvm_clock_pairing)))
ret = -KVM_EFAULT;
return ret;
}
#endif
/*
* kvm_pv_kick_cpu_op: Kick a vcpu.
*
* @apicid - apicid of vcpu to be kicked.
*/
static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
{
struct kvm_lapic_irq lapic_irq;
lapic_irq.shorthand = 0;
lapic_irq.dest_mode = 0;
lapic_irq.level = 0;
lapic_irq.dest_id = apicid;
lapic_irq.msi_redir_hint = false;
lapic_irq.delivery_mode = APIC_DM_REMRD;
kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
}
void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
{
vcpu->arch.apicv_active = false;
kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
}
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
{
unsigned long nr, a0, a1, a2, a3, ret;
int op_64_bit;
if (kvm_hv_hypercall_enabled(vcpu->kvm)) {
if (!kvm_hv_hypercall(vcpu))
return 0;
goto out;
}
nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
trace_kvm_hypercall(nr, a0, a1, a2, a3);
op_64_bit = is_64_bit_mode(vcpu);
if (!op_64_bit) {
nr &= 0xFFFFFFFF;
a0 &= 0xFFFFFFFF;
a1 &= 0xFFFFFFFF;
a2 &= 0xFFFFFFFF;
a3 &= 0xFFFFFFFF;
}
if (kvm_x86_ops->get_cpl(vcpu) != 0) {
ret = -KVM_EPERM;
goto out_error;
}
switch (nr) {
case KVM_HC_VAPIC_POLL_IRQ:
ret = 0;
break;
case KVM_HC_KICK_CPU:
kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
ret = 0;
break;
#ifdef CONFIG_X86_64
case KVM_HC_CLOCK_PAIRING:
ret = kvm_pv_clock_pairing(vcpu, a0, a1);
break;
#endif
default:
ret = -KVM_ENOSYS;
break;
}
out_error:
if (!op_64_bit)
ret = (u32)ret;
kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
out:
++vcpu->stat.hypercalls;
return kvm_skip_emulated_instruction(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
{
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
char instruction[3];
unsigned long rip = kvm_rip_read(vcpu);
kvm_x86_ops->patch_hypercall(vcpu, instruction);
return emulator_write_emulated(ctxt, rip, instruction, 3,
&ctxt->exception);
}
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
{
return vcpu->run->request_interrupt_window &&
likely(!pic_in_kernel(vcpu->kvm));
}
static void post_kvm_run_save(struct kvm_vcpu *vcpu)
{
struct kvm_run *kvm_run = vcpu->run;
kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
kvm_run->cr8 = kvm_get_cr8(vcpu);
kvm_run->apic_base = kvm_get_apic_base(vcpu);
kvm_run->ready_for_interrupt_injection =
pic_in_kernel(vcpu->kvm) ||
kvm_vcpu_ready_for_interrupt_injection(vcpu);
}
static void update_cr8_intercept(struct kvm_vcpu *vcpu)
{
int max_irr, tpr;
if (!kvm_x86_ops->update_cr8_intercept)
return;
if (!lapic_in_kernel(vcpu))
return;
if (vcpu->arch.apicv_active)
return;
if (!vcpu->arch.apic->vapic_addr)
max_irr = kvm_lapic_find_highest_irr(vcpu);
else
max_irr = -1;
if (max_irr != -1)
max_irr >>= 4;
tpr = kvm_lapic_get_cr8(vcpu);
kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
}
static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
{
int r;
/* try to reinject previous events if any */
if (vcpu->arch.exception.injected) {
kvm_x86_ops->queue_exception(vcpu);
return 0;
}
/*
* Exceptions must be injected immediately, or the exception
* frame will have the address of the NMI or interrupt handler.
*/
if (!vcpu->arch.exception.pending) {
if (vcpu->arch.nmi_injected) {
kvm_x86_ops->set_nmi(vcpu);
return 0;
}
if (vcpu->arch.interrupt.pending) {
kvm_x86_ops->set_irq(vcpu);
return 0;
}
}
if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
if (r != 0)
return r;
}
/* try to inject new event if pending */
if (vcpu->arch.exception.pending) {
trace_kvm_inj_exception(vcpu->arch.exception.nr,
vcpu->arch.exception.has_error_code,
vcpu->arch.exception.error_code);
vcpu->arch.exception.pending = false;
vcpu->arch.exception.injected = true;
if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
X86_EFLAGS_RF);
if (vcpu->arch.exception.nr == DB_VECTOR &&
(vcpu->arch.dr7 & DR7_GD)) {
vcpu->arch.dr7 &= ~DR7_GD;
kvm_update_dr7(vcpu);
}
kvm_x86_ops->queue_exception(vcpu);
} else if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
vcpu->arch.smi_pending = false;
enter_smm(vcpu);
} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
--vcpu->arch.nmi_pending;
vcpu->arch.nmi_injected = true;
kvm_x86_ops->set_nmi(vcpu);
} else if (kvm_cpu_has_injectable_intr(vcpu)) {
/*
* Because interrupts can be injected asynchronously, we are
* calling check_nested_events again here to avoid a race condition.
* See https://lkml.org/lkml/2014/7/2/60 for discussion about this
* proposal and current concerns. Perhaps we should be setting
* KVM_REQ_EVENT only on certain events and not unconditionally?
*/
if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
if (r != 0)
return r;
}
if (kvm_x86_ops->interrupt_allowed(vcpu)) {
kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
false);
kvm_x86_ops->set_irq(vcpu);
}
}
return 0;
}
static void process_nmi(struct kvm_vcpu *vcpu)
{
unsigned limit = 2;
/*
* x86 is limited to one NMI running, and one NMI pending after it.
* If an NMI is already in progress, limit further NMIs to just one.
* Otherwise, allow two (and we'll inject the first one immediately).
*/
if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
limit = 1;
vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
kvm_make_request(KVM_REQ_EVENT, vcpu);
}
#define put_smstate(type, buf, offset, val) \
*(type *)((buf) + (offset) - 0x7e00) = val
static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
{
u32 flags = 0;
flags |= seg->g << 23;
flags |= seg->db << 22;
flags |= seg->l << 21;
flags |= seg->avl << 20;
flags |= seg->present << 15;
flags |= seg->dpl << 13;
flags |= seg->s << 12;
flags |= seg->type << 8;
return flags;
}
static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
{
struct kvm_segment seg;
int offset;
kvm_get_segment(vcpu, &seg, n);
put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
if (n < 3)
offset = 0x7f84 + n * 12;
else
offset = 0x7f2c + (n - 3) * 12;
put_smstate(u32, buf, offset + 8, seg.base);
put_smstate(u32, buf, offset + 4, seg.limit);
put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
}
#ifdef CONFIG_X86_64
static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
{
struct kvm_segment seg;
int offset;
u16 flags;
kvm_get_segment(vcpu, &seg, n);
offset = 0x7e00 + n * 16;
flags = enter_smm_get_segment_flags(&seg) >> 8;
put_smstate(u16, buf, offset, seg.selector);
put_smstate(u16, buf, offset + 2, flags);
put_smstate(u32, buf, offset + 4, seg.limit);
put_smstate(u64, buf, offset + 8, seg.base);
}
#endif
static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
{
struct desc_ptr dt;
struct kvm_segment seg;
unsigned long val;
int i;
put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
for (i = 0; i < 8; i++)
put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
kvm_get_dr(vcpu, 6, &val);
put_smstate(u32, buf, 0x7fcc, (u32)val);
kvm_get_dr(vcpu, 7, &val);
put_smstate(u32, buf, 0x7fc8, (u32)val);
kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
put_smstate(u32, buf, 0x7fc4, seg.selector);
put_smstate(u32, buf, 0x7f64, seg.base);
put_smstate(u32, buf, 0x7f60, seg.limit);
put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
put_smstate(u32, buf, 0x7fc0, seg.selector);
put_smstate(u32, buf, 0x7f80, seg.base);
put_smstate(u32, buf, 0x7f7c, seg.limit);
put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
kvm_x86_ops->get_gdt(vcpu, &dt);
put_smstate(u32, buf, 0x7f74, dt.address);
put_smstate(u32, buf, 0x7f70, dt.size);
kvm_x86_ops->get_idt(vcpu, &dt);
put_smstate(u32, buf, 0x7f58, dt.address);
put_smstate(u32, buf, 0x7f54, dt.size);
for (i = 0; i < 6; i++)
enter_smm_save_seg_32(vcpu, buf, i);
put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
/* revision id */
put_smstate(u32, buf, 0x7efc, 0x00020000);
put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
}
static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
{
#ifdef CONFIG_X86_64
struct desc_ptr dt;
struct kvm_segment seg;
unsigned long val;
int i;
for (i = 0; i < 16; i++)
put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
kvm_get_dr(vcpu, 6, &val);
put_smstate(u64, buf, 0x7f68, val);
kvm_get_dr(vcpu, 7, &val);
put_smstate(u64, buf, 0x7f60, val);
put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
/* revision id */
put_smstate(u32, buf, 0x7efc, 0x00020064);
put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
put_smstate(u16, buf, 0x7e90, seg.selector);
put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
put_smstate(u32, buf, 0x7e94, seg.limit);
put_smstate(u64, buf, 0x7e98, seg.base);
kvm_x86_ops->get_idt(vcpu, &dt);
put_smstate(u32, buf, 0x7e84, dt.size);
put_smstate(u64, buf, 0x7e88, dt.address);
kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
put_smstate(u16, buf, 0x7e70, seg.selector);
put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
put_smstate(u32, buf, 0x7e74, seg.limit);
put_smstate(u64, buf, 0x7e78, seg.base);
kvm_x86_ops->get_gdt(vcpu, &dt);
put_smstate(u32, buf, 0x7e64, dt.size);
put_smstate(u64, buf, 0x7e68, dt.address);
for (i = 0; i < 6; i++)
enter_smm_save_seg_64(vcpu, buf, i);
#else
WARN_ON_ONCE(1);
#endif
}
static void enter_smm(struct kvm_vcpu *vcpu)
{
struct kvm_segment cs, ds;
struct desc_ptr dt;
char buf[512];
u32 cr0;
trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
vcpu->arch.hflags |= HF_SMM_MASK;
memset(buf, 0, 512);
if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
enter_smm_save_state_64(vcpu, buf);
else
enter_smm_save_state_32(vcpu, buf);
kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
if (kvm_x86_ops->get_nmi_mask(vcpu))
vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
else
kvm_x86_ops->set_nmi_mask(vcpu, true);
kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
kvm_rip_write(vcpu, 0x8000);
cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
kvm_x86_ops->set_cr0(vcpu, cr0);
vcpu->arch.cr0 = cr0;
kvm_x86_ops->set_cr4(vcpu, 0);
/* Undocumented: IDT limit is set to zero on entry to SMM. */
dt.address = dt.size = 0;
kvm_x86_ops->set_idt(vcpu, &dt);
__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
cs.base = vcpu->arch.smbase;
ds.selector = 0;
ds.base = 0;
cs.limit = ds.limit = 0xffffffff;
cs.type = ds.type = 0x3;
cs.dpl = ds.dpl = 0;
cs.db = ds.db = 0;
cs.s = ds.s = 1;
cs.l = ds.l = 0;
cs.g = ds.g = 1;
cs.avl = ds.avl = 0;
cs.present = ds.present = 1;
cs.unusable = ds.unusable = 0;
cs.padding = ds.padding = 0;
kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
kvm_x86_ops->set_efer(vcpu, 0);
kvm_update_cpuid(vcpu);
kvm_mmu_reset_context(vcpu);
}
static void process_smi(struct kvm_vcpu *vcpu)
{
vcpu->arch.smi_pending = true;
kvm_make_request(KVM_REQ_EVENT, vcpu);
}
void kvm_make_scan_ioapic_request(struct kvm *kvm)
{
kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
}
static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
{
u64 eoi_exit_bitmap[4];
if (!kvm_apic_hw_enabled(vcpu->arch.apic))
return;
bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
if (irqchip_split(vcpu->kvm))
kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
else {
if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
kvm_x86_ops->sync_pir_to_irr(vcpu);
if (ioapic_in_kernel(vcpu->kvm))
kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
}
bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
vcpu_to_synic(vcpu)->vec_bitmap, 256);
kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
}
static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
{
++vcpu->stat.tlb_flush;
kvm_x86_ops->tlb_flush(vcpu);
}
void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
unsigned long start, unsigned long end)
{
unsigned long apic_address;
/*
* The physical address of apic access page is stored in the VMCS.
* Update it when it becomes invalid.
*/
apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
if (start <= apic_address && apic_address < end)
kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
}
void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
{
struct page *page = NULL;
if (!lapic_in_kernel(vcpu))
return;
if (!kvm_x86_ops->set_apic_access_page_addr)
return;
page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
if (is_error_page(page))
return;
kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
/*
* Do not pin apic access page in memory, the MMU notifier
* will call us again if it is migrated or swapped out.
*/
put_page(page);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
/*
* Returns 1 to let vcpu_run() continue the guest execution loop without
* exiting to the userspace. Otherwise, the value will be returned to the
* userspace.
*/
static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
{
int r;
bool req_int_win =
dm_request_for_irq_injection(vcpu) &&
kvm_cpu_accept_dm_intr(vcpu);
bool req_immediate_exit = false;
if (kvm_request_pending(vcpu)) {
if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
kvm_mmu_unload(vcpu);
if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
__kvm_migrate_timers(vcpu);
if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
kvm_gen_update_masterclock(vcpu->kvm);
if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
kvm_gen_kvmclock_update(vcpu);
if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
r = kvm_guest_time_update(vcpu);
if (unlikely(r))
goto out;
}
if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
kvm_mmu_sync_roots(vcpu);
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
kvm_vcpu_flush_tlb(vcpu);
if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
r = 0;
goto out;
}
if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
vcpu->mmio_needed = 0;
r = 0;
goto out;
}
if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
/* Page is swapped out. Do synthetic halt */
vcpu->arch.apf.halted = true;
r = 1;
goto out;
}
if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
record_steal_time(vcpu);
if (kvm_check_request(KVM_REQ_SMI, vcpu))
process_smi(vcpu);
if (kvm_check_request(KVM_REQ_NMI, vcpu))
process_nmi(vcpu);
if (kvm_check_request(KVM_REQ_PMU, vcpu))
kvm_pmu_handle_event(vcpu);
if (kvm_check_request(KVM_REQ_PMI, vcpu))
kvm_pmu_deliver_pmi(vcpu);
if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
if (test_bit(vcpu->arch.pending_ioapic_eoi,
vcpu->arch.ioapic_handled_vectors)) {
vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
vcpu->run->eoi.vector =
vcpu->arch.pending_ioapic_eoi;
r = 0;
goto out;
}
}
if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
vcpu_scan_ioapic(vcpu);
if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
kvm_vcpu_reload_apic_access_page(vcpu);
if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
r = 0;
goto out;
}
if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
r = 0;
goto out;
}
if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
vcpu->run->exit_reason = KVM_EXIT_HYPERV;
vcpu->run->hyperv = vcpu->arch.hyperv.exit;
r = 0;
goto out;
}
/*
* KVM_REQ_HV_STIMER has to be processed after
* KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
* depend on the guest clock being up-to-date
*/
if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
kvm_hv_process_stimers(vcpu);
}
if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
++vcpu->stat.req_event;
kvm_apic_accept_events(vcpu);
if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
r = 1;
goto out;
}
if (inject_pending_event(vcpu, req_int_win) != 0)
req_immediate_exit = true;
else {
/* Enable NMI/IRQ window open exits if needed.
*
* SMIs have two cases: 1) they can be nested, and
* then there is nothing to do here because RSM will
* cause a vmexit anyway; 2) or the SMI can be pending
* because inject_pending_event has completed the
* injection of an IRQ or NMI from the previous vmexit,
* and then we request an immediate exit to inject the SMI.
*/
if (vcpu->arch.smi_pending && !is_smm(vcpu))
req_immediate_exit = true;
if (vcpu->arch.nmi_pending)
kvm_x86_ops->enable_nmi_window(vcpu);
if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
kvm_x86_ops->enable_irq_window(vcpu);
WARN_ON(vcpu->arch.exception.pending);
}
if (kvm_lapic_enabled(vcpu)) {
update_cr8_intercept(vcpu);
kvm_lapic_sync_to_vapic(vcpu);
}
}
r = kvm_mmu_reload(vcpu);
if (unlikely(r)) {
goto cancel_injection;
}
preempt_disable();
kvm_x86_ops->prepare_guest_switch(vcpu);
/*
* Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
* IPI are then delayed after guest entry, which ensures that they
* result in virtual interrupt delivery.
*/
local_irq_disable();
vcpu->mode = IN_GUEST_MODE;
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
/*
* 1) We should set ->mode before checking ->requests. Please see
* the comment in kvm_vcpu_exiting_guest_mode().
*
* 2) For APICv, we should set ->mode before checking PIR.ON. This
* pairs with the memory barrier implicit in pi_test_and_set_on
* (see vmx_deliver_posted_interrupt).
*
* 3) This also orders the write to mode from any reads to the page
* tables done while the VCPU is running. Please see the comment
* in kvm_flush_remote_tlbs.
*/
smp_mb__after_srcu_read_unlock();
/*
* This handles the case where a posted interrupt was
* notified with kvm_vcpu_kick.
*/
if (kvm_lapic_enabled(vcpu)) {
if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
kvm_x86_ops->sync_pir_to_irr(vcpu);
}
if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
|| need_resched() || signal_pending(current)) {
vcpu->mode = OUTSIDE_GUEST_MODE;
smp_wmb();
local_irq_enable();
preempt_enable();
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
r = 1;
goto cancel_injection;
}
kvm_load_guest_xcr0(vcpu);
if (req_immediate_exit) {
kvm_make_request(KVM_REQ_EVENT, vcpu);
smp_send_reschedule(vcpu->cpu);
}
trace_kvm_entry(vcpu->vcpu_id);
wait_lapic_expire(vcpu);
guest_enter_irqoff();
if (unlikely(vcpu->arch.switch_db_regs)) {
set_debugreg(0, 7);
set_debugreg(vcpu->arch.eff_db[0], 0);
set_debugreg(vcpu->arch.eff_db[1], 1);
set_debugreg(vcpu->arch.eff_db[2], 2);
set_debugreg(vcpu->arch.eff_db[3], 3);
set_debugreg(vcpu->arch.dr6, 6);
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
}
kvm_x86_ops->run(vcpu);
/*
* Do this here before restoring debug registers on the host. And
* since we do this before handling the vmexit, a DR access vmexit
* can (a) read the correct value of the debug registers, (b) set
* KVM_DEBUGREG_WONT_EXIT again.
*/
if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
kvm_x86_ops->sync_dirty_debug_regs(vcpu);
kvm_update_dr0123(vcpu);
kvm_update_dr6(vcpu);
kvm_update_dr7(vcpu);
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
}
/*
* If the guest has used debug registers, at least dr7
* will be disabled while returning to the host.
* If we don't have active breakpoints in the host, we don't
* care about the messed up debug address registers. But if
* we have some of them active, restore the old state.
*/
if (hw_breakpoint_active())
hw_breakpoint_restore();
vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
vcpu->mode = OUTSIDE_GUEST_MODE;
smp_wmb();
kvm_put_guest_xcr0(vcpu);
kvm_x86_ops->handle_external_intr(vcpu);
++vcpu->stat.exits;
guest_exit_irqoff();
local_irq_enable();
preempt_enable();
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
/*
* Profile KVM exit RIPs:
*/
if (unlikely(prof_on == KVM_PROFILING)) {
unsigned long rip = kvm_rip_read(vcpu);
profile_hit(KVM_PROFILING, (void *)rip);
}
if (unlikely(vcpu->arch.tsc_always_catchup))
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
if (vcpu->arch.apic_attention)
kvm_lapic_sync_from_vapic(vcpu);
vcpu->arch.gpa_available = false;
r = kvm_x86_ops->handle_exit(vcpu);
return r;
cancel_injection:
kvm_x86_ops->cancel_injection(vcpu);
if (unlikely(vcpu->arch.apic_attention))
kvm_lapic_sync_from_vapic(vcpu);
out:
return r;
}
static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
{
if (!kvm_arch_vcpu_runnable(vcpu) &&
(!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
kvm_vcpu_block(vcpu);
vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
if (kvm_x86_ops->post_block)
kvm_x86_ops->post_block(vcpu);
if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
return 1;
}
kvm_apic_accept_events(vcpu);
switch(vcpu->arch.mp_state) {
case KVM_MP_STATE_HALTED:
vcpu->arch.pv.pv_unhalted = false;
vcpu->arch.mp_state =
KVM_MP_STATE_RUNNABLE;
case KVM_MP_STATE_RUNNABLE:
vcpu->arch.apf.halted = false;
break;
case KVM_MP_STATE_INIT_RECEIVED:
break;
default:
return -EINTR;
break;
}
return 1;
}
static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
{
if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
kvm_x86_ops->check_nested_events(vcpu, false);
return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
!vcpu->arch.apf.halted);
}
static int vcpu_run(struct kvm_vcpu *vcpu)
{
int r;
struct kvm *kvm = vcpu->kvm;
vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
vcpu->arch.l1tf_flush_l1d = true;
for (;;) {
if (kvm_vcpu_running(vcpu)) {
r = vcpu_enter_guest(vcpu);
} else {
r = vcpu_block(kvm, vcpu);
}
if (r <= 0)
break;
kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
if (kvm_cpu_has_pending_timer(vcpu))
kvm_inject_pending_timer_irqs(vcpu);
if (dm_request_for_irq_injection(vcpu) &&
kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
r = 0;
vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
++vcpu->stat.request_irq_exits;
break;
}
kvm_check_async_pf_completion(vcpu);
if (signal_pending(current)) {
r = -EINTR;
vcpu->run->exit_reason = KVM_EXIT_INTR;
++vcpu->stat.signal_exits;
break;
}
if (need_resched()) {
srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
cond_resched();
vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
}
}
srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
return r;
}
static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
{
int r;
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
if (r != EMULATE_DONE)
return 0;
return 1;
}
static int complete_emulated_pio(struct kvm_vcpu *vcpu)
{
BUG_ON(!vcpu->arch.pio.count);
return complete_emulated_io(vcpu);
}
/*
* Implements the following, as a state machine:
*
* read:
* for each fragment
* for each mmio piece in the fragment
* write gpa, len
* exit
* copy data
* execute insn
*
* write:
* for each fragment
* for each mmio piece in the fragment
* write gpa, len
* copy data
* exit
*/
static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
struct kvm_mmio_fragment *frag;
unsigned len;
BUG_ON(!vcpu->mmio_needed);
/* Complete previous fragment */
frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
len = min(8u, frag->len);
if (!vcpu->mmio_is_write)
memcpy(frag->data, run->mmio.data, len);
if (frag->len <= 8) {
/* Switch to the next fragment. */
frag++;
vcpu->mmio_cur_fragment++;
} else {
/* Go forward to the next mmio piece. */
frag->data += len;
frag->gpa += len;
frag->len -= len;
}
if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
vcpu->mmio_needed = 0;
/* FIXME: return into emulator if single-stepping. */
if (vcpu->mmio_is_write)
return 1;
vcpu->mmio_read_completed = 1;
return complete_emulated_io(vcpu);
}
run->exit_reason = KVM_EXIT_MMIO;
run->mmio.phys_addr = frag->gpa;
if (vcpu->mmio_is_write)
memcpy(run->mmio.data, frag->data, min(8u, frag->len));
run->mmio.len = min(8u, frag->len);
run->mmio.is_write = vcpu->mmio_is_write;
vcpu->arch.complete_userspace_io = complete_emulated_mmio;
return 0;
}
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
int r;
kvm_sigset_activate(vcpu);
kvm_load_guest_fpu(vcpu);
if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
if (kvm_run->immediate_exit) {
r = -EINTR;
goto out;
}
kvm_vcpu_block(vcpu);
kvm_apic_accept_events(vcpu);
kvm_clear_request(KVM_REQ_UNHALT, vcpu);
r = -EAGAIN;
if (signal_pending(current)) {
r = -EINTR;
vcpu->run->exit_reason = KVM_EXIT_INTR;
++vcpu->stat.signal_exits;
}
goto out;
}
/* re-sync apic's tpr */
if (!lapic_in_kernel(vcpu)) {
if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
r = -EINVAL;
goto out;
}
}
if (unlikely(vcpu->arch.complete_userspace_io)) {
int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
vcpu->arch.complete_userspace_io = NULL;
r = cui(vcpu);
if (r <= 0)
goto out;
} else
WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
if (kvm_run->immediate_exit)
r = -EINTR;
else
r = vcpu_run(vcpu);
out:
kvm_put_guest_fpu(vcpu);
post_kvm_run_save(vcpu);
kvm_sigset_deactivate(vcpu);
return r;
}
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
/*
* We are here if userspace calls get_regs() in the middle of
* instruction emulation. Registers state needs to be copied
* back from emulation context to vcpu. Userspace shouldn't do
* that usually, but some bad designed PV devices (vmware
* backdoor interface) need this to work
*/
emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
}
regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
#ifdef CONFIG_X86_64
regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
#endif
regs->rip = kvm_rip_read(vcpu);
regs->rflags = kvm_get_rflags(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
#ifdef CONFIG_X86_64
kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
#endif
kvm_rip_write(vcpu, regs->rip);
kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
vcpu->arch.exception.pending = false;
kvm_make_request(KVM_REQ_EVENT, vcpu);
return 0;
}
void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
struct kvm_segment cs;
kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
*db = cs.db;
*l = cs.l;
}
EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct desc_ptr dt;
kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
kvm_x86_ops->get_idt(vcpu, &dt);
sregs->idt.limit = dt.size;
sregs->idt.base = dt.address;
kvm_x86_ops->get_gdt(vcpu, &dt);
sregs->gdt.limit = dt.size;
sregs->gdt.base = dt.address;
sregs->cr0 = kvm_read_cr0(vcpu);
sregs->cr2 = vcpu->arch.cr2;
sregs->cr3 = kvm_read_cr3(vcpu);
sregs->cr4 = kvm_read_cr4(vcpu);
sregs->cr8 = kvm_get_cr8(vcpu);
sregs->efer = vcpu->arch.efer;
sregs->apic_base = kvm_get_apic_base(vcpu);
memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
set_bit(vcpu->arch.interrupt.nr,
(unsigned long *)sregs->interrupt_bitmap);
return 0;
}
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
kvm_apic_accept_events(vcpu);
if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
vcpu->arch.pv.pv_unhalted)
mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
else
mp_state->mp_state = vcpu->arch.mp_state;
return 0;
}
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
if (!lapic_in_kernel(vcpu) &&
mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
return -EINVAL;
/* INITs are latched while in SMM */
if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
(mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
return -EINVAL;
if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
} else
vcpu->arch.mp_state = mp_state->mp_state;
kvm_make_request(KVM_REQ_EVENT, vcpu);
return 0;
}
int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
int reason, bool has_error_code, u32 error_code)
{
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
int ret;
init_emulate_ctxt(vcpu);
ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
has_error_code, error_code);
if (ret)
return EMULATE_FAIL;
kvm_rip_write(vcpu, ctxt->eip);
kvm_set_rflags(vcpu, ctxt->eflags);
kvm_make_request(KVM_REQ_EVENT, vcpu);
return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvm_task_switch);
int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
/*
* When EFER.LME and CR0.PG are set, the processor is in
* 64-bit mode (though maybe in a 32-bit code segment).
* CR4.PAE and EFER.LMA must be set.
*/
if (!(sregs->cr4 & X86_CR4_PAE)
|| !(sregs->efer & EFER_LMA))
return -EINVAL;
} else {
/*
* Not in 64-bit mode: EFER.LMA is clear and the code
* segment cannot be 64-bit.
*/
if (sregs->efer & EFER_LMA || sregs->cs.l)
return -EINVAL;
}
return 0;
}
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct msr_data apic_base_msr;
int mmu_reset_needed = 0;
int cpuid_update_needed = 0;
int pending_vec, max_bits, idx;
struct desc_ptr dt;
if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
(sregs->cr4 & X86_CR4_OSXSAVE))
return -EINVAL;
if (kvm_valid_sregs(vcpu, sregs))
return -EINVAL;
apic_base_msr.data = sregs->apic_base;
apic_base_msr.host_initiated = true;
if (kvm_set_apic_base(vcpu, &apic_base_msr))
return -EINVAL;
dt.size = sregs->idt.limit;
dt.address = sregs->idt.base;
kvm_x86_ops->set_idt(vcpu, &dt);
dt.size = sregs->gdt.limit;
dt.address = sregs->gdt.base;
kvm_x86_ops->set_gdt(vcpu, &dt);
vcpu->arch.cr2 = sregs->cr2;
mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
vcpu->arch.cr3 = sregs->cr3;
__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
kvm_set_cr8(vcpu, sregs->cr8);
mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
kvm_x86_ops->set_efer(vcpu, sregs->efer);
mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
vcpu->arch.cr0 = sregs->cr0;
mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
(X86_CR4_OSXSAVE | X86_CR4_PKE));
kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
if (cpuid_update_needed)
kvm_update_cpuid(vcpu);
idx = srcu_read_lock(&vcpu->kvm->srcu);
if (!is_long_mode(vcpu) && is_pae(vcpu)) {
load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
mmu_reset_needed = 1;
}
srcu_read_unlock(&vcpu->kvm->srcu, idx);
if (mmu_reset_needed)
kvm_mmu_reset_context(vcpu);
max_bits = KVM_NR_INTERRUPTS;
pending_vec = find_first_bit(
(const unsigned long *)sregs->interrupt_bitmap, max_bits);
if (pending_vec < max_bits) {
kvm_queue_interrupt(vcpu, pending_vec, false);
pr_debug("Set back pending irq %d\n", pending_vec);
}
kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
update_cr8_intercept(vcpu);
/* Older userspace won't unhalt the vcpu on reset. */
if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
!is_protmode(vcpu))
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
kvm_make_request(KVM_REQ_EVENT, vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *dbg)
{
unsigned long rflags;
int i, r;
if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
r = -EBUSY;
if (vcpu->arch.exception.pending)
goto out;
if (dbg->control & KVM_GUESTDBG_INJECT_DB)
kvm_queue_exception(vcpu, DB_VECTOR);
else
kvm_queue_exception(vcpu, BP_VECTOR);
}
/*
* Read rflags as long as potentially injected trace flags are still
* filtered out.
*/
rflags = kvm_get_rflags(vcpu);
vcpu->guest_debug = dbg->control;
if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
vcpu->guest_debug = 0;
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
for (i = 0; i < KVM_NR_DB_REGS; ++i)
vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
} else {
for (i = 0; i < KVM_NR_DB_REGS; i++)
vcpu->arch.eff_db[i] = vcpu->arch.db[i];
}
kvm_update_dr7(vcpu);
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
get_segment_base(vcpu, VCPU_SREG_CS);
/*
* Trigger an rflags update that will inject or remove the trace
* flags.
*/
kvm_set_rflags(vcpu, rflags);
kvm_x86_ops->update_bp_intercept(vcpu);
r = 0;
out:
return r;
}
/*
* Translate a guest virtual address to a guest physical address.
*/
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
unsigned long vaddr = tr->linear_address;
gpa_t gpa;
int idx;
idx = srcu_read_lock(&vcpu->kvm->srcu);
gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
tr->physical_address = gpa;
tr->valid = gpa != UNMAPPED_GVA;
tr->writeable = 1;
tr->usermode = 0;
return 0;
}
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
struct fxregs_state *fxsave =
&vcpu->arch.guest_fpu.state.fxsave;
memcpy(fpu->fpr, fxsave->st_space, 128);
fpu->fcw = fxsave->cwd;
fpu->fsw = fxsave->swd;
fpu->ftwx = fxsave->twd;
fpu->last_opcode = fxsave->fop;
fpu->last_ip = fxsave->rip;
fpu->last_dp = fxsave->rdp;
memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
return 0;
}
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
struct fxregs_state *fxsave =
&vcpu->arch.guest_fpu.state.fxsave;
memcpy(fxsave->st_space, fpu->fpr, 128);
fxsave->cwd = fpu->fcw;
fxsave->swd = fpu->fsw;
fxsave->twd = fpu->ftwx;
fxsave->fop = fpu->last_opcode;
fxsave->rip = fpu->last_ip;
fxsave->rdp = fpu->last_dp;
memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
return 0;
}
static void fx_init(struct kvm_vcpu *vcpu)
{
fpstate_init(&vcpu->arch.guest_fpu.state);
if (boot_cpu_has(X86_FEATURE_XSAVES))
vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
host_xcr0 | XSTATE_COMPACTION_ENABLED;
/*
* Ensure guest xcr0 is valid for loading
*/
vcpu->arch.xcr0 = XFEATURE_MASK_FP;
vcpu->arch.cr0 |= X86_CR0_ET;
}
/* Swap (qemu) user FPU context for the guest FPU context. */
void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
{
preempt_disable();
copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
/* PKRU is separately restored in kvm_x86_ops->run. */
__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
~XFEATURE_MASK_PKRU);
preempt_enable();
trace_kvm_fpu(1);
}
/* When vcpu_run ends, restore user space FPU context. */
void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
{
preempt_disable();
copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
preempt_enable();
++vcpu->stat.fpu_reload;
trace_kvm_fpu(0);
}
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
kvmclock_reset(vcpu);
kvm_x86_ops->vcpu_free(vcpu);
free_cpumask_var(wbinvd_dirty_mask);
}
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
unsigned int id)
{
struct kvm_vcpu *vcpu;
if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
printk_once(KERN_WARNING
"kvm: SMP vm created on host with unstable TSC; "
"guest TSC will not be reliable\n");
vcpu = kvm_x86_ops->vcpu_create(kvm, id);
return vcpu;
}
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
int r;
kvm_vcpu_mtrr_init(vcpu);
r = vcpu_load(vcpu);
if (r)
return r;
kvm_vcpu_reset(vcpu, false);
kvm_mmu_setup(vcpu);
vcpu_put(vcpu);
return r;
}
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
{
struct msr_data msr;
struct kvm *kvm = vcpu->kvm;
kvm_hv_vcpu_postcreate(vcpu);
if (vcpu_load(vcpu))
return;
msr.data = 0x0;
msr.index = MSR_IA32_TSC;
msr.host_initiated = true;
kvm_write_tsc(vcpu, &msr);
vcpu_put(vcpu);
if (!kvmclock_periodic_sync)
return;
schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
KVMCLOCK_SYNC_PERIOD);
}
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
int r;
vcpu->arch.apf.msr_val = 0;
r = vcpu_load(vcpu);
BUG_ON(r);
kvm_mmu_unload(vcpu);
vcpu_put(vcpu);
kvm_x86_ops->vcpu_free(vcpu);
}
void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
{
kvm_lapic_reset(vcpu, init_event);
vcpu->arch.hflags = 0;
vcpu->arch.smi_pending = 0;
atomic_set(&vcpu->arch.nmi_queued, 0);
vcpu->arch.nmi_pending = 0;
vcpu->arch.nmi_injected = false;
kvm_clear_interrupt_queue(vcpu);
kvm_clear_exception_queue(vcpu);
vcpu->arch.exception.pending = false;
memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
kvm_update_dr0123(vcpu);
vcpu->arch.dr6 = DR6_INIT;
kvm_update_dr6(vcpu);
vcpu->arch.dr7 = DR7_FIXED_1;
kvm_update_dr7(vcpu);
vcpu->arch.cr2 = 0;
kvm_make_request(KVM_REQ_EVENT, vcpu);
vcpu->arch.apf.msr_val = 0;
vcpu->arch.st.msr_val = 0;
kvmclock_reset(vcpu);
kvm_clear_async_pf_completion_queue(vcpu);
kvm_async_pf_hash_reset(vcpu);
vcpu->arch.apf.halted = false;
if (!init_event) {
kvm_pmu_reset(vcpu);
vcpu->arch.smbase = 0x30000;
vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
vcpu->arch.msr_misc_features_enables = 0;
}
memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
vcpu->arch.regs_avail = ~0;
vcpu->arch.regs_dirty = ~0;
kvm_x86_ops->vcpu_reset(vcpu, init_event);
}
void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
{
struct kvm_segment cs;
kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
cs.selector = vector << 8;
cs.base = vector << 12;
kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
kvm_rip_write(vcpu, 0);
}
int kvm_arch_hardware_enable(void)
{
struct kvm *kvm;
struct kvm_vcpu *vcpu;
int i;
int ret;
u64 local_tsc;
u64 max_tsc = 0;
bool stable, backwards_tsc = false;
kvm_shared_msr_cpu_online();
ret = kvm_x86_ops->hardware_enable();
if (ret != 0)
return ret;
local_tsc = rdtsc();
stable = !check_tsc_unstable();
list_for_each_entry(kvm, &vm_list, vm_list) {
kvm_for_each_vcpu(i, vcpu, kvm) {
if (!stable && vcpu->cpu == smp_processor_id())
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
if (stable && vcpu->arch.last_host_tsc > local_tsc) {
backwards_tsc = true;
if (vcpu->arch.last_host_tsc > max_tsc)
max_tsc = vcpu->arch.last_host_tsc;
}
}
}
/*
* Sometimes, even reliable TSCs go backwards. This happens on
* platforms that reset TSC during suspend or hibernate actions, but
* maintain synchronization. We must compensate. Fortunately, we can
* detect that condition here, which happens early in CPU bringup,
* before any KVM threads can be running. Unfortunately, we can't
* bring the TSCs fully up to date with real time, as we aren't yet far
* enough into CPU bringup that we know how much real time has actually
* elapsed; our helper function, ktime_get_boot_ns() will be using boot
* variables that haven't been updated yet.
*
* So we simply find the maximum observed TSC above, then record the
* adjustment to TSC in each VCPU. When the VCPU later gets loaded,
* the adjustment will be applied. Note that we accumulate
* adjustments, in case multiple suspend cycles happen before some VCPU
* gets a chance to run again. In the event that no KVM threads get a
* chance to run, we will miss the entire elapsed period, as we'll have
* reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
* loose cycle time. This isn't too big a deal, since the loss will be
* uniform across all VCPUs (not to mention the scenario is extremely
* unlikely). It is possible that a second hibernate recovery happens
* much faster than a first, causing the observed TSC here to be
* smaller; this would require additional padding adjustment, which is
* why we set last_host_tsc to the local tsc observed here.
*
* N.B. - this code below runs only on platforms with reliable TSC,
* as that is the only way backwards_tsc is set above. Also note
* that this runs for ALL vcpus, which is not a bug; all VCPUs should
* have the same delta_cyc adjustment applied if backwards_tsc
* is detected. Note further, this adjustment is only done once,
* as we reset last_host_tsc on all VCPUs to stop this from being
* called multiple times (one for each physical CPU bringup).
*
* Platforms with unreliable TSCs don't have to deal with this, they
* will be compensated by the logic in vcpu_load, which sets the TSC to
* catchup mode. This will catchup all VCPUs to real time, but cannot
* guarantee that they stay in perfect synchronization.
*/
if (backwards_tsc) {
u64 delta_cyc = max_tsc - local_tsc;
list_for_each_entry(kvm, &vm_list, vm_list) {
kvm->arch.backwards_tsc_observed = true;
kvm_for_each_vcpu(i, vcpu, kvm) {
vcpu->arch.tsc_offset_adjustment += delta_cyc;
vcpu->arch.last_host_tsc = local_tsc;
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
}
/*
* We have to disable TSC offset matching.. if you were
* booting a VM while issuing an S4 host suspend....
* you may have some problem. Solving this issue is
* left as an exercise to the reader.
*/
kvm->arch.last_tsc_nsec = 0;
kvm->arch.last_tsc_write = 0;
}
}
return 0;
}
void kvm_arch_hardware_disable(void)
{
kvm_x86_ops->hardware_disable();
drop_user_return_notifiers();
}
int kvm_arch_hardware_setup(void)
{
int r;
r = kvm_x86_ops->hardware_setup();
if (r != 0)
return r;
if (kvm_has_tsc_control) {
/*
* Make sure the user can only configure tsc_khz values that
* fit into a signed integer.
* A min value is not calculated needed because it will always
* be 1 on all machines.
*/
u64 max = min(0x7fffffffULL,
__scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
kvm_max_guest_tsc_khz = max;
kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
}
kvm_init_msr_list();
return 0;
}
void kvm_arch_hardware_unsetup(void)
{
kvm_x86_ops->hardware_unsetup();
}
void kvm_arch_check_processor_compat(void *rtn)
{
kvm_x86_ops->check_processor_compatibility(rtn);
}
bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
{
return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
}
EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
{
return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
}
struct static_key kvm_no_apic_vcpu __read_mostly;
EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
struct page *page;
struct kvm *kvm;
int r;
BUG_ON(vcpu->kvm == NULL);
kvm = vcpu->kvm;
vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
vcpu->arch.pv.pv_unhalted = false;
vcpu->arch.emulate_ctxt.ops = &emulate_ops;
if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
else
vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (!page) {
r = -ENOMEM;
goto fail;
}
vcpu->arch.pio_data = page_address(page);
kvm_set_tsc_khz(vcpu, max_tsc_khz);
r = kvm_mmu_create(vcpu);
if (r < 0)
goto fail_free_pio_data;
if (irqchip_in_kernel(kvm)) {
r = kvm_create_lapic(vcpu);
if (r < 0)
goto fail_mmu_destroy;
} else
static_key_slow_inc(&kvm_no_apic_vcpu);
vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
GFP_KERNEL);
if (!vcpu->arch.mce_banks) {
r = -ENOMEM;
goto fail_free_lapic;
}
vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
r = -ENOMEM;
goto fail_free_mce_banks;
}
fx_init(vcpu);
vcpu->arch.ia32_tsc_adjust_msr = 0x0;
vcpu->arch.pv_time_enabled = false;
vcpu->arch.guest_supported_xcr0 = 0;
vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
kvm_async_pf_hash_reset(vcpu);
kvm_pmu_init(vcpu);
vcpu->arch.pending_external_vector = -1;
vcpu->arch.preempted_in_kernel = false;
kvm_hv_vcpu_init(vcpu);
return 0;
fail_free_mce_banks:
kfree(vcpu->arch.mce_banks);
fail_free_lapic:
kvm_free_lapic(vcpu);
fail_mmu_destroy:
kvm_mmu_destroy(vcpu);
fail_free_pio_data:
free_page((unsigned long)vcpu->arch.pio_data);
fail:
return r;
}
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
int idx;
kvm_hv_vcpu_uninit(vcpu);
kvm_pmu_destroy(vcpu);
kfree(vcpu->arch.mce_banks);
kvm_free_lapic(vcpu);
idx = srcu_read_lock(&vcpu->kvm->srcu);
kvm_mmu_destroy(vcpu);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
free_page((unsigned long)vcpu->arch.pio_data);
if (!lapic_in_kernel(vcpu))
static_key_slow_dec(&kvm_no_apic_vcpu);
}
void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
{
vcpu->arch.l1tf_flush_l1d = true;
kvm_x86_ops->sched_in(vcpu, cpu);
}
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
if (type)
return -EINVAL;
INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
atomic_set(&kvm->arch.noncoherent_dma_count, 0);
/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
&kvm->arch.irq_sources_bitmap);
raw_spin_lock_init(&kvm->arch.tsc_write_lock);
mutex_init(&kvm->arch.apic_map_lock);
mutex_init(&kvm->arch.hyperv.hv_lock);
spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
pvclock_update_vm_gtod_copy(kvm);
INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
kvm_page_track_init(kvm);
kvm_mmu_init_vm(kvm);
if (kvm_x86_ops->vm_init)
return kvm_x86_ops->vm_init(kvm);
return 0;
}
static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
{
int r;
r = vcpu_load(vcpu);
BUG_ON(r);
kvm_mmu_unload(vcpu);
vcpu_put(vcpu);
}
static void kvm_free_vcpus(struct kvm *kvm)
{
unsigned int i;
struct kvm_vcpu *vcpu;
/*
* Unpin any mmu pages first.
*/
kvm_for_each_vcpu(i, vcpu, kvm) {
kvm_clear_async_pf_completion_queue(vcpu);
kvm_unload_vcpu_mmu(vcpu);
}
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_arch_vcpu_free(vcpu);
mutex_lock(&kvm->lock);
for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
kvm->vcpus[i] = NULL;
atomic_set(&kvm->online_vcpus, 0);
mutex_unlock(&kvm->lock);
}
void kvm_arch_sync_events(struct kvm *kvm)
{
cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
kvm_free_pit(kvm);
}
int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
{
int i, r;
unsigned long hva;
struct kvm_memslots *slots = kvm_memslots(kvm);
struct kvm_memory_slot *slot, old;
/* Called with kvm->slots_lock held. */
if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
return -EINVAL;
slot = id_to_memslot(slots, id);
if (size) {
if (slot->npages)
return -EEXIST;
/*
* MAP_SHARED to prevent internal slot pages from being moved
* by fork()/COW.
*/
hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS, 0);
if (IS_ERR((void *)hva))
return PTR_ERR((void *)hva);
} else {
if (!slot->npages)
return 0;
hva = 0;
}
old = *slot;
for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
struct kvm_userspace_memory_region m;
m.slot = id | (i << 16);
m.flags = 0;
m.guest_phys_addr = gpa;
m.userspace_addr = hva;
m.memory_size = size;
r = __kvm_set_memory_region(kvm, &m);
if (r < 0)
return r;
}
if (!size)
vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
return 0;
}
EXPORT_SYMBOL_GPL(__x86_set_memory_region);
int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
{
int r;
mutex_lock(&kvm->slots_lock);
r = __x86_set_memory_region(kvm, id, gpa, size);
mutex_unlock(&kvm->slots_lock);
return r;
}
EXPORT_SYMBOL_GPL(x86_set_memory_region);
void kvm_arch_destroy_vm(struct kvm *kvm)
{
if (current->mm == kvm->mm) {
/*
* Free memory regions allocated on behalf of userspace,
* unless the the memory map has changed due to process exit
* or fd copying.
*/
x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
}
if (kvm_x86_ops->vm_destroy)
kvm_x86_ops->vm_destroy(kvm);
kvm_pic_destroy(kvm);
kvm_ioapic_destroy(kvm);
kvm_free_vcpus(kvm);
kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
kvm_mmu_uninit_vm(kvm);
kvm_page_track_cleanup(kvm);
}
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
struct kvm_memory_slot *dont)
{
int i;
for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
kvfree(free->arch.rmap[i]);
free->arch.rmap[i] = NULL;
}
if (i == 0)
continue;
if (!dont || free->arch.lpage_info[i - 1] !=
dont->arch.lpage_info[i - 1]) {
kvfree(free->arch.lpage_info[i - 1]);
free->arch.lpage_info[i - 1] = NULL;
}
}
kvm_page_track_free_memslot(free, dont);
}
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
unsigned long npages)
{
int i;
for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
struct kvm_lpage_info *linfo;
unsigned long ugfn;
int lpages;
int level = i + 1;
lpages = gfn_to_index(slot->base_gfn + npages - 1,
slot->base_gfn, level) + 1;
slot->arch.rmap[i] =
kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
if (!slot->arch.rmap[i])
goto out_free;
if (i == 0)
continue;
linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
if (!linfo)
goto out_free;
slot->arch.lpage_info[i - 1] = linfo;
if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
linfo[0].disallow_lpage = 1;
if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
linfo[lpages - 1].disallow_lpage = 1;
ugfn = slot->userspace_addr >> PAGE_SHIFT;
/*
* If the gfn and userspace address are not aligned wrt each
* other, or if explicitly asked to, disable large page
* support for this slot
*/
if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
!kvm_largepages_enabled()) {
unsigned long j;
for (j = 0; j < lpages; ++j)
linfo[j].disallow_lpage = 1;
}
}
if (kvm_page_track_create_memslot(slot, npages))
goto out_free;
return 0;
out_free:
for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
kvfree(slot->arch.rmap[i]);
slot->arch.rmap[i] = NULL;
if (i == 0)
continue;
kvfree(slot->arch.lpage_info[i - 1]);
slot->arch.lpage_info[i - 1] = NULL;
}
return -ENOMEM;
}
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
{
/*
* memslots->generation has been incremented.
* mmio generation may have reached its maximum value.
*/
kvm_mmu_invalidate_mmio_sptes(kvm, gen);
}
int kvm_arch_prepare_memory_region(struct kvm *kvm,
struct kvm_memory_slot *memslot,
const struct kvm_userspace_memory_region *mem,
enum kvm_mr_change change)
{
return 0;
}
static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
struct kvm_memory_slot *new)
{
/* Still write protect RO slot */
if (new->flags & KVM_MEM_READONLY) {
kvm_mmu_slot_remove_write_access(kvm, new);
return;
}
/*
* Call kvm_x86_ops dirty logging hooks when they are valid.
*
* kvm_x86_ops->slot_disable_log_dirty is called when:
*
* - KVM_MR_CREATE with dirty logging is disabled
* - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
*
* The reason is, in case of PML, we need to set D-bit for any slots
* with dirty logging disabled in order to eliminate unnecessary GPA
* logging in PML buffer (and potential PML buffer full VMEXT). This
* guarantees leaving PML enabled during guest's lifetime won't have
* any additonal overhead from PML when guest is running with dirty
* logging disabled for memory slots.
*
* kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
* to dirty logging mode.
*
* If kvm_x86_ops dirty logging hooks are invalid, use write protect.
*
* In case of write protect:
*
* Write protect all pages for dirty logging.
*
* All the sptes including the large sptes which point to this
* slot are set to readonly. We can not create any new large
* spte on this slot until the end of the logging.
*
* See the comments in fast_page_fault().
*/
if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
if (kvm_x86_ops->slot_enable_log_dirty)
kvm_x86_ops->slot_enable_log_dirty(kvm, new);
else
kvm_mmu_slot_remove_write_access(kvm, new);
} else {
if (kvm_x86_ops->slot_disable_log_dirty)
kvm_x86_ops->slot_disable_log_dirty(kvm, new);
}
}
void kvm_arch_commit_memory_region(struct kvm *kvm,
const struct kvm_userspace_memory_region *mem,
const struct kvm_memory_slot *old,
const struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
int nr_mmu_pages = 0;
if (!kvm->arch.n_requested_mmu_pages)
nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
if (nr_mmu_pages)
kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
/*
* Dirty logging tracks sptes in 4k granularity, meaning that large
* sptes have to be split. If live migration is successful, the guest
* in the source machine will be destroyed and large sptes will be
* created in the destination. However, if the guest continues to run
* in the source machine (for example if live migration fails), small
* sptes will remain around and cause bad performance.
*
* Scan sptes if dirty logging has been stopped, dropping those
* which can be collapsed into a single large-page spte. Later
* page faults will create the large-page sptes.
*/
if ((change != KVM_MR_DELETE) &&
(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
kvm_mmu_zap_collapsible_sptes(kvm, new);
/*
* Set up write protection and/or dirty logging for the new slot.
*
* For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
* been zapped so no dirty logging staff is needed for old slot. For
* KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
* new and it's also covered when dealing with the new slot.
*
* FIXME: const-ify all uses of struct kvm_memory_slot.
*/
if (change != KVM_MR_DELETE)
kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
}
void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
kvm_mmu_invalidate_zap_all_pages(kvm);
}
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot)
{
kvm_page_track_flush_slot(kvm, slot);
}
static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
{
if (!list_empty_careful(&vcpu->async_pf.done))
return true;
if (kvm_apic_has_events(vcpu))
return true;
if (vcpu->arch.pv.pv_unhalted)
return true;
if (vcpu->arch.exception.pending)
return true;
if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
(vcpu->arch.nmi_pending &&
kvm_x86_ops->nmi_allowed(vcpu)))
return true;
if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
(vcpu->arch.smi_pending && !is_smm(vcpu)))
return true;
if (kvm_arch_interrupt_allowed(vcpu) &&
kvm_cpu_has_interrupt(vcpu))
return true;
if (kvm_hv_has_stimer_pending(vcpu))
return true;
return false;
}
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
}
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
return vcpu->arch.preempted_in_kernel;
}
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}
int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
{
return kvm_x86_ops->interrupt_allowed(vcpu);
}
unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
{
if (is_64_bit_mode(vcpu))
return kvm_rip_read(vcpu);
return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
kvm_rip_read(vcpu));
}
EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
{
return kvm_get_linear_rip(vcpu) == linear_rip;
}
EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
{
unsigned long rflags;
rflags = kvm_x86_ops->get_rflags(vcpu);
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
rflags &= ~X86_EFLAGS_TF;
return rflags;
}
EXPORT_SYMBOL_GPL(kvm_get_rflags);
static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
rflags |= X86_EFLAGS_TF;
kvm_x86_ops->set_rflags(vcpu, rflags);
}
void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
__kvm_set_rflags(vcpu, rflags);
kvm_make_request(KVM_REQ_EVENT, vcpu);
}
EXPORT_SYMBOL_GPL(kvm_set_rflags);
void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
{
int r;
if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
work->wakeup_all)
return;
r = kvm_mmu_reload(vcpu);
if (unlikely(r))
return;
if (!vcpu->arch.mmu.direct_map &&
work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
return;
vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
}
static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
{
return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
}
static inline u32 kvm_async_pf_next_probe(u32 key)
{
return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
}
static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
u32 key = kvm_async_pf_hash_fn(gfn);
while (vcpu->arch.apf.gfns[key] != ~0)
key = kvm_async_pf_next_probe(key);
vcpu->arch.apf.gfns[key] = gfn;
}
static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
{
int i;
u32 key = kvm_async_pf_hash_fn(gfn);
for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
(vcpu->arch.apf.gfns[key] != gfn &&
vcpu->arch.apf.gfns[key] != ~0); i++)
key = kvm_async_pf_next_probe(key);
return key;
}
bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
}
static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
u32 i, j, k;
i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
while (true) {
vcpu->arch.apf.gfns[i] = ~0;
do {
j = kvm_async_pf_next_probe(j);
if (vcpu->arch.apf.gfns[j] == ~0)
return;
k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
/*
* k lies cyclically in ]i,j]
* | i.k.j |
* |....j i.k.| or |.k..j i...|
*/
} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
i = j;
}
}
static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
{
return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
sizeof(val));
}
static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
{
return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
sizeof(u32));
}
void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
struct kvm_async_pf *work)
{
struct x86_exception fault;
trace_kvm_async_pf_not_present(work->arch.token, work->gva);
kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
(vcpu->arch.apf.send_user_only &&
kvm_x86_ops->get_cpl(vcpu) == 0))
kvm_make_request(KVM_REQ_APF_HALT, vcpu);
else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
fault.vector = PF_VECTOR;
fault.error_code_valid = true;
fault.error_code = 0;
fault.nested_page_fault = false;
fault.address = work->arch.token;
fault.async_page_fault = true;
kvm_inject_page_fault(vcpu, &fault);
}
}
void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
struct kvm_async_pf *work)
{
struct x86_exception fault;
u32 val;
if (work->wakeup_all)
work->arch.token = ~0; /* broadcast wakeup */
else
kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
trace_kvm_async_pf_ready(work->arch.token, work->gva);
if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
!apf_get_user(vcpu, &val)) {
if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
vcpu->arch.exception.pending &&
vcpu->arch.exception.nr == PF_VECTOR &&
!apf_put_user(vcpu, 0)) {
vcpu->arch.exception.injected = false;
vcpu->arch.exception.pending = false;
vcpu->arch.exception.nr = 0;
vcpu->arch.exception.has_error_code = false;
vcpu->arch.exception.error_code = 0;
} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
fault.vector = PF_VECTOR;
fault.error_code_valid = true;
fault.error_code = 0;
fault.nested_page_fault = false;
fault.address = work->arch.token;
fault.async_page_fault = true;
kvm_inject_page_fault(vcpu, &fault);
}
}
vcpu->arch.apf.halted = false;
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
}
bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
return true;
else
return kvm_can_do_async_pf(vcpu);
}
void kvm_arch_start_assignment(struct kvm *kvm)
{
atomic_inc(&kvm->arch.assigned_device_count);
}
EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
void kvm_arch_end_assignment(struct kvm *kvm)
{
atomic_dec(&kvm->arch.assigned_device_count);
}
EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
bool kvm_arch_has_assigned_device(struct kvm *kvm)
{
return atomic_read(&kvm->arch.assigned_device_count);
}
EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
{
atomic_inc(&kvm->arch.noncoherent_dma_count);
}
EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
{
atomic_dec(&kvm->arch.noncoherent_dma_count);
}
EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
{
return atomic_read(&kvm->arch.noncoherent_dma_count);
}
EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
bool kvm_arch_has_irq_bypass(void)
{
return kvm_x86_ops->update_pi_irte != NULL;
}
int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
struct irq_bypass_producer *prod)
{
struct kvm_kernel_irqfd *irqfd =
container_of(cons, struct kvm_kernel_irqfd, consumer);
irqfd->producer = prod;
return kvm_x86_ops->update_pi_irte(irqfd->kvm,
prod->irq, irqfd->gsi, 1);
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
struct irq_bypass_producer *prod)
{
int ret;
struct kvm_kernel_irqfd *irqfd =
container_of(cons, struct kvm_kernel_irqfd, consumer);
WARN_ON(irqfd->producer != prod);
irqfd->producer = NULL;
/*
* When producer of consumer is unregistered, we change back to
* remapped mode, so we can re-use the current implementation
* when the irq is masked/disabled or the consumer side (KVM
* int this case doesn't want to receive the interrupts.
*/
ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
if (ret)
printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
" fails: %d\n", irqfd->consumer.token, ret);
}
int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
uint32_t guest_irq, bool set)
{
if (!kvm_x86_ops->update_pi_irte)
return -EINVAL;
return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
}
bool kvm_vector_hashing_enabled(void)
{
return vector_hashing;
}
EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);