| #include <stdio.h> |
| #include <stdlib.h> |
| #include "kerncompat.h" |
| #include "radix-tree.h" |
| #include "ctree.h" |
| #include "disk-io.h" |
| |
| static int refill_alloc_extent(struct ctree_root *root); |
| |
| static inline void init_path(struct ctree_path *p) |
| { |
| memset(p, 0, sizeof(*p)); |
| } |
| |
| static void release_path(struct ctree_root *root, struct ctree_path *p) |
| { |
| int i; |
| for (i = 0; i < MAX_LEVEL; i++) { |
| if (!p->nodes[i]) |
| break; |
| tree_block_release(root, p->nodes[i]); |
| } |
| } |
| |
| /* |
| * The leaf data grows from end-to-front in the node. |
| * this returns the address of the start of the last item, |
| * which is the stop of the leaf data stack |
| */ |
| static inline unsigned int leaf_data_end(struct leaf *leaf) |
| { |
| unsigned int nr = leaf->header.nritems; |
| if (nr == 0) |
| return sizeof(leaf->data); |
| return leaf->items[nr-1].offset; |
| } |
| |
| /* |
| * The space between the end of the leaf items and |
| * the start of the leaf data. IOW, how much room |
| * the leaf has left for both items and data |
| */ |
| static inline int leaf_free_space(struct leaf *leaf) |
| { |
| int data_end = leaf_data_end(leaf); |
| int nritems = leaf->header.nritems; |
| char *items_end = (char *)(leaf->items + nritems + 1); |
| return (char *)(leaf->data + data_end) - (char *)items_end; |
| } |
| |
| /* |
| * compare two keys in a memcmp fashion |
| */ |
| int comp_keys(struct key *k1, struct key *k2) |
| { |
| if (k1->objectid > k2->objectid) |
| return 1; |
| if (k1->objectid < k2->objectid) |
| return -1; |
| if (k1->flags > k2->flags) |
| return 1; |
| if (k1->flags < k2->flags) |
| return -1; |
| if (k1->offset > k2->offset) |
| return 1; |
| if (k1->offset < k2->offset) |
| return -1; |
| return 0; |
| } |
| |
| /* |
| * search for key in the array p. items p are item_size apart |
| * and there are 'max' items in p |
| * the slot in the array is returned via slot, and it points to |
| * the place where you would insert key if it is not found in |
| * the array. |
| * |
| * slot may point to max if the key is bigger than all of the keys |
| */ |
| int generic_bin_search(char *p, int item_size, struct key *key, |
| int max, int *slot) |
| { |
| int low = 0; |
| int high = max; |
| int mid; |
| int ret; |
| struct key *tmp; |
| |
| while(low < high) { |
| mid = (low + high) / 2; |
| tmp = (struct key *)(p + mid * item_size); |
| ret = comp_keys(tmp, key); |
| |
| if (ret < 0) |
| low = mid + 1; |
| else if (ret > 0) |
| high = mid; |
| else { |
| *slot = mid; |
| return 0; |
| } |
| } |
| *slot = low; |
| return 1; |
| } |
| |
| int bin_search(struct node *c, struct key *key, int *slot) |
| { |
| if (is_leaf(c->header.flags)) { |
| struct leaf *l = (struct leaf *)c; |
| return generic_bin_search((void *)l->items, sizeof(struct item), |
| key, c->header.nritems, slot); |
| } else { |
| return generic_bin_search((void *)c->keys, sizeof(struct key), |
| key, c->header.nritems, slot); |
| } |
| return -1; |
| } |
| |
| /* |
| * look for key in the tree. path is filled in with nodes along the way |
| * if key is found, we return zero and you can find the item in the leaf |
| * level of the path (level 0) |
| * |
| * If the key isn't found, the path points to the slot where it should |
| * be inserted. |
| */ |
| int search_slot(struct ctree_root *root, struct key *key, struct ctree_path *p) |
| { |
| struct tree_buffer *b = root->node; |
| struct node *c; |
| |
| int slot; |
| int ret; |
| int level; |
| b->count++; |
| while (b) { |
| c = &b->node; |
| level = node_level(c->header.flags); |
| p->nodes[level] = b; |
| ret = bin_search(c, key, &slot); |
| if (!is_leaf(c->header.flags)) { |
| if (ret && slot > 0) |
| slot -= 1; |
| p->slots[level] = slot; |
| b = read_tree_block(root, c->blockptrs[slot]); |
| continue; |
| } else { |
| p->slots[level] = slot; |
| return ret; |
| } |
| } |
| return -1; |
| } |
| |
| /* |
| * adjust the pointers going up the tree, starting at level |
| * making sure the right key of each node is points to 'key'. |
| * This is used after shifting pointers to the left, so it stops |
| * fixing up pointers when a given leaf/node is not in slot 0 of the |
| * higher levels |
| */ |
| static void fixup_low_keys(struct ctree_root *root, |
| struct ctree_path *path, struct key *key, |
| int level) |
| { |
| int i; |
| for (i = level; i < MAX_LEVEL; i++) { |
| struct node *t; |
| int tslot = path->slots[i]; |
| if (!path->nodes[i]) |
| break; |
| t = &path->nodes[i]->node; |
| memcpy(t->keys + tslot, key, sizeof(*key)); |
| write_tree_block(root, path->nodes[i]); |
| if (tslot != 0) |
| break; |
| } |
| } |
| |
| /* |
| * try to push data from one node into the next node left in the |
| * tree. The src node is found at specified level in the path. |
| * If some bytes were pushed, return 0, otherwise return 1. |
| * |
| * Lower nodes/leaves in the path are not touched, higher nodes may |
| * be modified to reflect the push. |
| * |
| * The path is altered to reflect the push. |
| */ |
| int push_node_left(struct ctree_root *root, struct ctree_path *path, int level) |
| { |
| int slot; |
| struct node *left; |
| struct node *right; |
| int push_items = 0; |
| int left_nritems; |
| int right_nritems; |
| struct tree_buffer *t; |
| struct tree_buffer *right_buf; |
| |
| if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0) |
| return 1; |
| slot = path->slots[level + 1]; |
| if (slot == 0) |
| return 1; |
| |
| t = read_tree_block(root, |
| path->nodes[level + 1]->node.blockptrs[slot - 1]); |
| left = &t->node; |
| right_buf = path->nodes[level]; |
| right = &right_buf->node; |
| left_nritems = left->header.nritems; |
| right_nritems = right->header.nritems; |
| push_items = NODEPTRS_PER_BLOCK - (left_nritems + 1); |
| if (push_items <= 0) { |
| tree_block_release(root, t); |
| return 1; |
| } |
| |
| if (right_nritems < push_items) |
| push_items = right_nritems; |
| memcpy(left->keys + left_nritems, right->keys, |
| push_items * sizeof(struct key)); |
| memcpy(left->blockptrs + left_nritems, right->blockptrs, |
| push_items * sizeof(u64)); |
| memmove(right->keys, right->keys + push_items, |
| (right_nritems - push_items) * sizeof(struct key)); |
| memmove(right->blockptrs, right->blockptrs + push_items, |
| (right_nritems - push_items) * sizeof(u64)); |
| right->header.nritems -= push_items; |
| left->header.nritems += push_items; |
| |
| /* adjust the pointers going up the tree */ |
| fixup_low_keys(root, path, right->keys, level + 1); |
| |
| write_tree_block(root, t); |
| write_tree_block(root, right_buf); |
| |
| /* then fixup the leaf pointer in the path */ |
| if (path->slots[level] < push_items) { |
| path->slots[level] += left_nritems; |
| tree_block_release(root, path->nodes[level]); |
| path->nodes[level] = t; |
| path->slots[level + 1] -= 1; |
| } else { |
| path->slots[level] -= push_items; |
| tree_block_release(root, t); |
| } |
| return 0; |
| } |
| |
| /* |
| * try to push data from one node into the next node right in the |
| * tree. The src node is found at specified level in the path. |
| * If some bytes were pushed, return 0, otherwise return 1. |
| * |
| * Lower nodes/leaves in the path are not touched, higher nodes may |
| * be modified to reflect the push. |
| * |
| * The path is altered to reflect the push. |
| */ |
| int push_node_right(struct ctree_root *root, struct ctree_path *path, int level) |
| { |
| int slot; |
| struct tree_buffer *t; |
| struct tree_buffer *src_buffer; |
| struct node *dst; |
| struct node *src; |
| int push_items = 0; |
| int dst_nritems; |
| int src_nritems; |
| |
| /* can't push from the root */ |
| if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0) |
| return 1; |
| |
| /* only try to push inside the node higher up */ |
| slot = path->slots[level + 1]; |
| if (slot == NODEPTRS_PER_BLOCK - 1) |
| return 1; |
| |
| if (slot >= path->nodes[level + 1]->node.header.nritems -1) |
| return 1; |
| |
| t = read_tree_block(root, |
| path->nodes[level + 1]->node.blockptrs[slot + 1]); |
| dst = &t->node; |
| src_buffer = path->nodes[level]; |
| src = &src_buffer->node; |
| dst_nritems = dst->header.nritems; |
| src_nritems = src->header.nritems; |
| push_items = NODEPTRS_PER_BLOCK - (dst_nritems + 1); |
| if (push_items <= 0) { |
| tree_block_release(root, t); |
| return 1; |
| } |
| |
| if (src_nritems < push_items) |
| push_items = src_nritems; |
| memmove(dst->keys + push_items, dst->keys, |
| dst_nritems * sizeof(struct key)); |
| memcpy(dst->keys, src->keys + src_nritems - push_items, |
| push_items * sizeof(struct key)); |
| |
| memmove(dst->blockptrs + push_items, dst->blockptrs, |
| dst_nritems * sizeof(u64)); |
| memcpy(dst->blockptrs, src->blockptrs + src_nritems - push_items, |
| push_items * sizeof(u64)); |
| |
| src->header.nritems -= push_items; |
| dst->header.nritems += push_items; |
| |
| /* adjust the pointers going up the tree */ |
| memcpy(path->nodes[level + 1]->node.keys + path->slots[level + 1] + 1, |
| dst->keys, sizeof(struct key)); |
| |
| write_tree_block(root, path->nodes[level + 1]); |
| write_tree_block(root, t); |
| write_tree_block(root, src_buffer); |
| |
| /* then fixup the pointers in the path */ |
| if (path->slots[level] >= src->header.nritems) { |
| path->slots[level] -= src->header.nritems; |
| tree_block_release(root, path->nodes[level]); |
| path->nodes[level] = t; |
| path->slots[level + 1] += 1; |
| } else { |
| tree_block_release(root, t); |
| } |
| return 0; |
| } |
| |
| /* |
| * worker function to insert a single pointer in a node. |
| * the node should have enough room for the pointer already |
| * slot and level indicate where you want the key to go, and |
| * blocknr is the block the key points to. |
| */ |
| int __insert_ptr(struct ctree_root *root, |
| struct ctree_path *path, struct key *key, |
| u64 blocknr, int slot, int level) |
| { |
| struct node *c; |
| struct node *lower; |
| struct key *lower_key; |
| int nritems; |
| /* need a new root */ |
| if (!path->nodes[level]) { |
| struct tree_buffer *t; |
| t = alloc_free_block(root); |
| c = &t->node; |
| memset(c, 0, sizeof(c)); |
| c->header.nritems = 2; |
| c->header.flags = node_level(level); |
| c->header.blocknr = t->blocknr; |
| c->header.parentid = root->node->node.header.parentid; |
| lower = &path->nodes[level-1]->node; |
| if (is_leaf(lower->header.flags)) |
| lower_key = &((struct leaf *)lower)->items[0].key; |
| else |
| lower_key = lower->keys; |
| memcpy(c->keys, lower_key, sizeof(struct key)); |
| memcpy(c->keys + 1, key, sizeof(struct key)); |
| c->blockptrs[0] = path->nodes[level-1]->blocknr; |
| c->blockptrs[1] = blocknr; |
| /* the super has an extra ref to root->node */ |
| tree_block_release(root, root->node); |
| root->node = t; |
| t->count++; |
| write_tree_block(root, t); |
| path->nodes[level] = t; |
| path->slots[level] = 0; |
| if (c->keys[1].objectid == 0) |
| BUG(); |
| return 0; |
| } |
| lower = &path->nodes[level]->node; |
| nritems = lower->header.nritems; |
| if (slot > nritems) |
| BUG(); |
| if (nritems == NODEPTRS_PER_BLOCK) |
| BUG(); |
| if (slot != nritems) { |
| memmove(lower->keys + slot + 1, lower->keys + slot, |
| (nritems - slot) * sizeof(struct key)); |
| memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot, |
| (nritems - slot) * sizeof(u64)); |
| } |
| memcpy(lower->keys + slot, key, sizeof(struct key)); |
| lower->blockptrs[slot] = blocknr; |
| lower->header.nritems++; |
| if (lower->keys[1].objectid == 0) |
| BUG(); |
| write_tree_block(root, path->nodes[level]); |
| return 0; |
| } |
| |
| |
| /* |
| * insert a key,blocknr pair into the tree at a given level |
| * If the node at that level in the path doesn't have room, |
| * it is split or shifted as appropriate. |
| */ |
| int insert_ptr(struct ctree_root *root, |
| struct ctree_path *path, struct key *key, |
| u64 blocknr, int level) |
| { |
| struct tree_buffer *t = path->nodes[level]; |
| struct node *c = &path->nodes[level]->node; |
| struct node *b; |
| struct tree_buffer *b_buffer; |
| struct tree_buffer *bal[MAX_LEVEL]; |
| int bal_level = level; |
| int mid; |
| int bal_start = -1; |
| |
| /* |
| * check to see if we need to make room in the node for this |
| * pointer. If we do, keep walking the tree, making sure there |
| * is enough room in each level for the required insertions. |
| * |
| * The bal array is filled in with any nodes to be inserted |
| * due to splitting. Once we've done all the splitting required |
| * do the inserts based on the data in the bal array. |
| */ |
| memset(bal, 0, sizeof(bal)); |
| while(t && t->node.header.nritems == NODEPTRS_PER_BLOCK) { |
| c = &t->node; |
| if (push_node_left(root, path, |
| node_level(c->header.flags)) == 0) |
| break; |
| if (push_node_right(root, path, |
| node_level(c->header.flags)) == 0) |
| break; |
| bal_start = bal_level; |
| if (bal_level == MAX_LEVEL - 1) |
| BUG(); |
| b_buffer = alloc_free_block(root); |
| b = &b_buffer->node; |
| b->header.flags = c->header.flags; |
| b->header.blocknr = b_buffer->blocknr; |
| b->header.parentid = root->node->node.header.parentid; |
| mid = (c->header.nritems + 1) / 2; |
| memcpy(b->keys, c->keys + mid, |
| (c->header.nritems - mid) * sizeof(struct key)); |
| memcpy(b->blockptrs, c->blockptrs + mid, |
| (c->header.nritems - mid) * sizeof(u64)); |
| b->header.nritems = c->header.nritems - mid; |
| c->header.nritems = mid; |
| |
| write_tree_block(root, t); |
| write_tree_block(root, b_buffer); |
| |
| bal[bal_level] = b_buffer; |
| if (bal_level == MAX_LEVEL - 1) |
| break; |
| bal_level += 1; |
| t = path->nodes[bal_level]; |
| } |
| /* |
| * bal_start tells us the first level in the tree that needed to |
| * be split. Go through the bal array inserting the new nodes |
| * as needed. The path is fixed as we go. |
| */ |
| while(bal_start > 0) { |
| b_buffer = bal[bal_start]; |
| c = &path->nodes[bal_start]->node; |
| __insert_ptr(root, path, b_buffer->node.keys, b_buffer->blocknr, |
| path->slots[bal_start + 1] + 1, bal_start + 1); |
| if (path->slots[bal_start] >= c->header.nritems) { |
| path->slots[bal_start] -= c->header.nritems; |
| tree_block_release(root, path->nodes[bal_start]); |
| path->nodes[bal_start] = b_buffer; |
| path->slots[bal_start + 1] += 1; |
| } else { |
| tree_block_release(root, b_buffer); |
| } |
| bal_start--; |
| if (!bal[bal_start]) |
| break; |
| } |
| /* Now that the tree has room, insert the requested pointer */ |
| return __insert_ptr(root, path, key, blocknr, path->slots[level] + 1, |
| level); |
| } |
| |
| /* |
| * how many bytes are required to store the items in a leaf. start |
| * and nr indicate which items in the leaf to check. This totals up the |
| * space used both by the item structs and the item data |
| */ |
| int leaf_space_used(struct leaf *l, int start, int nr) |
| { |
| int data_len; |
| int end = start + nr - 1; |
| |
| if (!nr) |
| return 0; |
| data_len = l->items[start].offset + l->items[start].size; |
| data_len = data_len - l->items[end].offset; |
| data_len += sizeof(struct item) * nr; |
| return data_len; |
| } |
| |
| /* |
| * push some data in the path leaf to the left, trying to free up at |
| * least data_size bytes. returns zero if the push worked, nonzero otherwise |
| */ |
| int push_leaf_left(struct ctree_root *root, struct ctree_path *path, |
| int data_size) |
| { |
| struct tree_buffer *right_buf = path->nodes[0]; |
| struct leaf *right = &right_buf->leaf; |
| struct tree_buffer *t; |
| struct leaf *left; |
| int slot; |
| int i; |
| int free_space; |
| int push_space = 0; |
| int push_items = 0; |
| struct item *item; |
| int old_left_nritems; |
| |
| slot = path->slots[1]; |
| if (slot == 0) { |
| return 1; |
| } |
| if (!path->nodes[1]) { |
| return 1; |
| } |
| t = read_tree_block(root, path->nodes[1]->node.blockptrs[slot - 1]); |
| left = &t->leaf; |
| free_space = leaf_free_space(left); |
| if (free_space < data_size + sizeof(struct item)) { |
| tree_block_release(root, t); |
| return 1; |
| } |
| for (i = 0; i < right->header.nritems; i++) { |
| item = right->items + i; |
| if (path->slots[0] == i) |
| push_space += data_size + sizeof(*item); |
| if (item->size + sizeof(*item) + push_space > free_space) |
| break; |
| push_items++; |
| push_space += item->size + sizeof(*item); |
| } |
| if (push_items == 0) { |
| tree_block_release(root, t); |
| return 1; |
| } |
| /* push data from right to left */ |
| memcpy(left->items + left->header.nritems, |
| right->items, push_items * sizeof(struct item)); |
| push_space = LEAF_DATA_SIZE - right->items[push_items -1].offset; |
| memcpy(left->data + leaf_data_end(left) - push_space, |
| right->data + right->items[push_items - 1].offset, |
| push_space); |
| old_left_nritems = left->header.nritems; |
| BUG_ON(old_left_nritems < 0); |
| |
| for(i = old_left_nritems; i < old_left_nritems + push_items; i++) { |
| left->items[i].offset -= LEAF_DATA_SIZE - |
| left->items[old_left_nritems -1].offset; |
| } |
| left->header.nritems += push_items; |
| |
| /* fixup right node */ |
| push_space = right->items[push_items-1].offset - leaf_data_end(right); |
| memmove(right->data + LEAF_DATA_SIZE - push_space, right->data + |
| leaf_data_end(right), push_space); |
| memmove(right->items, right->items + push_items, |
| (right->header.nritems - push_items) * sizeof(struct item)); |
| right->header.nritems -= push_items; |
| push_space = LEAF_DATA_SIZE; |
| |
| for (i = 0; i < right->header.nritems; i++) { |
| right->items[i].offset = push_space - right->items[i].size; |
| push_space = right->items[i].offset; |
| } |
| |
| write_tree_block(root, t); |
| write_tree_block(root, right_buf); |
| |
| fixup_low_keys(root, path, &right->items[0].key, 1); |
| |
| /* then fixup the leaf pointer in the path */ |
| if (path->slots[0] < push_items) { |
| path->slots[0] += old_left_nritems; |
| tree_block_release(root, path->nodes[0]); |
| path->nodes[0] = t; |
| path->slots[1] -= 1; |
| } else { |
| tree_block_release(root, t); |
| path->slots[0] -= push_items; |
| } |
| BUG_ON(path->slots[0] < 0); |
| return 0; |
| } |
| |
| /* |
| * split the path's leaf in two, making sure there is at least data_size |
| * available for the resulting leaf level of the path. |
| */ |
| int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size) |
| { |
| struct tree_buffer *l_buf = path->nodes[0]; |
| struct leaf *l = &l_buf->leaf; |
| int nritems; |
| int mid; |
| int slot; |
| struct leaf *right; |
| struct tree_buffer *right_buffer; |
| int space_needed = data_size + sizeof(struct item); |
| int data_copy_size; |
| int rt_data_off; |
| int i; |
| int ret; |
| |
| if (push_leaf_left(root, path, data_size) == 0) { |
| l_buf = path->nodes[0]; |
| l = &l_buf->leaf; |
| if (leaf_free_space(l) >= sizeof(struct item) + data_size) |
| return 0; |
| } |
| slot = path->slots[0]; |
| nritems = l->header.nritems; |
| mid = (nritems + 1)/ 2; |
| |
| right_buffer = alloc_free_block(root); |
| BUG_ON(!right_buffer); |
| BUG_ON(mid == nritems); |
| right = &right_buffer->leaf; |
| memset(right, 0, sizeof(*right)); |
| if (mid <= slot) { |
| if (leaf_space_used(l, mid, nritems - mid) + space_needed > |
| LEAF_DATA_SIZE) |
| BUG(); |
| } else { |
| if (leaf_space_used(l, 0, mid + 1) + space_needed > |
| LEAF_DATA_SIZE) |
| BUG(); |
| } |
| right->header.nritems = nritems - mid; |
| right->header.blocknr = right_buffer->blocknr; |
| right->header.flags = node_level(0); |
| right->header.parentid = root->node->node.header.parentid; |
| data_copy_size = l->items[mid].offset + l->items[mid].size - |
| leaf_data_end(l); |
| memcpy(right->items, l->items + mid, |
| (nritems - mid) * sizeof(struct item)); |
| memcpy(right->data + LEAF_DATA_SIZE - data_copy_size, |
| l->data + leaf_data_end(l), data_copy_size); |
| rt_data_off = LEAF_DATA_SIZE - |
| (l->items[mid].offset + l->items[mid].size); |
| |
| for (i = 0; i < right->header.nritems; i++) |
| right->items[i].offset += rt_data_off; |
| |
| l->header.nritems = mid; |
| ret = insert_ptr(root, path, &right->items[0].key, |
| right_buffer->blocknr, 1); |
| |
| write_tree_block(root, right_buffer); |
| write_tree_block(root, l_buf); |
| |
| BUG_ON(path->slots[0] != slot); |
| if (mid <= slot) { |
| tree_block_release(root, path->nodes[0]); |
| path->nodes[0] = right_buffer; |
| path->slots[0] -= mid; |
| path->slots[1] += 1; |
| } else |
| tree_block_release(root, right_buffer); |
| BUG_ON(path->slots[0] < 0); |
| return ret; |
| } |
| |
| /* |
| * Given a key and some data, insert an item into the tree. |
| * This does all the path init required, making room in the tree if needed. |
| */ |
| int insert_item(struct ctree_root *root, struct key *key, |
| void *data, int data_size) |
| { |
| int ret; |
| int slot; |
| int slot_orig; |
| struct leaf *leaf; |
| struct tree_buffer *leaf_buf; |
| unsigned int nritems; |
| unsigned int data_end; |
| struct ctree_path path; |
| |
| refill_alloc_extent(root); |
| |
| /* create a root if there isn't one */ |
| if (!root->node) { |
| BUG(); |
| #if 0 |
| struct tree_buffer *t; |
| t = alloc_free_block(root); |
| BUG_ON(!t); |
| t->node.header.nritems = 0; |
| t->node.header.flags = node_level(0); |
| t->node.header.blocknr = t->blocknr; |
| root->node = t; |
| write_tree_block(root, t); |
| #endif |
| } |
| init_path(&path); |
| ret = search_slot(root, key, &path); |
| if (ret == 0) { |
| release_path(root, &path); |
| return -EEXIST; |
| } |
| |
| slot_orig = path.slots[0]; |
| leaf_buf = path.nodes[0]; |
| leaf = &leaf_buf->leaf; |
| |
| /* make room if needed */ |
| if (leaf_free_space(leaf) < sizeof(struct item) + data_size) { |
| split_leaf(root, &path, data_size); |
| leaf_buf = path.nodes[0]; |
| leaf = &path.nodes[0]->leaf; |
| } |
| nritems = leaf->header.nritems; |
| data_end = leaf_data_end(leaf); |
| |
| if (leaf_free_space(leaf) < sizeof(struct item) + data_size) |
| BUG(); |
| |
| slot = path.slots[0]; |
| BUG_ON(slot < 0); |
| if (slot == 0) |
| fixup_low_keys(root, &path, key, 1); |
| if (slot != nritems) { |
| int i; |
| unsigned int old_data = leaf->items[slot].offset + |
| leaf->items[slot].size; |
| |
| /* |
| * item0..itemN ... dataN.offset..dataN.size .. data0.size |
| */ |
| /* first correct the data pointers */ |
| for (i = slot; i < nritems; i++) |
| leaf->items[i].offset -= data_size; |
| |
| /* shift the items */ |
| memmove(leaf->items + slot + 1, leaf->items + slot, |
| (nritems - slot) * sizeof(struct item)); |
| |
| /* shift the data */ |
| memmove(leaf->data + data_end - data_size, leaf->data + |
| data_end, old_data - data_end); |
| data_end = old_data; |
| } |
| /* copy the new data in */ |
| memcpy(&leaf->items[slot].key, key, sizeof(struct key)); |
| leaf->items[slot].offset = data_end - data_size; |
| leaf->items[slot].size = data_size; |
| memcpy(leaf->data + data_end - data_size, data, data_size); |
| leaf->header.nritems += 1; |
| write_tree_block(root, leaf_buf); |
| if (leaf_free_space(leaf) < 0) |
| BUG(); |
| release_path(root, &path); |
| return 0; |
| } |
| |
| /* |
| * delete the pointer from a given level in the path. The path is not |
| * fixed up, so after calling this it is not valid at that level. |
| * |
| * If the delete empties a node, the node is removed from the tree, |
| * continuing all the way the root if required. The root is converted into |
| * a leaf if all the nodes are emptied. |
| */ |
| int del_ptr(struct ctree_root *root, struct ctree_path *path, int level) |
| { |
| int slot; |
| struct tree_buffer *t; |
| struct node *node; |
| int nritems; |
| |
| while(1) { |
| t = path->nodes[level]; |
| if (!t) |
| break; |
| node = &t->node; |
| slot = path->slots[level]; |
| nritems = node->header.nritems; |
| |
| if (slot != nritems -1) { |
| memmove(node->keys + slot, node->keys + slot + 1, |
| sizeof(struct key) * (nritems - slot - 1)); |
| memmove(node->blockptrs + slot, |
| node->blockptrs + slot + 1, |
| sizeof(u64) * (nritems - slot - 1)); |
| } |
| node->header.nritems--; |
| write_tree_block(root, t); |
| if (node->header.nritems != 0) { |
| int tslot; |
| if (slot == 0) |
| fixup_low_keys(root, path, node->keys, |
| level + 1); |
| tslot = path->slots[level+1]; |
| t->count++; |
| push_node_left(root, path, level); |
| if (node->header.nritems) { |
| push_node_right(root, path, level); |
| } |
| if (node->header.nritems) { |
| tree_block_release(root, t); |
| break; |
| } |
| tree_block_release(root, t); |
| path->slots[level+1] = tslot; |
| } |
| if (t == root->node) { |
| /* just turn the root into a leaf and break */ |
| root->node->node.header.flags = node_level(0); |
| write_tree_block(root, t); |
| break; |
| } |
| level++; |
| if (!path->nodes[level]) |
| BUG(); |
| } |
| return 0; |
| } |
| |
| /* |
| * delete the item at the leaf level in path. If that empties |
| * the leaf, remove it from the tree |
| */ |
| int del_item(struct ctree_root *root, struct ctree_path *path) |
| { |
| int slot; |
| struct leaf *leaf; |
| struct tree_buffer *leaf_buf; |
| int doff; |
| int dsize; |
| |
| leaf_buf = path->nodes[0]; |
| leaf = &leaf_buf->leaf; |
| slot = path->slots[0]; |
| doff = leaf->items[slot].offset; |
| dsize = leaf->items[slot].size; |
| |
| if (slot != leaf->header.nritems - 1) { |
| int i; |
| int data_end = leaf_data_end(leaf); |
| memmove(leaf->data + data_end + dsize, |
| leaf->data + data_end, |
| doff - data_end); |
| for (i = slot + 1; i < leaf->header.nritems; i++) |
| leaf->items[i].offset += dsize; |
| memmove(leaf->items + slot, leaf->items + slot + 1, |
| sizeof(struct item) * |
| (leaf->header.nritems - slot - 1)); |
| } |
| leaf->header.nritems -= 1; |
| /* delete the leaf if we've emptied it */ |
| if (leaf->header.nritems == 0) { |
| if (leaf_buf == root->node) { |
| leaf->header.flags = node_level(0); |
| write_tree_block(root, leaf_buf); |
| } else |
| del_ptr(root, path, 1); |
| } else { |
| if (slot == 0) |
| fixup_low_keys(root, path, &leaf->items[0].key, 1); |
| write_tree_block(root, leaf_buf); |
| /* delete the leaf if it is mostly empty */ |
| if (leaf_space_used(leaf, 0, leaf->header.nritems) < |
| LEAF_DATA_SIZE / 4) { |
| /* push_leaf_left fixes the path. |
| * make sure the path still points to our leaf |
| * for possible call to del_ptr below |
| */ |
| slot = path->slots[1]; |
| leaf_buf->count++; |
| push_leaf_left(root, path, 1); |
| if (leaf->header.nritems == 0) { |
| path->slots[1] = slot; |
| del_ptr(root, path, 1); |
| } |
| tree_block_release(root, leaf_buf); |
| } |
| } |
| return 0; |
| } |
| |
| int next_leaf(struct ctree_root *root, struct ctree_path *path) |
| { |
| int slot; |
| int level = 1; |
| u64 blocknr; |
| struct tree_buffer *c; |
| struct tree_buffer *next = NULL; |
| |
| while(level < MAX_LEVEL) { |
| if (!path->nodes[level]) |
| return -1; |
| slot = path->slots[level] + 1; |
| c = path->nodes[level]; |
| if (slot >= c->node.header.nritems) { |
| level++; |
| continue; |
| } |
| blocknr = c->node.blockptrs[slot]; |
| if (next) |
| tree_block_release(root, next); |
| next = read_tree_block(root, blocknr); |
| break; |
| } |
| path->slots[level] = slot; |
| while(1) { |
| level--; |
| c = path->nodes[level]; |
| tree_block_release(root, c); |
| path->nodes[level] = next; |
| path->slots[level] = 0; |
| if (!level) |
| break; |
| next = read_tree_block(root, next->node.blockptrs[0]); |
| } |
| return 0; |
| } |
| |
| int alloc_extent(struct ctree_root *orig_root, u64 num_blocks, u64 search_start, |
| u64 search_end, u64 owner, struct key *ins) |
| { |
| struct ctree_path path; |
| struct key *key; |
| int ret; |
| u64 hole_size = 0; |
| int slot = 0; |
| u64 last_block; |
| int start_found = 0; |
| struct leaf *l; |
| struct extent_item extent_item; |
| struct ctree_root * root = orig_root->extent_root; |
| |
| init_path(&path); |
| ins->objectid = search_start; |
| ins->offset = 0; |
| ins->flags = 0; |
| |
| ret = search_slot(root, ins, &path); |
| while (1) { |
| l = &path.nodes[0]->leaf; |
| slot = path.slots[0]; |
| if (!l) { |
| // FIXME allocate root |
| } |
| if (slot >= l->header.nritems) { |
| ret = next_leaf(root, &path); |
| if (ret == 0) |
| continue; |
| if (!start_found) { |
| ins->objectid = search_start; |
| ins->offset = num_blocks; |
| hole_size = search_end - search_start; |
| goto insert; |
| } |
| ins->objectid = last_block; |
| ins->offset = num_blocks; |
| hole_size = search_end - last_block; |
| goto insert; |
| } |
| key = &l->items[slot].key; |
| if (start_found) { |
| hole_size = key->objectid - last_block; |
| if (hole_size > num_blocks) { |
| ins->objectid = last_block; |
| ins->offset = num_blocks; |
| goto insert; |
| } |
| } else |
| start_found = 1; |
| last_block = key->objectid + key->offset; |
| path.slots[0]++; |
| } |
| // FIXME -ENOSPC |
| insert: |
| release_path(root, &path); |
| extent_item.refs = 1; |
| extent_item.owner = owner; |
| if (root == orig_root && root->reserve_extent->num_blocks == 0) { |
| root->reserve_extent->blocknr = ins->objectid; |
| root->reserve_extent->num_blocks = ins->offset; |
| root->reserve_extent->num_used = 0; |
| } |
| ret = insert_item(root->extent_root, ins, &extent_item, sizeof(extent_item)); |
| return ret; |
| } |
| |
| static int refill_alloc_extent(struct ctree_root *root) |
| { |
| struct alloc_extent *ae = root->alloc_extent; |
| struct key key; |
| int ret; |
| int min_blocks = MAX_LEVEL * 2; |
| |
| if (ae->num_blocks > ae->num_used && ae->num_blocks - ae->num_used > |
| min_blocks) |
| return 0; |
| ae = root->reserve_extent; |
| if (ae->num_blocks > ae->num_used) { |
| if (root->alloc_extent->num_blocks == 0) { |
| /* we should swap reserve/alloc_extent when alloc |
| * fills up |
| */ |
| BUG(); |
| } |
| if (ae->num_blocks - ae->num_used < min_blocks) |
| BUG(); |
| return 0; |
| } |
| ret = alloc_extent(root, |
| min_blocks * 2, 0, (unsigned long)-1, |
| root->node->node.header.parentid, &key); |
| ae->blocknr = key.objectid; |
| ae->num_blocks = key.offset; |
| ae->num_used = 0; |
| return ret; |
| } |
| |
| void print_leaf(struct leaf *l) |
| { |
| int i; |
| int nr = l->header.nritems; |
| struct item *item; |
| struct extent_item *ei; |
| printf("leaf %lu total ptrs %d free space %d\n", l->header.blocknr, nr, |
| leaf_free_space(l)); |
| fflush(stdout); |
| for (i = 0 ; i < nr ; i++) { |
| item = l->items + i; |
| printf("\titem %d key (%lu %u %lu) itemoff %d itemsize %d\n", |
| i, |
| item->key.objectid, item->key.flags, item->key.offset, |
| item->offset, item->size); |
| fflush(stdout); |
| printf("\t\titem data %.*s\n", item->size, l->data+item->offset); |
| ei = (struct extent_item *)(l->data + item->offset); |
| printf("\t\textent data %u %lu\n", ei->refs, ei->owner); |
| fflush(stdout); |
| } |
| } |
| void print_tree(struct ctree_root *root, struct tree_buffer *t) |
| { |
| int i; |
| int nr; |
| struct node *c; |
| |
| if (!t) |
| return; |
| c = &t->node; |
| nr = c->header.nritems; |
| if (c->header.blocknr != t->blocknr) |
| BUG(); |
| if (is_leaf(c->header.flags)) { |
| print_leaf((struct leaf *)c); |
| return; |
| } |
| printf("node %lu level %d total ptrs %d free spc %lu\n", t->blocknr, |
| node_level(c->header.flags), c->header.nritems, |
| NODEPTRS_PER_BLOCK - c->header.nritems); |
| fflush(stdout); |
| for (i = 0; i < nr; i++) { |
| printf("\tkey %d (%lu %u %lu) block %lu\n", |
| i, |
| c->keys[i].objectid, c->keys[i].flags, c->keys[i].offset, |
| c->blockptrs[i]); |
| fflush(stdout); |
| } |
| for (i = 0; i < nr; i++) { |
| struct tree_buffer *next_buf = read_tree_block(root, |
| c->blockptrs[i]); |
| struct node *next = &next_buf->node; |
| if (is_leaf(next->header.flags) && |
| node_level(c->header.flags) != 1) |
| BUG(); |
| if (node_level(next->header.flags) != |
| node_level(c->header.flags) - 1) |
| BUG(); |
| print_tree(root, next_buf); |
| tree_block_release(root, next_buf); |
| } |
| |
| } |
| |
| /* for testing only */ |
| int next_key(int i, int max_key) { |
| return rand() % max_key; |
| // return i; |
| } |
| |
| int main() { |
| struct ctree_root *root; |
| struct key ins; |
| struct key last = { (u64)-1, 0, 0}; |
| char *buf; |
| int i; |
| int num; |
| int ret; |
| int run_size = 10000; |
| int max_key = 100000000; |
| int tree_size = 0; |
| struct ctree_path path; |
| struct ctree_super_block super; |
| |
| radix_tree_init(); |
| |
| |
| root = open_ctree("dbfile", &super); |
| printf("root tree\n"); |
| print_tree(root, root->node); |
| printf("map tree\n"); |
| print_tree(root->extent_root, root->extent_root->node); |
| |
| srand(55); |
| for (i = 0; i < run_size; i++) { |
| buf = malloc(64); |
| num = next_key(i, max_key); |
| // num = i; |
| sprintf(buf, "string-%d", num); |
| // printf("insert %d\n", num); |
| ins.objectid = num; |
| ins.offset = 0; |
| ins.flags = 0; |
| ret = insert_item(root, &ins, buf, strlen(buf)); |
| if (!ret) |
| tree_size++; |
| } |
| printf("root used: %lu\n", root->alloc_extent->num_used); |
| printf("root tree\n"); |
| // print_tree(root, root->node); |
| printf("map tree\n"); |
| printf("map used: %lu\n", root->extent_root->alloc_extent->num_used); |
| // print_tree(root->extent_root, root->extent_root->node); |
| write_ctree_super(root, &super); |
| close_ctree(root); |
| |
| root = open_ctree("dbfile", &super); |
| printf("starting search\n"); |
| srand(55); |
| for (i = 0; i < run_size; i++) { |
| num = next_key(i, max_key); |
| ins.objectid = num; |
| init_path(&path); |
| ret = search_slot(root, &ins, &path); |
| if (ret) { |
| print_tree(root, root->node); |
| printf("unable to find %d\n", num); |
| exit(1); |
| } |
| release_path(root, &path); |
| } |
| write_ctree_super(root, &super); |
| close_ctree(root); |
| root = open_ctree("dbfile", &super); |
| printf("node %p level %d total ptrs %d free spc %lu\n", root->node, |
| node_level(root->node->node.header.flags), |
| root->node->node.header.nritems, |
| NODEPTRS_PER_BLOCK - root->node->node.header.nritems); |
| printf("all searches good, deleting some items\n"); |
| i = 0; |
| srand(55); |
| for (i = 0 ; i < run_size/4; i++) { |
| num = next_key(i, max_key); |
| ins.objectid = num; |
| init_path(&path); |
| ret = search_slot(root, &ins, &path); |
| if (ret) |
| continue; |
| ret = del_item(root, &path); |
| if (ret != 0) |
| BUG(); |
| release_path(root, &path); |
| tree_size--; |
| } |
| srand(128); |
| for (i = 0; i < run_size; i++) { |
| buf = malloc(64); |
| num = next_key(i, max_key); |
| sprintf(buf, "string-%d", num); |
| ins.objectid = num; |
| ret = insert_item(root, &ins, buf, strlen(buf)); |
| if (!ret) |
| tree_size++; |
| } |
| write_ctree_super(root, &super); |
| close_ctree(root); |
| root = open_ctree("dbfile", &super); |
| printf("starting search2\n"); |
| srand(128); |
| for (i = 0; i < run_size; i++) { |
| num = next_key(i, max_key); |
| ins.objectid = num; |
| init_path(&path); |
| ret = search_slot(root, &ins, &path); |
| if (ret) { |
| print_tree(root, root->node); |
| printf("unable to find %d\n", num); |
| exit(1); |
| } |
| release_path(root, &path); |
| } |
| printf("starting big long delete run\n"); |
| while(root->node && root->node->node.header.nritems > 0) { |
| struct leaf *leaf; |
| int slot; |
| ins.objectid = (u64)-1; |
| init_path(&path); |
| ret = search_slot(root, &ins, &path); |
| if (ret == 0) |
| BUG(); |
| |
| leaf = &path.nodes[0]->leaf; |
| slot = path.slots[0]; |
| if (slot != leaf->header.nritems) |
| BUG(); |
| while(path.slots[0] > 0) { |
| path.slots[0] -= 1; |
| slot = path.slots[0]; |
| leaf = &path.nodes[0]->leaf; |
| |
| if (comp_keys(&last, &leaf->items[slot].key) <= 0) |
| BUG(); |
| memcpy(&last, &leaf->items[slot].key, sizeof(last)); |
| ret = del_item(root, &path); |
| if (ret != 0) { |
| printf("del_item returned %d\n", ret); |
| BUG(); |
| } |
| tree_size--; |
| } |
| release_path(root, &path); |
| } |
| write_ctree_super(root, &super); |
| close_ctree(root); |
| printf("tree size is now %d\n", tree_size); |
| return 0; |
| } |