| /* |
| * Copyright © 2008 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Keith Packard <keithp@keithp.com> |
| * |
| */ |
| |
| #include <linux/i2c.h> |
| #include <linux/slab.h> |
| #include <linux/export.h> |
| #include <drm/drmP.h> |
| #include <drm/drm_crtc.h> |
| #include <drm/drm_crtc_helper.h> |
| #include <drm/drm_edid.h> |
| #include "intel_drv.h" |
| #include <drm/i915_drm.h> |
| #include "i915_drv.h" |
| |
| #define DP_RECEIVER_CAP_SIZE 0xf |
| #define DP_LINK_STATUS_SIZE 6 |
| #define DP_LINK_CHECK_TIMEOUT (10 * 1000) |
| |
| /** |
| * is_edp - is the given port attached to an eDP panel (either CPU or PCH) |
| * @intel_dp: DP struct |
| * |
| * If a CPU or PCH DP output is attached to an eDP panel, this function |
| * will return true, and false otherwise. |
| */ |
| static bool is_edp(struct intel_dp *intel_dp) |
| { |
| return intel_dp->base.type == INTEL_OUTPUT_EDP; |
| } |
| |
| /** |
| * is_pch_edp - is the port on the PCH and attached to an eDP panel? |
| * @intel_dp: DP struct |
| * |
| * Returns true if the given DP struct corresponds to a PCH DP port attached |
| * to an eDP panel, false otherwise. Helpful for determining whether we |
| * may need FDI resources for a given DP output or not. |
| */ |
| static bool is_pch_edp(struct intel_dp *intel_dp) |
| { |
| return intel_dp->is_pch_edp; |
| } |
| |
| /** |
| * is_cpu_edp - is the port on the CPU and attached to an eDP panel? |
| * @intel_dp: DP struct |
| * |
| * Returns true if the given DP struct corresponds to a CPU eDP port. |
| */ |
| static bool is_cpu_edp(struct intel_dp *intel_dp) |
| { |
| return is_edp(intel_dp) && !is_pch_edp(intel_dp); |
| } |
| |
| static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder) |
| { |
| return container_of(encoder, struct intel_dp, base.base); |
| } |
| |
| static struct intel_dp *intel_attached_dp(struct drm_connector *connector) |
| { |
| return container_of(intel_attached_encoder(connector), |
| struct intel_dp, base); |
| } |
| |
| /** |
| * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP? |
| * @encoder: DRM encoder |
| * |
| * Return true if @encoder corresponds to a PCH attached eDP panel. Needed |
| * by intel_display.c. |
| */ |
| bool intel_encoder_is_pch_edp(struct drm_encoder *encoder) |
| { |
| struct intel_dp *intel_dp; |
| |
| if (!encoder) |
| return false; |
| |
| intel_dp = enc_to_intel_dp(encoder); |
| |
| return is_pch_edp(intel_dp); |
| } |
| |
| static void intel_dp_start_link_train(struct intel_dp *intel_dp); |
| static void intel_dp_complete_link_train(struct intel_dp *intel_dp); |
| static void intel_dp_link_down(struct intel_dp *intel_dp); |
| |
| void |
| intel_edp_link_config(struct intel_encoder *intel_encoder, |
| int *lane_num, int *link_bw) |
| { |
| struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base); |
| |
| *lane_num = intel_dp->lane_count; |
| if (intel_dp->link_bw == DP_LINK_BW_1_62) |
| *link_bw = 162000; |
| else if (intel_dp->link_bw == DP_LINK_BW_2_7) |
| *link_bw = 270000; |
| } |
| |
| int |
| intel_edp_target_clock(struct intel_encoder *intel_encoder, |
| struct drm_display_mode *mode) |
| { |
| struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base); |
| |
| if (intel_dp->panel_fixed_mode) |
| return intel_dp->panel_fixed_mode->clock; |
| else |
| return mode->clock; |
| } |
| |
| static int |
| intel_dp_max_lane_count(struct intel_dp *intel_dp) |
| { |
| int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f; |
| switch (max_lane_count) { |
| case 1: case 2: case 4: |
| break; |
| default: |
| max_lane_count = 4; |
| } |
| return max_lane_count; |
| } |
| |
| static int |
| intel_dp_max_link_bw(struct intel_dp *intel_dp) |
| { |
| int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE]; |
| |
| switch (max_link_bw) { |
| case DP_LINK_BW_1_62: |
| case DP_LINK_BW_2_7: |
| break; |
| default: |
| max_link_bw = DP_LINK_BW_1_62; |
| break; |
| } |
| return max_link_bw; |
| } |
| |
| static int |
| intel_dp_link_clock(uint8_t link_bw) |
| { |
| if (link_bw == DP_LINK_BW_2_7) |
| return 270000; |
| else |
| return 162000; |
| } |
| |
| /* |
| * The units on the numbers in the next two are... bizarre. Examples will |
| * make it clearer; this one parallels an example in the eDP spec. |
| * |
| * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as: |
| * |
| * 270000 * 1 * 8 / 10 == 216000 |
| * |
| * The actual data capacity of that configuration is 2.16Gbit/s, so the |
| * units are decakilobits. ->clock in a drm_display_mode is in kilohertz - |
| * or equivalently, kilopixels per second - so for 1680x1050R it'd be |
| * 119000. At 18bpp that's 2142000 kilobits per second. |
| * |
| * Thus the strange-looking division by 10 in intel_dp_link_required, to |
| * get the result in decakilobits instead of kilobits. |
| */ |
| |
| static int |
| intel_dp_link_required(int pixel_clock, int bpp) |
| { |
| return (pixel_clock * bpp + 9) / 10; |
| } |
| |
| static int |
| intel_dp_max_data_rate(int max_link_clock, int max_lanes) |
| { |
| return (max_link_clock * max_lanes * 8) / 10; |
| } |
| |
| static bool |
| intel_dp_adjust_dithering(struct intel_dp *intel_dp, |
| struct drm_display_mode *mode, |
| bool adjust_mode) |
| { |
| int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp)); |
| int max_lanes = intel_dp_max_lane_count(intel_dp); |
| int max_rate, mode_rate; |
| |
| mode_rate = intel_dp_link_required(mode->clock, 24); |
| max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); |
| |
| if (mode_rate > max_rate) { |
| mode_rate = intel_dp_link_required(mode->clock, 18); |
| if (mode_rate > max_rate) |
| return false; |
| |
| if (adjust_mode) |
| mode->private_flags |
| |= INTEL_MODE_DP_FORCE_6BPC; |
| |
| return true; |
| } |
| |
| return true; |
| } |
| |
| static int |
| intel_dp_mode_valid(struct drm_connector *connector, |
| struct drm_display_mode *mode) |
| { |
| struct intel_dp *intel_dp = intel_attached_dp(connector); |
| |
| if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) { |
| if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay) |
| return MODE_PANEL; |
| |
| if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay) |
| return MODE_PANEL; |
| } |
| |
| if (!intel_dp_adjust_dithering(intel_dp, mode, false)) |
| return MODE_CLOCK_HIGH; |
| |
| if (mode->clock < 10000) |
| return MODE_CLOCK_LOW; |
| |
| if (mode->flags & DRM_MODE_FLAG_DBLCLK) |
| return MODE_H_ILLEGAL; |
| |
| return MODE_OK; |
| } |
| |
| static uint32_t |
| pack_aux(uint8_t *src, int src_bytes) |
| { |
| int i; |
| uint32_t v = 0; |
| |
| if (src_bytes > 4) |
| src_bytes = 4; |
| for (i = 0; i < src_bytes; i++) |
| v |= ((uint32_t) src[i]) << ((3-i) * 8); |
| return v; |
| } |
| |
| static void |
| unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes) |
| { |
| int i; |
| if (dst_bytes > 4) |
| dst_bytes = 4; |
| for (i = 0; i < dst_bytes; i++) |
| dst[i] = src >> ((3-i) * 8); |
| } |
| |
| /* hrawclock is 1/4 the FSB frequency */ |
| static int |
| intel_hrawclk(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t clkcfg; |
| |
| clkcfg = I915_READ(CLKCFG); |
| switch (clkcfg & CLKCFG_FSB_MASK) { |
| case CLKCFG_FSB_400: |
| return 100; |
| case CLKCFG_FSB_533: |
| return 133; |
| case CLKCFG_FSB_667: |
| return 166; |
| case CLKCFG_FSB_800: |
| return 200; |
| case CLKCFG_FSB_1067: |
| return 266; |
| case CLKCFG_FSB_1333: |
| return 333; |
| /* these two are just a guess; one of them might be right */ |
| case CLKCFG_FSB_1600: |
| case CLKCFG_FSB_1600_ALT: |
| return 400; |
| default: |
| return 133; |
| } |
| } |
| |
| static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0; |
| } |
| |
| static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0; |
| } |
| |
| static void |
| intel_dp_check_edp(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (!is_edp(intel_dp)) |
| return; |
| if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) { |
| WARN(1, "eDP powered off while attempting aux channel communication.\n"); |
| DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n", |
| I915_READ(PCH_PP_STATUS), |
| I915_READ(PCH_PP_CONTROL)); |
| } |
| } |
| |
| static int |
| intel_dp_aux_ch(struct intel_dp *intel_dp, |
| uint8_t *send, int send_bytes, |
| uint8_t *recv, int recv_size) |
| { |
| uint32_t output_reg = intel_dp->output_reg; |
| struct drm_device *dev = intel_dp->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t ch_ctl = output_reg + 0x10; |
| uint32_t ch_data = ch_ctl + 4; |
| int i; |
| int recv_bytes; |
| uint32_t status; |
| uint32_t aux_clock_divider; |
| int try, precharge; |
| |
| intel_dp_check_edp(intel_dp); |
| /* The clock divider is based off the hrawclk, |
| * and would like to run at 2MHz. So, take the |
| * hrawclk value and divide by 2 and use that |
| * |
| * Note that PCH attached eDP panels should use a 125MHz input |
| * clock divider. |
| */ |
| if (is_cpu_edp(intel_dp)) { |
| if (IS_GEN6(dev) || IS_GEN7(dev)) |
| aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */ |
| else |
| aux_clock_divider = 225; /* eDP input clock at 450Mhz */ |
| } else if (HAS_PCH_SPLIT(dev)) |
| aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */ |
| else |
| aux_clock_divider = intel_hrawclk(dev) / 2; |
| |
| if (IS_GEN6(dev)) |
| precharge = 3; |
| else |
| precharge = 5; |
| |
| /* Try to wait for any previous AUX channel activity */ |
| for (try = 0; try < 3; try++) { |
| status = I915_READ(ch_ctl); |
| if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) |
| break; |
| msleep(1); |
| } |
| |
| if (try == 3) { |
| WARN(1, "dp_aux_ch not started status 0x%08x\n", |
| I915_READ(ch_ctl)); |
| return -EBUSY; |
| } |
| |
| /* Must try at least 3 times according to DP spec */ |
| for (try = 0; try < 5; try++) { |
| /* Load the send data into the aux channel data registers */ |
| for (i = 0; i < send_bytes; i += 4) |
| I915_WRITE(ch_data + i, |
| pack_aux(send + i, send_bytes - i)); |
| |
| /* Send the command and wait for it to complete */ |
| I915_WRITE(ch_ctl, |
| DP_AUX_CH_CTL_SEND_BUSY | |
| DP_AUX_CH_CTL_TIME_OUT_400us | |
| (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | |
| (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | |
| (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) | |
| DP_AUX_CH_CTL_DONE | |
| DP_AUX_CH_CTL_TIME_OUT_ERROR | |
| DP_AUX_CH_CTL_RECEIVE_ERROR); |
| for (;;) { |
| status = I915_READ(ch_ctl); |
| if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) |
| break; |
| udelay(100); |
| } |
| |
| /* Clear done status and any errors */ |
| I915_WRITE(ch_ctl, |
| status | |
| DP_AUX_CH_CTL_DONE | |
| DP_AUX_CH_CTL_TIME_OUT_ERROR | |
| DP_AUX_CH_CTL_RECEIVE_ERROR); |
| |
| if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR | |
| DP_AUX_CH_CTL_RECEIVE_ERROR)) |
| continue; |
| if (status & DP_AUX_CH_CTL_DONE) |
| break; |
| } |
| |
| if ((status & DP_AUX_CH_CTL_DONE) == 0) { |
| DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); |
| return -EBUSY; |
| } |
| |
| /* Check for timeout or receive error. |
| * Timeouts occur when the sink is not connected |
| */ |
| if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { |
| DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); |
| return -EIO; |
| } |
| |
| /* Timeouts occur when the device isn't connected, so they're |
| * "normal" -- don't fill the kernel log with these */ |
| if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { |
| DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); |
| return -ETIMEDOUT; |
| } |
| |
| /* Unload any bytes sent back from the other side */ |
| recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> |
| DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); |
| if (recv_bytes > recv_size) |
| recv_bytes = recv_size; |
| |
| for (i = 0; i < recv_bytes; i += 4) |
| unpack_aux(I915_READ(ch_data + i), |
| recv + i, recv_bytes - i); |
| |
| return recv_bytes; |
| } |
| |
| /* Write data to the aux channel in native mode */ |
| static int |
| intel_dp_aux_native_write(struct intel_dp *intel_dp, |
| uint16_t address, uint8_t *send, int send_bytes) |
| { |
| int ret; |
| uint8_t msg[20]; |
| int msg_bytes; |
| uint8_t ack; |
| |
| intel_dp_check_edp(intel_dp); |
| if (send_bytes > 16) |
| return -1; |
| msg[0] = AUX_NATIVE_WRITE << 4; |
| msg[1] = address >> 8; |
| msg[2] = address & 0xff; |
| msg[3] = send_bytes - 1; |
| memcpy(&msg[4], send, send_bytes); |
| msg_bytes = send_bytes + 4; |
| for (;;) { |
| ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1); |
| if (ret < 0) |
| return ret; |
| if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) |
| break; |
| else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER) |
| udelay(100); |
| else |
| return -EIO; |
| } |
| return send_bytes; |
| } |
| |
| /* Write a single byte to the aux channel in native mode */ |
| static int |
| intel_dp_aux_native_write_1(struct intel_dp *intel_dp, |
| uint16_t address, uint8_t byte) |
| { |
| return intel_dp_aux_native_write(intel_dp, address, &byte, 1); |
| } |
| |
| /* read bytes from a native aux channel */ |
| static int |
| intel_dp_aux_native_read(struct intel_dp *intel_dp, |
| uint16_t address, uint8_t *recv, int recv_bytes) |
| { |
| uint8_t msg[4]; |
| int msg_bytes; |
| uint8_t reply[20]; |
| int reply_bytes; |
| uint8_t ack; |
| int ret; |
| |
| intel_dp_check_edp(intel_dp); |
| msg[0] = AUX_NATIVE_READ << 4; |
| msg[1] = address >> 8; |
| msg[2] = address & 0xff; |
| msg[3] = recv_bytes - 1; |
| |
| msg_bytes = 4; |
| reply_bytes = recv_bytes + 1; |
| |
| for (;;) { |
| ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, |
| reply, reply_bytes); |
| if (ret == 0) |
| return -EPROTO; |
| if (ret < 0) |
| return ret; |
| ack = reply[0]; |
| if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) { |
| memcpy(recv, reply + 1, ret - 1); |
| return ret - 1; |
| } |
| else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER) |
| udelay(100); |
| else |
| return -EIO; |
| } |
| } |
| |
| static int |
| intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode, |
| uint8_t write_byte, uint8_t *read_byte) |
| { |
| struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; |
| struct intel_dp *intel_dp = container_of(adapter, |
| struct intel_dp, |
| adapter); |
| uint16_t address = algo_data->address; |
| uint8_t msg[5]; |
| uint8_t reply[2]; |
| unsigned retry; |
| int msg_bytes; |
| int reply_bytes; |
| int ret; |
| |
| intel_dp_check_edp(intel_dp); |
| /* Set up the command byte */ |
| if (mode & MODE_I2C_READ) |
| msg[0] = AUX_I2C_READ << 4; |
| else |
| msg[0] = AUX_I2C_WRITE << 4; |
| |
| if (!(mode & MODE_I2C_STOP)) |
| msg[0] |= AUX_I2C_MOT << 4; |
| |
| msg[1] = address >> 8; |
| msg[2] = address; |
| |
| switch (mode) { |
| case MODE_I2C_WRITE: |
| msg[3] = 0; |
| msg[4] = write_byte; |
| msg_bytes = 5; |
| reply_bytes = 1; |
| break; |
| case MODE_I2C_READ: |
| msg[3] = 0; |
| msg_bytes = 4; |
| reply_bytes = 2; |
| break; |
| default: |
| msg_bytes = 3; |
| reply_bytes = 1; |
| break; |
| } |
| |
| for (retry = 0; retry < 5; retry++) { |
| ret = intel_dp_aux_ch(intel_dp, |
| msg, msg_bytes, |
| reply, reply_bytes); |
| if (ret < 0) { |
| DRM_DEBUG_KMS("aux_ch failed %d\n", ret); |
| return ret; |
| } |
| |
| switch (reply[0] & AUX_NATIVE_REPLY_MASK) { |
| case AUX_NATIVE_REPLY_ACK: |
| /* I2C-over-AUX Reply field is only valid |
| * when paired with AUX ACK. |
| */ |
| break; |
| case AUX_NATIVE_REPLY_NACK: |
| DRM_DEBUG_KMS("aux_ch native nack\n"); |
| return -EREMOTEIO; |
| case AUX_NATIVE_REPLY_DEFER: |
| udelay(100); |
| continue; |
| default: |
| DRM_ERROR("aux_ch invalid native reply 0x%02x\n", |
| reply[0]); |
| return -EREMOTEIO; |
| } |
| |
| switch (reply[0] & AUX_I2C_REPLY_MASK) { |
| case AUX_I2C_REPLY_ACK: |
| if (mode == MODE_I2C_READ) { |
| *read_byte = reply[1]; |
| } |
| return reply_bytes - 1; |
| case AUX_I2C_REPLY_NACK: |
| DRM_DEBUG_KMS("aux_i2c nack\n"); |
| return -EREMOTEIO; |
| case AUX_I2C_REPLY_DEFER: |
| DRM_DEBUG_KMS("aux_i2c defer\n"); |
| udelay(100); |
| break; |
| default: |
| DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]); |
| return -EREMOTEIO; |
| } |
| } |
| |
| DRM_ERROR("too many retries, giving up\n"); |
| return -EREMOTEIO; |
| } |
| |
| static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp); |
| static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync); |
| |
| static int |
| intel_dp_i2c_init(struct intel_dp *intel_dp, |
| struct intel_connector *intel_connector, const char *name) |
| { |
| int ret; |
| |
| DRM_DEBUG_KMS("i2c_init %s\n", name); |
| intel_dp->algo.running = false; |
| intel_dp->algo.address = 0; |
| intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch; |
| |
| memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter)); |
| intel_dp->adapter.owner = THIS_MODULE; |
| intel_dp->adapter.class = I2C_CLASS_DDC; |
| strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1); |
| intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0'; |
| intel_dp->adapter.algo_data = &intel_dp->algo; |
| intel_dp->adapter.dev.parent = &intel_connector->base.kdev; |
| |
| ironlake_edp_panel_vdd_on(intel_dp); |
| ret = i2c_dp_aux_add_bus(&intel_dp->adapter); |
| ironlake_edp_panel_vdd_off(intel_dp, false); |
| return ret; |
| } |
| |
| static bool |
| intel_dp_mode_fixup(struct drm_encoder *encoder, |
| const struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode) |
| { |
| struct drm_device *dev = encoder->dev; |
| struct intel_dp *intel_dp = enc_to_intel_dp(encoder); |
| int lane_count, clock; |
| int max_lane_count = intel_dp_max_lane_count(intel_dp); |
| int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0; |
| int bpp, mode_rate; |
| static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 }; |
| |
| if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) { |
| intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode); |
| intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN, |
| mode, adjusted_mode); |
| } |
| |
| if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) |
| return false; |
| |
| DRM_DEBUG_KMS("DP link computation with max lane count %i " |
| "max bw %02x pixel clock %iKHz\n", |
| max_lane_count, bws[max_clock], adjusted_mode->clock); |
| |
| if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true)) |
| return false; |
| |
| bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24; |
| mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp); |
| |
| for (clock = 0; clock <= max_clock; clock++) { |
| for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) { |
| int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count); |
| |
| if (mode_rate <= link_avail) { |
| intel_dp->link_bw = bws[clock]; |
| intel_dp->lane_count = lane_count; |
| adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw); |
| DRM_DEBUG_KMS("DP link bw %02x lane " |
| "count %d clock %d bpp %d\n", |
| intel_dp->link_bw, intel_dp->lane_count, |
| adjusted_mode->clock, bpp); |
| DRM_DEBUG_KMS("DP link bw required %i available %i\n", |
| mode_rate, link_avail); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| struct intel_dp_m_n { |
| uint32_t tu; |
| uint32_t gmch_m; |
| uint32_t gmch_n; |
| uint32_t link_m; |
| uint32_t link_n; |
| }; |
| |
| static void |
| intel_reduce_ratio(uint32_t *num, uint32_t *den) |
| { |
| while (*num > 0xffffff || *den > 0xffffff) { |
| *num >>= 1; |
| *den >>= 1; |
| } |
| } |
| |
| static void |
| intel_dp_compute_m_n(int bpp, |
| int nlanes, |
| int pixel_clock, |
| int link_clock, |
| struct intel_dp_m_n *m_n) |
| { |
| m_n->tu = 64; |
| m_n->gmch_m = (pixel_clock * bpp) >> 3; |
| m_n->gmch_n = link_clock * nlanes; |
| intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n); |
| m_n->link_m = pixel_clock; |
| m_n->link_n = link_clock; |
| intel_reduce_ratio(&m_n->link_m, &m_n->link_n); |
| } |
| |
| void |
| intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct intel_encoder *encoder; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int lane_count = 4; |
| struct intel_dp_m_n m_n; |
| int pipe = intel_crtc->pipe; |
| |
| /* |
| * Find the lane count in the intel_encoder private |
| */ |
| for_each_encoder_on_crtc(dev, crtc, encoder) { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| |
| if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT || |
| intel_dp->base.type == INTEL_OUTPUT_EDP) |
| { |
| lane_count = intel_dp->lane_count; |
| break; |
| } |
| } |
| |
| /* |
| * Compute the GMCH and Link ratios. The '3' here is |
| * the number of bytes_per_pixel post-LUT, which we always |
| * set up for 8-bits of R/G/B, or 3 bytes total. |
| */ |
| intel_dp_compute_m_n(intel_crtc->bpp, lane_count, |
| mode->clock, adjusted_mode->clock, &m_n); |
| |
| if (HAS_PCH_SPLIT(dev)) { |
| I915_WRITE(TRANSDATA_M1(pipe), |
| ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) | |
| m_n.gmch_m); |
| I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n); |
| I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m); |
| I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n); |
| } else { |
| I915_WRITE(PIPE_GMCH_DATA_M(pipe), |
| ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) | |
| m_n.gmch_m); |
| I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n); |
| I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m); |
| I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n); |
| } |
| } |
| |
| static void |
| intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode) |
| { |
| struct drm_device *dev = encoder->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_dp *intel_dp = enc_to_intel_dp(encoder); |
| struct drm_crtc *crtc = intel_dp->base.base.crtc; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| /* |
| * There are four kinds of DP registers: |
| * |
| * IBX PCH |
| * SNB CPU |
| * IVB CPU |
| * CPT PCH |
| * |
| * IBX PCH and CPU are the same for almost everything, |
| * except that the CPU DP PLL is configured in this |
| * register |
| * |
| * CPT PCH is quite different, having many bits moved |
| * to the TRANS_DP_CTL register instead. That |
| * configuration happens (oddly) in ironlake_pch_enable |
| */ |
| |
| /* Preserve the BIOS-computed detected bit. This is |
| * supposed to be read-only. |
| */ |
| intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; |
| |
| /* Handle DP bits in common between all three register formats */ |
| intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; |
| |
| switch (intel_dp->lane_count) { |
| case 1: |
| intel_dp->DP |= DP_PORT_WIDTH_1; |
| break; |
| case 2: |
| intel_dp->DP |= DP_PORT_WIDTH_2; |
| break; |
| case 4: |
| intel_dp->DP |= DP_PORT_WIDTH_4; |
| break; |
| } |
| if (intel_dp->has_audio) { |
| DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n", |
| pipe_name(intel_crtc->pipe)); |
| intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; |
| intel_write_eld(encoder, adjusted_mode); |
| } |
| memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE); |
| intel_dp->link_configuration[0] = intel_dp->link_bw; |
| intel_dp->link_configuration[1] = intel_dp->lane_count; |
| intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B; |
| /* |
| * Check for DPCD version > 1.1 and enhanced framing support |
| */ |
| if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && |
| (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) { |
| intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; |
| } |
| |
| /* Split out the IBX/CPU vs CPT settings */ |
| |
| if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) { |
| if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) |
| intel_dp->DP |= DP_SYNC_HS_HIGH; |
| if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) |
| intel_dp->DP |= DP_SYNC_VS_HIGH; |
| intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; |
| |
| if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN) |
| intel_dp->DP |= DP_ENHANCED_FRAMING; |
| |
| intel_dp->DP |= intel_crtc->pipe << 29; |
| |
| /* don't miss out required setting for eDP */ |
| if (adjusted_mode->clock < 200000) |
| intel_dp->DP |= DP_PLL_FREQ_160MHZ; |
| else |
| intel_dp->DP |= DP_PLL_FREQ_270MHZ; |
| } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) { |
| intel_dp->DP |= intel_dp->color_range; |
| |
| if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) |
| intel_dp->DP |= DP_SYNC_HS_HIGH; |
| if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) |
| intel_dp->DP |= DP_SYNC_VS_HIGH; |
| intel_dp->DP |= DP_LINK_TRAIN_OFF; |
| |
| if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN) |
| intel_dp->DP |= DP_ENHANCED_FRAMING; |
| |
| if (intel_crtc->pipe == 1) |
| intel_dp->DP |= DP_PIPEB_SELECT; |
| |
| if (is_cpu_edp(intel_dp)) { |
| /* don't miss out required setting for eDP */ |
| if (adjusted_mode->clock < 200000) |
| intel_dp->DP |= DP_PLL_FREQ_160MHZ; |
| else |
| intel_dp->DP |= DP_PLL_FREQ_270MHZ; |
| } |
| } else { |
| intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; |
| } |
| } |
| |
| #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) |
| #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE) |
| |
| #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) |
| #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) |
| |
| #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) |
| #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) |
| |
| static void ironlake_wait_panel_status(struct intel_dp *intel_dp, |
| u32 mask, |
| u32 value) |
| { |
| struct drm_device *dev = intel_dp->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n", |
| mask, value, |
| I915_READ(PCH_PP_STATUS), |
| I915_READ(PCH_PP_CONTROL)); |
| |
| if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) { |
| DRM_ERROR("Panel status timeout: status %08x control %08x\n", |
| I915_READ(PCH_PP_STATUS), |
| I915_READ(PCH_PP_CONTROL)); |
| } |
| } |
| |
| static void ironlake_wait_panel_on(struct intel_dp *intel_dp) |
| { |
| DRM_DEBUG_KMS("Wait for panel power on\n"); |
| ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); |
| } |
| |
| static void ironlake_wait_panel_off(struct intel_dp *intel_dp) |
| { |
| DRM_DEBUG_KMS("Wait for panel power off time\n"); |
| ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); |
| } |
| |
| static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp) |
| { |
| DRM_DEBUG_KMS("Wait for panel power cycle\n"); |
| ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); |
| } |
| |
| |
| /* Read the current pp_control value, unlocking the register if it |
| * is locked |
| */ |
| |
| static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv) |
| { |
| u32 control = I915_READ(PCH_PP_CONTROL); |
| |
| control &= ~PANEL_UNLOCK_MASK; |
| control |= PANEL_UNLOCK_REGS; |
| return control; |
| } |
| |
| static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 pp; |
| |
| if (!is_edp(intel_dp)) |
| return; |
| DRM_DEBUG_KMS("Turn eDP VDD on\n"); |
| |
| WARN(intel_dp->want_panel_vdd, |
| "eDP VDD already requested on\n"); |
| |
| intel_dp->want_panel_vdd = true; |
| |
| if (ironlake_edp_have_panel_vdd(intel_dp)) { |
| DRM_DEBUG_KMS("eDP VDD already on\n"); |
| return; |
| } |
| |
| if (!ironlake_edp_have_panel_power(intel_dp)) |
| ironlake_wait_panel_power_cycle(intel_dp); |
| |
| pp = ironlake_get_pp_control(dev_priv); |
| pp |= EDP_FORCE_VDD; |
| I915_WRITE(PCH_PP_CONTROL, pp); |
| POSTING_READ(PCH_PP_CONTROL); |
| DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n", |
| I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL)); |
| |
| /* |
| * If the panel wasn't on, delay before accessing aux channel |
| */ |
| if (!ironlake_edp_have_panel_power(intel_dp)) { |
| DRM_DEBUG_KMS("eDP was not running\n"); |
| msleep(intel_dp->panel_power_up_delay); |
| } |
| } |
| |
| static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 pp; |
| |
| if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) { |
| pp = ironlake_get_pp_control(dev_priv); |
| pp &= ~EDP_FORCE_VDD; |
| I915_WRITE(PCH_PP_CONTROL, pp); |
| POSTING_READ(PCH_PP_CONTROL); |
| |
| /* Make sure sequencer is idle before allowing subsequent activity */ |
| DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n", |
| I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL)); |
| |
| msleep(intel_dp->panel_power_down_delay); |
| } |
| } |
| |
| static void ironlake_panel_vdd_work(struct work_struct *__work) |
| { |
| struct intel_dp *intel_dp = container_of(to_delayed_work(__work), |
| struct intel_dp, panel_vdd_work); |
| struct drm_device *dev = intel_dp->base.base.dev; |
| |
| mutex_lock(&dev->mode_config.mutex); |
| ironlake_panel_vdd_off_sync(intel_dp); |
| mutex_unlock(&dev->mode_config.mutex); |
| } |
| |
| static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) |
| { |
| if (!is_edp(intel_dp)) |
| return; |
| |
| DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd); |
| WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on"); |
| |
| intel_dp->want_panel_vdd = false; |
| |
| if (sync) { |
| ironlake_panel_vdd_off_sync(intel_dp); |
| } else { |
| /* |
| * Queue the timer to fire a long |
| * time from now (relative to the power down delay) |
| * to keep the panel power up across a sequence of operations |
| */ |
| schedule_delayed_work(&intel_dp->panel_vdd_work, |
| msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5)); |
| } |
| } |
| |
| static void ironlake_edp_panel_on(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 pp; |
| |
| if (!is_edp(intel_dp)) |
| return; |
| |
| DRM_DEBUG_KMS("Turn eDP power on\n"); |
| |
| if (ironlake_edp_have_panel_power(intel_dp)) { |
| DRM_DEBUG_KMS("eDP power already on\n"); |
| return; |
| } |
| |
| ironlake_wait_panel_power_cycle(intel_dp); |
| |
| pp = ironlake_get_pp_control(dev_priv); |
| if (IS_GEN5(dev)) { |
| /* ILK workaround: disable reset around power sequence */ |
| pp &= ~PANEL_POWER_RESET; |
| I915_WRITE(PCH_PP_CONTROL, pp); |
| POSTING_READ(PCH_PP_CONTROL); |
| } |
| |
| pp |= POWER_TARGET_ON; |
| if (!IS_GEN5(dev)) |
| pp |= PANEL_POWER_RESET; |
| |
| I915_WRITE(PCH_PP_CONTROL, pp); |
| POSTING_READ(PCH_PP_CONTROL); |
| |
| ironlake_wait_panel_on(intel_dp); |
| |
| if (IS_GEN5(dev)) { |
| pp |= PANEL_POWER_RESET; /* restore panel reset bit */ |
| I915_WRITE(PCH_PP_CONTROL, pp); |
| POSTING_READ(PCH_PP_CONTROL); |
| } |
| } |
| |
| static void ironlake_edp_panel_off(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 pp; |
| |
| if (!is_edp(intel_dp)) |
| return; |
| |
| DRM_DEBUG_KMS("Turn eDP power off\n"); |
| |
| WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n"); |
| |
| pp = ironlake_get_pp_control(dev_priv); |
| /* We need to switch off panel power _and_ force vdd, for otherwise some |
| * panels get very unhappy and cease to work. */ |
| pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE); |
| I915_WRITE(PCH_PP_CONTROL, pp); |
| POSTING_READ(PCH_PP_CONTROL); |
| |
| intel_dp->want_panel_vdd = false; |
| |
| ironlake_wait_panel_off(intel_dp); |
| } |
| |
| static void ironlake_edp_backlight_on(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 pp; |
| |
| if (!is_edp(intel_dp)) |
| return; |
| |
| DRM_DEBUG_KMS("\n"); |
| /* |
| * If we enable the backlight right away following a panel power |
| * on, we may see slight flicker as the panel syncs with the eDP |
| * link. So delay a bit to make sure the image is solid before |
| * allowing it to appear. |
| */ |
| msleep(intel_dp->backlight_on_delay); |
| pp = ironlake_get_pp_control(dev_priv); |
| pp |= EDP_BLC_ENABLE; |
| I915_WRITE(PCH_PP_CONTROL, pp); |
| POSTING_READ(PCH_PP_CONTROL); |
| } |
| |
| static void ironlake_edp_backlight_off(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 pp; |
| |
| if (!is_edp(intel_dp)) |
| return; |
| |
| DRM_DEBUG_KMS("\n"); |
| pp = ironlake_get_pp_control(dev_priv); |
| pp &= ~EDP_BLC_ENABLE; |
| I915_WRITE(PCH_PP_CONTROL, pp); |
| POSTING_READ(PCH_PP_CONTROL); |
| msleep(intel_dp->backlight_off_delay); |
| } |
| |
| static void ironlake_edp_pll_on(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp->base.base.dev; |
| struct drm_crtc *crtc = intel_dp->base.base.crtc; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 dpa_ctl; |
| |
| assert_pipe_disabled(dev_priv, |
| to_intel_crtc(crtc)->pipe); |
| |
| DRM_DEBUG_KMS("\n"); |
| dpa_ctl = I915_READ(DP_A); |
| WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n"); |
| WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n"); |
| |
| /* We don't adjust intel_dp->DP while tearing down the link, to |
| * facilitate link retraining (e.g. after hotplug). Hence clear all |
| * enable bits here to ensure that we don't enable too much. */ |
| intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); |
| intel_dp->DP |= DP_PLL_ENABLE; |
| I915_WRITE(DP_A, intel_dp->DP); |
| POSTING_READ(DP_A); |
| udelay(200); |
| } |
| |
| static void ironlake_edp_pll_off(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp->base.base.dev; |
| struct drm_crtc *crtc = intel_dp->base.base.crtc; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 dpa_ctl; |
| |
| assert_pipe_disabled(dev_priv, |
| to_intel_crtc(crtc)->pipe); |
| |
| dpa_ctl = I915_READ(DP_A); |
| WARN((dpa_ctl & DP_PLL_ENABLE) == 0, |
| "dp pll off, should be on\n"); |
| WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n"); |
| |
| /* We can't rely on the value tracked for the DP register in |
| * intel_dp->DP because link_down must not change that (otherwise link |
| * re-training will fail. */ |
| dpa_ctl &= ~DP_PLL_ENABLE; |
| I915_WRITE(DP_A, dpa_ctl); |
| POSTING_READ(DP_A); |
| udelay(200); |
| } |
| |
| /* If the sink supports it, try to set the power state appropriately */ |
| static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode) |
| { |
| int ret, i; |
| |
| /* Should have a valid DPCD by this point */ |
| if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) |
| return; |
| |
| if (mode != DRM_MODE_DPMS_ON) { |
| ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER, |
| DP_SET_POWER_D3); |
| if (ret != 1) |
| DRM_DEBUG_DRIVER("failed to write sink power state\n"); |
| } else { |
| /* |
| * When turning on, we need to retry for 1ms to give the sink |
| * time to wake up. |
| */ |
| for (i = 0; i < 3; i++) { |
| ret = intel_dp_aux_native_write_1(intel_dp, |
| DP_SET_POWER, |
| DP_SET_POWER_D0); |
| if (ret == 1) |
| break; |
| msleep(1); |
| } |
| } |
| } |
| |
| static bool intel_dp_get_hw_state(struct intel_encoder *encoder, |
| enum pipe *pipe) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 tmp = I915_READ(intel_dp->output_reg); |
| |
| if (!(tmp & DP_PORT_EN)) |
| return false; |
| |
| if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) { |
| *pipe = PORT_TO_PIPE_CPT(tmp); |
| } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) { |
| *pipe = PORT_TO_PIPE(tmp); |
| } else { |
| u32 trans_sel; |
| u32 trans_dp; |
| int i; |
| |
| switch (intel_dp->output_reg) { |
| case PCH_DP_B: |
| trans_sel = TRANS_DP_PORT_SEL_B; |
| break; |
| case PCH_DP_C: |
| trans_sel = TRANS_DP_PORT_SEL_C; |
| break; |
| case PCH_DP_D: |
| trans_sel = TRANS_DP_PORT_SEL_D; |
| break; |
| default: |
| return true; |
| } |
| |
| for_each_pipe(i) { |
| trans_dp = I915_READ(TRANS_DP_CTL(i)); |
| if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) { |
| *pipe = i; |
| return true; |
| } |
| } |
| } |
| |
| DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n", intel_dp->output_reg); |
| |
| return true; |
| } |
| |
| static void intel_disable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| |
| /* Make sure the panel is off before trying to change the mode. But also |
| * ensure that we have vdd while we switch off the panel. */ |
| ironlake_edp_panel_vdd_on(intel_dp); |
| ironlake_edp_backlight_off(intel_dp); |
| intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); |
| ironlake_edp_panel_off(intel_dp); |
| |
| /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */ |
| if (!is_cpu_edp(intel_dp)) |
| intel_dp_link_down(intel_dp); |
| } |
| |
| static void intel_post_disable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| |
| if (is_cpu_edp(intel_dp)) { |
| intel_dp_link_down(intel_dp); |
| ironlake_edp_pll_off(intel_dp); |
| } |
| } |
| |
| static void intel_enable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t dp_reg = I915_READ(intel_dp->output_reg); |
| |
| if (WARN_ON(dp_reg & DP_PORT_EN)) |
| return; |
| |
| ironlake_edp_panel_vdd_on(intel_dp); |
| intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); |
| intel_dp_start_link_train(intel_dp); |
| ironlake_edp_panel_on(intel_dp); |
| ironlake_edp_panel_vdd_off(intel_dp, true); |
| intel_dp_complete_link_train(intel_dp); |
| ironlake_edp_backlight_on(intel_dp); |
| } |
| |
| static void intel_pre_enable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| |
| if (is_cpu_edp(intel_dp)) |
| ironlake_edp_pll_on(intel_dp); |
| } |
| |
| /* |
| * Native read with retry for link status and receiver capability reads for |
| * cases where the sink may still be asleep. |
| */ |
| static bool |
| intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address, |
| uint8_t *recv, int recv_bytes) |
| { |
| int ret, i; |
| |
| /* |
| * Sinks are *supposed* to come up within 1ms from an off state, |
| * but we're also supposed to retry 3 times per the spec. |
| */ |
| for (i = 0; i < 3; i++) { |
| ret = intel_dp_aux_native_read(intel_dp, address, recv, |
| recv_bytes); |
| if (ret == recv_bytes) |
| return true; |
| msleep(1); |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Fetch AUX CH registers 0x202 - 0x207 which contain |
| * link status information |
| */ |
| static bool |
| intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE]) |
| { |
| return intel_dp_aux_native_read_retry(intel_dp, |
| DP_LANE0_1_STATUS, |
| link_status, |
| DP_LINK_STATUS_SIZE); |
| } |
| |
| static uint8_t |
| intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE], |
| int r) |
| { |
| return link_status[r - DP_LANE0_1_STATUS]; |
| } |
| |
| static uint8_t |
| intel_get_adjust_request_voltage(uint8_t adjust_request[2], |
| int lane) |
| { |
| int s = ((lane & 1) ? |
| DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT : |
| DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT); |
| uint8_t l = adjust_request[lane>>1]; |
| |
| return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT; |
| } |
| |
| static uint8_t |
| intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2], |
| int lane) |
| { |
| int s = ((lane & 1) ? |
| DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT : |
| DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT); |
| uint8_t l = adjust_request[lane>>1]; |
| |
| return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT; |
| } |
| |
| |
| #if 0 |
| static char *voltage_names[] = { |
| "0.4V", "0.6V", "0.8V", "1.2V" |
| }; |
| static char *pre_emph_names[] = { |
| "0dB", "3.5dB", "6dB", "9.5dB" |
| }; |
| static char *link_train_names[] = { |
| "pattern 1", "pattern 2", "idle", "off" |
| }; |
| #endif |
| |
| /* |
| * These are source-specific values; current Intel hardware supports |
| * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB |
| */ |
| |
| static uint8_t |
| intel_dp_voltage_max(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp->base.base.dev; |
| |
| if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) |
| return DP_TRAIN_VOLTAGE_SWING_800; |
| else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp)) |
| return DP_TRAIN_VOLTAGE_SWING_1200; |
| else |
| return DP_TRAIN_VOLTAGE_SWING_800; |
| } |
| |
| static uint8_t |
| intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing) |
| { |
| struct drm_device *dev = intel_dp->base.base.dev; |
| |
| if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) { |
| switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_400: |
| return DP_TRAIN_PRE_EMPHASIS_6; |
| case DP_TRAIN_VOLTAGE_SWING_600: |
| case DP_TRAIN_VOLTAGE_SWING_800: |
| return DP_TRAIN_PRE_EMPHASIS_3_5; |
| default: |
| return DP_TRAIN_PRE_EMPHASIS_0; |
| } |
| } else { |
| switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_400: |
| return DP_TRAIN_PRE_EMPHASIS_6; |
| case DP_TRAIN_VOLTAGE_SWING_600: |
| return DP_TRAIN_PRE_EMPHASIS_6; |
| case DP_TRAIN_VOLTAGE_SWING_800: |
| return DP_TRAIN_PRE_EMPHASIS_3_5; |
| case DP_TRAIN_VOLTAGE_SWING_1200: |
| default: |
| return DP_TRAIN_PRE_EMPHASIS_0; |
| } |
| } |
| } |
| |
| static void |
| intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE]) |
| { |
| uint8_t v = 0; |
| uint8_t p = 0; |
| int lane; |
| uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS); |
| uint8_t voltage_max; |
| uint8_t preemph_max; |
| |
| for (lane = 0; lane < intel_dp->lane_count; lane++) { |
| uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane); |
| uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane); |
| |
| if (this_v > v) |
| v = this_v; |
| if (this_p > p) |
| p = this_p; |
| } |
| |
| voltage_max = intel_dp_voltage_max(intel_dp); |
| if (v >= voltage_max) |
| v = voltage_max | DP_TRAIN_MAX_SWING_REACHED; |
| |
| preemph_max = intel_dp_pre_emphasis_max(intel_dp, v); |
| if (p >= preemph_max) |
| p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; |
| |
| for (lane = 0; lane < 4; lane++) |
| intel_dp->train_set[lane] = v | p; |
| } |
| |
| static uint32_t |
| intel_dp_signal_levels(uint8_t train_set) |
| { |
| uint32_t signal_levels = 0; |
| |
| switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_400: |
| default: |
| signal_levels |= DP_VOLTAGE_0_4; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_600: |
| signal_levels |= DP_VOLTAGE_0_6; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_800: |
| signal_levels |= DP_VOLTAGE_0_8; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_1200: |
| signal_levels |= DP_VOLTAGE_1_2; |
| break; |
| } |
| switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { |
| case DP_TRAIN_PRE_EMPHASIS_0: |
| default: |
| signal_levels |= DP_PRE_EMPHASIS_0; |
| break; |
| case DP_TRAIN_PRE_EMPHASIS_3_5: |
| signal_levels |= DP_PRE_EMPHASIS_3_5; |
| break; |
| case DP_TRAIN_PRE_EMPHASIS_6: |
| signal_levels |= DP_PRE_EMPHASIS_6; |
| break; |
| case DP_TRAIN_PRE_EMPHASIS_9_5: |
| signal_levels |= DP_PRE_EMPHASIS_9_5; |
| break; |
| } |
| return signal_levels; |
| } |
| |
| /* Gen6's DP voltage swing and pre-emphasis control */ |
| static uint32_t |
| intel_gen6_edp_signal_levels(uint8_t train_set) |
| { |
| int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | |
| DP_TRAIN_PRE_EMPHASIS_MASK); |
| switch (signal_levels) { |
| case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0: |
| case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0: |
| return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; |
| case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5: |
| return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; |
| case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6: |
| case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6: |
| return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; |
| case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5: |
| case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5: |
| return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; |
| case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0: |
| case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0: |
| return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; |
| default: |
| DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" |
| "0x%x\n", signal_levels); |
| return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; |
| } |
| } |
| |
| /* Gen7's DP voltage swing and pre-emphasis control */ |
| static uint32_t |
| intel_gen7_edp_signal_levels(uint8_t train_set) |
| { |
| int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | |
| DP_TRAIN_PRE_EMPHASIS_MASK); |
| switch (signal_levels) { |
| case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0: |
| return EDP_LINK_TRAIN_400MV_0DB_IVB; |
| case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5: |
| return EDP_LINK_TRAIN_400MV_3_5DB_IVB; |
| case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6: |
| return EDP_LINK_TRAIN_400MV_6DB_IVB; |
| |
| case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0: |
| return EDP_LINK_TRAIN_600MV_0DB_IVB; |
| case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5: |
| return EDP_LINK_TRAIN_600MV_3_5DB_IVB; |
| |
| case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0: |
| return EDP_LINK_TRAIN_800MV_0DB_IVB; |
| case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5: |
| return EDP_LINK_TRAIN_800MV_3_5DB_IVB; |
| |
| default: |
| DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" |
| "0x%x\n", signal_levels); |
| return EDP_LINK_TRAIN_500MV_0DB_IVB; |
| } |
| } |
| |
| static uint8_t |
| intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE], |
| int lane) |
| { |
| int s = (lane & 1) * 4; |
| uint8_t l = link_status[lane>>1]; |
| |
| return (l >> s) & 0xf; |
| } |
| |
| /* Check for clock recovery is done on all channels */ |
| static bool |
| intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count) |
| { |
| int lane; |
| uint8_t lane_status; |
| |
| for (lane = 0; lane < lane_count; lane++) { |
| lane_status = intel_get_lane_status(link_status, lane); |
| if ((lane_status & DP_LANE_CR_DONE) == 0) |
| return false; |
| } |
| return true; |
| } |
| |
| /* Check to see if channel eq is done on all channels */ |
| #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\ |
| DP_LANE_CHANNEL_EQ_DONE|\ |
| DP_LANE_SYMBOL_LOCKED) |
| static bool |
| intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE]) |
| { |
| uint8_t lane_align; |
| uint8_t lane_status; |
| int lane; |
| |
| lane_align = intel_dp_link_status(link_status, |
| DP_LANE_ALIGN_STATUS_UPDATED); |
| if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0) |
| return false; |
| for (lane = 0; lane < intel_dp->lane_count; lane++) { |
| lane_status = intel_get_lane_status(link_status, lane); |
| if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool |
| intel_dp_set_link_train(struct intel_dp *intel_dp, |
| uint32_t dp_reg_value, |
| uint8_t dp_train_pat) |
| { |
| struct drm_device *dev = intel_dp->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret; |
| |
| if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) { |
| dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT; |
| |
| switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { |
| case DP_TRAINING_PATTERN_DISABLE: |
| dp_reg_value |= DP_LINK_TRAIN_OFF_CPT; |
| break; |
| case DP_TRAINING_PATTERN_1: |
| dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT; |
| break; |
| case DP_TRAINING_PATTERN_2: |
| dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT; |
| break; |
| case DP_TRAINING_PATTERN_3: |
| DRM_ERROR("DP training pattern 3 not supported\n"); |
| dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT; |
| break; |
| } |
| |
| } else { |
| dp_reg_value &= ~DP_LINK_TRAIN_MASK; |
| |
| switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { |
| case DP_TRAINING_PATTERN_DISABLE: |
| dp_reg_value |= DP_LINK_TRAIN_OFF; |
| break; |
| case DP_TRAINING_PATTERN_1: |
| dp_reg_value |= DP_LINK_TRAIN_PAT_1; |
| break; |
| case DP_TRAINING_PATTERN_2: |
| dp_reg_value |= DP_LINK_TRAIN_PAT_2; |
| break; |
| case DP_TRAINING_PATTERN_3: |
| DRM_ERROR("DP training pattern 3 not supported\n"); |
| dp_reg_value |= DP_LINK_TRAIN_PAT_2; |
| break; |
| } |
| } |
| |
| I915_WRITE(intel_dp->output_reg, dp_reg_value); |
| POSTING_READ(intel_dp->output_reg); |
| |
| intel_dp_aux_native_write_1(intel_dp, |
| DP_TRAINING_PATTERN_SET, |
| dp_train_pat); |
| |
| if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) != |
| DP_TRAINING_PATTERN_DISABLE) { |
| ret = intel_dp_aux_native_write(intel_dp, |
| DP_TRAINING_LANE0_SET, |
| intel_dp->train_set, |
| intel_dp->lane_count); |
| if (ret != intel_dp->lane_count) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Enable corresponding port and start training pattern 1 */ |
| static void |
| intel_dp_start_link_train(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp->base.base.dev; |
| int i; |
| uint8_t voltage; |
| bool clock_recovery = false; |
| int voltage_tries, loop_tries; |
| uint32_t DP = intel_dp->DP; |
| |
| /* Write the link configuration data */ |
| intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET, |
| intel_dp->link_configuration, |
| DP_LINK_CONFIGURATION_SIZE); |
| |
| DP |= DP_PORT_EN; |
| |
| memset(intel_dp->train_set, 0, 4); |
| voltage = 0xff; |
| voltage_tries = 0; |
| loop_tries = 0; |
| clock_recovery = false; |
| for (;;) { |
| /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */ |
| uint8_t link_status[DP_LINK_STATUS_SIZE]; |
| uint32_t signal_levels; |
| |
| |
| if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) { |
| signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]); |
| DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels; |
| } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) { |
| signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]); |
| DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels; |
| } else { |
| signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]); |
| DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels); |
| DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels; |
| } |
| |
| if (!intel_dp_set_link_train(intel_dp, DP, |
| DP_TRAINING_PATTERN_1 | |
| DP_LINK_SCRAMBLING_DISABLE)) |
| break; |
| /* Set training pattern 1 */ |
| |
| udelay(100); |
| if (!intel_dp_get_link_status(intel_dp, link_status)) { |
| DRM_ERROR("failed to get link status\n"); |
| break; |
| } |
| |
| if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) { |
| DRM_DEBUG_KMS("clock recovery OK\n"); |
| clock_recovery = true; |
| break; |
| } |
| |
| /* Check to see if we've tried the max voltage */ |
| for (i = 0; i < intel_dp->lane_count; i++) |
| if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0) |
| break; |
| if (i == intel_dp->lane_count && voltage_tries == 5) { |
| if (++loop_tries == 5) { |
| DRM_DEBUG_KMS("too many full retries, give up\n"); |
| break; |
| } |
| memset(intel_dp->train_set, 0, 4); |
| voltage_tries = 0; |
| continue; |
| } |
| |
| /* Check to see if we've tried the same voltage 5 times */ |
| if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) != voltage) { |
| voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK; |
| voltage_tries = 0; |
| } else |
| ++voltage_tries; |
| |
| /* Compute new intel_dp->train_set as requested by target */ |
| intel_get_adjust_train(intel_dp, link_status); |
| } |
| |
| intel_dp->DP = DP; |
| } |
| |
| static void |
| intel_dp_complete_link_train(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp->base.base.dev; |
| bool channel_eq = false; |
| int tries, cr_tries; |
| uint32_t DP = intel_dp->DP; |
| |
| /* channel equalization */ |
| tries = 0; |
| cr_tries = 0; |
| channel_eq = false; |
| for (;;) { |
| /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */ |
| uint32_t signal_levels; |
| uint8_t link_status[DP_LINK_STATUS_SIZE]; |
| |
| if (cr_tries > 5) { |
| DRM_ERROR("failed to train DP, aborting\n"); |
| intel_dp_link_down(intel_dp); |
| break; |
| } |
| |
| if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) { |
| signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]); |
| DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels; |
| } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) { |
| signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]); |
| DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels; |
| } else { |
| signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]); |
| DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels; |
| } |
| |
| /* channel eq pattern */ |
| if (!intel_dp_set_link_train(intel_dp, DP, |
| DP_TRAINING_PATTERN_2 | |
| DP_LINK_SCRAMBLING_DISABLE)) |
| break; |
| |
| udelay(400); |
| if (!intel_dp_get_link_status(intel_dp, link_status)) |
| break; |
| |
| /* Make sure clock is still ok */ |
| if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) { |
| intel_dp_start_link_train(intel_dp); |
| cr_tries++; |
| continue; |
| } |
| |
| if (intel_channel_eq_ok(intel_dp, link_status)) { |
| channel_eq = true; |
| break; |
| } |
| |
| /* Try 5 times, then try clock recovery if that fails */ |
| if (tries > 5) { |
| intel_dp_link_down(intel_dp); |
| intel_dp_start_link_train(intel_dp); |
| tries = 0; |
| cr_tries++; |
| continue; |
| } |
| |
| /* Compute new intel_dp->train_set as requested by target */ |
| intel_get_adjust_train(intel_dp, link_status); |
| ++tries; |
| } |
| |
| intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE); |
| } |
| |
| static void |
| intel_dp_link_down(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t DP = intel_dp->DP; |
| |
| if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)) |
| return; |
| |
| DRM_DEBUG_KMS("\n"); |
| |
| if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) { |
| DP &= ~DP_LINK_TRAIN_MASK_CPT; |
| I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT); |
| } else { |
| DP &= ~DP_LINK_TRAIN_MASK; |
| I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE); |
| } |
| POSTING_READ(intel_dp->output_reg); |
| |
| msleep(17); |
| |
| if (HAS_PCH_IBX(dev) && |
| I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) { |
| struct drm_crtc *crtc = intel_dp->base.base.crtc; |
| |
| /* Hardware workaround: leaving our transcoder select |
| * set to transcoder B while it's off will prevent the |
| * corresponding HDMI output on transcoder A. |
| * |
| * Combine this with another hardware workaround: |
| * transcoder select bit can only be cleared while the |
| * port is enabled. |
| */ |
| DP &= ~DP_PIPEB_SELECT; |
| I915_WRITE(intel_dp->output_reg, DP); |
| |
| /* Changes to enable or select take place the vblank |
| * after being written. |
| */ |
| if (crtc == NULL) { |
| /* We can arrive here never having been attached |
| * to a CRTC, for instance, due to inheriting |
| * random state from the BIOS. |
| * |
| * If the pipe is not running, play safe and |
| * wait for the clocks to stabilise before |
| * continuing. |
| */ |
| POSTING_READ(intel_dp->output_reg); |
| msleep(50); |
| } else |
| intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe); |
| } |
| |
| DP &= ~DP_AUDIO_OUTPUT_ENABLE; |
| I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN); |
| POSTING_READ(intel_dp->output_reg); |
| msleep(intel_dp->panel_power_down_delay); |
| } |
| |
| static bool |
| intel_dp_get_dpcd(struct intel_dp *intel_dp) |
| { |
| if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd, |
| sizeof(intel_dp->dpcd)) == 0) |
| return false; /* aux transfer failed */ |
| |
| if (intel_dp->dpcd[DP_DPCD_REV] == 0) |
| return false; /* DPCD not present */ |
| |
| if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & |
| DP_DWN_STRM_PORT_PRESENT)) |
| return true; /* native DP sink */ |
| |
| if (intel_dp->dpcd[DP_DPCD_REV] == 0x10) |
| return true; /* no per-port downstream info */ |
| |
| if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0, |
| intel_dp->downstream_ports, |
| DP_MAX_DOWNSTREAM_PORTS) == 0) |
| return false; /* downstream port status fetch failed */ |
| |
| return true; |
| } |
| |
| static void |
| intel_dp_probe_oui(struct intel_dp *intel_dp) |
| { |
| u8 buf[3]; |
| |
| if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT)) |
| return; |
| |
| ironlake_edp_panel_vdd_on(intel_dp); |
| |
| if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3)) |
| DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n", |
| buf[0], buf[1], buf[2]); |
| |
| if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3)) |
| DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n", |
| buf[0], buf[1], buf[2]); |
| |
| ironlake_edp_panel_vdd_off(intel_dp, false); |
| } |
| |
| static bool |
| intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector) |
| { |
| int ret; |
| |
| ret = intel_dp_aux_native_read_retry(intel_dp, |
| DP_DEVICE_SERVICE_IRQ_VECTOR, |
| sink_irq_vector, 1); |
| if (!ret) |
| return false; |
| |
| return true; |
| } |
| |
| static void |
| intel_dp_handle_test_request(struct intel_dp *intel_dp) |
| { |
| /* NAK by default */ |
| intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK); |
| } |
| |
| /* |
| * According to DP spec |
| * 5.1.2: |
| * 1. Read DPCD |
| * 2. Configure link according to Receiver Capabilities |
| * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 |
| * 4. Check link status on receipt of hot-plug interrupt |
| */ |
| |
| static void |
| intel_dp_check_link_status(struct intel_dp *intel_dp) |
| { |
| u8 sink_irq_vector; |
| u8 link_status[DP_LINK_STATUS_SIZE]; |
| |
| if (!intel_dp->base.connectors_active) |
| return; |
| |
| if (WARN_ON(!intel_dp->base.base.crtc)) |
| return; |
| |
| /* Try to read receiver status if the link appears to be up */ |
| if (!intel_dp_get_link_status(intel_dp, link_status)) { |
| intel_dp_link_down(intel_dp); |
| return; |
| } |
| |
| /* Now read the DPCD to see if it's actually running */ |
| if (!intel_dp_get_dpcd(intel_dp)) { |
| intel_dp_link_down(intel_dp); |
| return; |
| } |
| |
| /* Try to read the source of the interrupt */ |
| if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && |
| intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) { |
| /* Clear interrupt source */ |
| intel_dp_aux_native_write_1(intel_dp, |
| DP_DEVICE_SERVICE_IRQ_VECTOR, |
| sink_irq_vector); |
| |
| if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST) |
| intel_dp_handle_test_request(intel_dp); |
| if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ)) |
| DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n"); |
| } |
| |
| if (!intel_channel_eq_ok(intel_dp, link_status)) { |
| DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n", |
| drm_get_encoder_name(&intel_dp->base.base)); |
| intel_dp_start_link_train(intel_dp); |
| intel_dp_complete_link_train(intel_dp); |
| } |
| } |
| |
| /* XXX this is probably wrong for multiple downstream ports */ |
| static enum drm_connector_status |
| intel_dp_detect_dpcd(struct intel_dp *intel_dp) |
| { |
| uint8_t *dpcd = intel_dp->dpcd; |
| bool hpd; |
| uint8_t type; |
| |
| if (!intel_dp_get_dpcd(intel_dp)) |
| return connector_status_disconnected; |
| |
| /* if there's no downstream port, we're done */ |
| if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT)) |
| return connector_status_connected; |
| |
| /* If we're HPD-aware, SINK_COUNT changes dynamically */ |
| hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD); |
| if (hpd) { |
| uint8_t reg; |
| if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT, |
| ®, 1)) |
| return connector_status_unknown; |
| return DP_GET_SINK_COUNT(reg) ? connector_status_connected |
| : connector_status_disconnected; |
| } |
| |
| /* If no HPD, poke DDC gently */ |
| if (drm_probe_ddc(&intel_dp->adapter)) |
| return connector_status_connected; |
| |
| /* Well we tried, say unknown for unreliable port types */ |
| type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; |
| if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID) |
| return connector_status_unknown; |
| |
| /* Anything else is out of spec, warn and ignore */ |
| DRM_DEBUG_KMS("Broken DP branch device, ignoring\n"); |
| return connector_status_disconnected; |
| } |
| |
| static enum drm_connector_status |
| ironlake_dp_detect(struct intel_dp *intel_dp) |
| { |
| enum drm_connector_status status; |
| |
| /* Can't disconnect eDP, but you can close the lid... */ |
| if (is_edp(intel_dp)) { |
| status = intel_panel_detect(intel_dp->base.base.dev); |
| if (status == connector_status_unknown) |
| status = connector_status_connected; |
| return status; |
| } |
| |
| return intel_dp_detect_dpcd(intel_dp); |
| } |
| |
| static enum drm_connector_status |
| g4x_dp_detect(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t bit; |
| |
| switch (intel_dp->output_reg) { |
| case DP_B: |
| bit = DPB_HOTPLUG_LIVE_STATUS; |
| break; |
| case DP_C: |
| bit = DPC_HOTPLUG_LIVE_STATUS; |
| break; |
| case DP_D: |
| bit = DPD_HOTPLUG_LIVE_STATUS; |
| break; |
| default: |
| return connector_status_unknown; |
| } |
| |
| if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0) |
| return connector_status_disconnected; |
| |
| return intel_dp_detect_dpcd(intel_dp); |
| } |
| |
| static struct edid * |
| intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter) |
| { |
| struct intel_dp *intel_dp = intel_attached_dp(connector); |
| struct edid *edid; |
| int size; |
| |
| if (is_edp(intel_dp)) { |
| if (!intel_dp->edid) |
| return NULL; |
| |
| size = (intel_dp->edid->extensions + 1) * EDID_LENGTH; |
| edid = kmalloc(size, GFP_KERNEL); |
| if (!edid) |
| return NULL; |
| |
| memcpy(edid, intel_dp->edid, size); |
| return edid; |
| } |
| |
| edid = drm_get_edid(connector, adapter); |
| return edid; |
| } |
| |
| static int |
| intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter) |
| { |
| struct intel_dp *intel_dp = intel_attached_dp(connector); |
| int ret; |
| |
| if (is_edp(intel_dp)) { |
| drm_mode_connector_update_edid_property(connector, |
| intel_dp->edid); |
| ret = drm_add_edid_modes(connector, intel_dp->edid); |
| drm_edid_to_eld(connector, |
| intel_dp->edid); |
| return intel_dp->edid_mode_count; |
| } |
| |
| ret = intel_ddc_get_modes(connector, adapter); |
| return ret; |
| } |
| |
| |
| /** |
| * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection. |
| * |
| * \return true if DP port is connected. |
| * \return false if DP port is disconnected. |
| */ |
| static enum drm_connector_status |
| intel_dp_detect(struct drm_connector *connector, bool force) |
| { |
| struct intel_dp *intel_dp = intel_attached_dp(connector); |
| struct drm_device *dev = intel_dp->base.base.dev; |
| enum drm_connector_status status; |
| struct edid *edid = NULL; |
| |
| intel_dp->has_audio = false; |
| |
| if (HAS_PCH_SPLIT(dev)) |
| status = ironlake_dp_detect(intel_dp); |
| else |
| status = g4x_dp_detect(intel_dp); |
| |
| DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n", |
| intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2], |
| intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5], |
| intel_dp->dpcd[6], intel_dp->dpcd[7]); |
| |
| if (status != connector_status_connected) |
| return status; |
| |
| intel_dp_probe_oui(intel_dp); |
| |
| if (intel_dp->force_audio != HDMI_AUDIO_AUTO) { |
| intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON); |
| } else { |
| edid = intel_dp_get_edid(connector, &intel_dp->adapter); |
| if (edid) { |
| intel_dp->has_audio = drm_detect_monitor_audio(edid); |
| kfree(edid); |
| } |
| } |
| |
| return connector_status_connected; |
| } |
| |
| static int intel_dp_get_modes(struct drm_connector *connector) |
| { |
| struct intel_dp *intel_dp = intel_attached_dp(connector); |
| struct drm_device *dev = intel_dp->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret; |
| |
| /* We should parse the EDID data and find out if it has an audio sink |
| */ |
| |
| ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter); |
| if (ret) { |
| if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) { |
| struct drm_display_mode *newmode; |
| list_for_each_entry(newmode, &connector->probed_modes, |
| head) { |
| if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) { |
| intel_dp->panel_fixed_mode = |
| drm_mode_duplicate(dev, newmode); |
| break; |
| } |
| } |
| } |
| return ret; |
| } |
| |
| /* if eDP has no EDID, try to use fixed panel mode from VBT */ |
| if (is_edp(intel_dp)) { |
| /* initialize panel mode from VBT if available for eDP */ |
| if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) { |
| intel_dp->panel_fixed_mode = |
| drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode); |
| if (intel_dp->panel_fixed_mode) { |
| intel_dp->panel_fixed_mode->type |= |
| DRM_MODE_TYPE_PREFERRED; |
| } |
| } |
| if (intel_dp->panel_fixed_mode) { |
| struct drm_display_mode *mode; |
| mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode); |
| drm_mode_probed_add(connector, mode); |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static bool |
| intel_dp_detect_audio(struct drm_connector *connector) |
| { |
| struct intel_dp *intel_dp = intel_attached_dp(connector); |
| struct edid *edid; |
| bool has_audio = false; |
| |
| edid = intel_dp_get_edid(connector, &intel_dp->adapter); |
| if (edid) { |
| has_audio = drm_detect_monitor_audio(edid); |
| kfree(edid); |
| } |
| |
| return has_audio; |
| } |
| |
| static int |
| intel_dp_set_property(struct drm_connector *connector, |
| struct drm_property *property, |
| uint64_t val) |
| { |
| struct drm_i915_private *dev_priv = connector->dev->dev_private; |
| struct intel_dp *intel_dp = intel_attached_dp(connector); |
| int ret; |
| |
| ret = drm_connector_property_set_value(connector, property, val); |
| if (ret) |
| return ret; |
| |
| if (property == dev_priv->force_audio_property) { |
| int i = val; |
| bool has_audio; |
| |
| if (i == intel_dp->force_audio) |
| return 0; |
| |
| intel_dp->force_audio = i; |
| |
| if (i == HDMI_AUDIO_AUTO) |
| has_audio = intel_dp_detect_audio(connector); |
| else |
| has_audio = (i == HDMI_AUDIO_ON); |
| |
| if (has_audio == intel_dp->has_audio) |
| return 0; |
| |
| intel_dp->has_audio = has_audio; |
| goto done; |
| } |
| |
| if (property == dev_priv->broadcast_rgb_property) { |
| if (val == !!intel_dp->color_range) |
| return 0; |
| |
| intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0; |
| goto done; |
| } |
| |
| return -EINVAL; |
| |
| done: |
| if (intel_dp->base.base.crtc) { |
| struct drm_crtc *crtc = intel_dp->base.base.crtc; |
| intel_set_mode(crtc, &crtc->mode, |
| crtc->x, crtc->y, crtc->fb); |
| } |
| |
| return 0; |
| } |
| |
| static void |
| intel_dp_destroy(struct drm_connector *connector) |
| { |
| struct drm_device *dev = connector->dev; |
| struct intel_dp *intel_dp = intel_attached_dp(connector); |
| |
| if (is_edp(intel_dp)) |
| intel_panel_destroy_backlight(dev); |
| |
| drm_sysfs_connector_remove(connector); |
| drm_connector_cleanup(connector); |
| kfree(connector); |
| } |
| |
| static void intel_dp_encoder_destroy(struct drm_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(encoder); |
| |
| i2c_del_adapter(&intel_dp->adapter); |
| drm_encoder_cleanup(encoder); |
| if (is_edp(intel_dp)) { |
| kfree(intel_dp->edid); |
| cancel_delayed_work_sync(&intel_dp->panel_vdd_work); |
| ironlake_panel_vdd_off_sync(intel_dp); |
| } |
| kfree(intel_dp); |
| } |
| |
| static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = { |
| .mode_fixup = intel_dp_mode_fixup, |
| .mode_set = intel_dp_mode_set, |
| .disable = intel_encoder_noop, |
| }; |
| |
| static const struct drm_connector_funcs intel_dp_connector_funcs = { |
| .dpms = intel_connector_dpms, |
| .detect = intel_dp_detect, |
| .fill_modes = drm_helper_probe_single_connector_modes, |
| .set_property = intel_dp_set_property, |
| .destroy = intel_dp_destroy, |
| }; |
| |
| static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { |
| .get_modes = intel_dp_get_modes, |
| .mode_valid = intel_dp_mode_valid, |
| .best_encoder = intel_best_encoder, |
| }; |
| |
| static const struct drm_encoder_funcs intel_dp_enc_funcs = { |
| .destroy = intel_dp_encoder_destroy, |
| }; |
| |
| static void |
| intel_dp_hot_plug(struct intel_encoder *intel_encoder) |
| { |
| struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base); |
| |
| intel_dp_check_link_status(intel_dp); |
| } |
| |
| /* Return which DP Port should be selected for Transcoder DP control */ |
| int |
| intel_trans_dp_port_sel(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct intel_encoder *encoder; |
| |
| for_each_encoder_on_crtc(dev, crtc, encoder) { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| |
| if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT || |
| intel_dp->base.type == INTEL_OUTPUT_EDP) |
| return intel_dp->output_reg; |
| } |
| |
| return -1; |
| } |
| |
| /* check the VBT to see whether the eDP is on DP-D port */ |
| bool intel_dpd_is_edp(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct child_device_config *p_child; |
| int i; |
| |
| if (!dev_priv->child_dev_num) |
| return false; |
| |
| for (i = 0; i < dev_priv->child_dev_num; i++) { |
| p_child = dev_priv->child_dev + i; |
| |
| if (p_child->dvo_port == PORT_IDPD && |
| p_child->device_type == DEVICE_TYPE_eDP) |
| return true; |
| } |
| return false; |
| } |
| |
| static void |
| intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) |
| { |
| intel_attach_force_audio_property(connector); |
| intel_attach_broadcast_rgb_property(connector); |
| } |
| |
| void |
| intel_dp_init(struct drm_device *dev, int output_reg, enum port port) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_connector *connector; |
| struct intel_dp *intel_dp; |
| struct intel_encoder *intel_encoder; |
| struct intel_connector *intel_connector; |
| const char *name = NULL; |
| int type; |
| |
| intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL); |
| if (!intel_dp) |
| return; |
| |
| intel_dp->output_reg = output_reg; |
| intel_dp->port = port; |
| /* Preserve the current hw state. */ |
| intel_dp->DP = I915_READ(intel_dp->output_reg); |
| |
| intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL); |
| if (!intel_connector) { |
| kfree(intel_dp); |
| return; |
| } |
| intel_encoder = &intel_dp->base; |
| |
| if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D) |
| if (intel_dpd_is_edp(dev)) |
| intel_dp->is_pch_edp = true; |
| |
| if (output_reg == DP_A || is_pch_edp(intel_dp)) { |
| type = DRM_MODE_CONNECTOR_eDP; |
| intel_encoder->type = INTEL_OUTPUT_EDP; |
| } else { |
| type = DRM_MODE_CONNECTOR_DisplayPort; |
| intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; |
| } |
| |
| connector = &intel_connector->base; |
| drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); |
| drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); |
| |
| connector->polled = DRM_CONNECTOR_POLL_HPD; |
| |
| intel_encoder->cloneable = false; |
| |
| INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, |
| ironlake_panel_vdd_work); |
| |
| intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); |
| |
| connector->interlace_allowed = true; |
| connector->doublescan_allowed = 0; |
| |
| drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs, |
| DRM_MODE_ENCODER_TMDS); |
| drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs); |
| |
| intel_connector_attach_encoder(intel_connector, intel_encoder); |
| drm_sysfs_connector_add(connector); |
| |
| intel_encoder->enable = intel_enable_dp; |
| intel_encoder->pre_enable = intel_pre_enable_dp; |
| intel_encoder->disable = intel_disable_dp; |
| intel_encoder->post_disable = intel_post_disable_dp; |
| intel_encoder->get_hw_state = intel_dp_get_hw_state; |
| intel_connector->get_hw_state = intel_connector_get_hw_state; |
| |
| /* Set up the DDC bus. */ |
| switch (port) { |
| case PORT_A: |
| name = "DPDDC-A"; |
| break; |
| case PORT_B: |
| dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS; |
| name = "DPDDC-B"; |
| break; |
| case PORT_C: |
| dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS; |
| name = "DPDDC-C"; |
| break; |
| case PORT_D: |
| dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS; |
| name = "DPDDC-D"; |
| break; |
| default: |
| WARN(1, "Invalid port %c\n", port_name(port)); |
| break; |
| } |
| |
| /* Cache some DPCD data in the eDP case */ |
| if (is_edp(intel_dp)) { |
| struct edp_power_seq cur, vbt; |
| u32 pp_on, pp_off, pp_div; |
| |
| pp_on = I915_READ(PCH_PP_ON_DELAYS); |
| pp_off = I915_READ(PCH_PP_OFF_DELAYS); |
| pp_div = I915_READ(PCH_PP_DIVISOR); |
| |
| if (!pp_on || !pp_off || !pp_div) { |
| DRM_INFO("bad panel power sequencing delays, disabling panel\n"); |
| intel_dp_encoder_destroy(&intel_dp->base.base); |
| intel_dp_destroy(&intel_connector->base); |
| return; |
| } |
| |
| /* Pull timing values out of registers */ |
| cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >> |
| PANEL_POWER_UP_DELAY_SHIFT; |
| |
| cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >> |
| PANEL_LIGHT_ON_DELAY_SHIFT; |
| |
| cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >> |
| PANEL_LIGHT_OFF_DELAY_SHIFT; |
| |
| cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >> |
| PANEL_POWER_DOWN_DELAY_SHIFT; |
| |
| cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >> |
| PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000; |
| |
| DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", |
| cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12); |
| |
| vbt = dev_priv->edp.pps; |
| |
| DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", |
| vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12); |
| |
| #define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10) |
| |
| intel_dp->panel_power_up_delay = get_delay(t1_t3); |
| intel_dp->backlight_on_delay = get_delay(t8); |
| intel_dp->backlight_off_delay = get_delay(t9); |
| intel_dp->panel_power_down_delay = get_delay(t10); |
| intel_dp->panel_power_cycle_delay = get_delay(t11_t12); |
| |
| DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n", |
| intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay, |
| intel_dp->panel_power_cycle_delay); |
| |
| DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n", |
| intel_dp->backlight_on_delay, intel_dp->backlight_off_delay); |
| } |
| |
| intel_dp_i2c_init(intel_dp, intel_connector, name); |
| |
| if (is_edp(intel_dp)) { |
| bool ret; |
| struct edid *edid; |
| |
| ironlake_edp_panel_vdd_on(intel_dp); |
| ret = intel_dp_get_dpcd(intel_dp); |
| ironlake_edp_panel_vdd_off(intel_dp, false); |
| |
| if (ret) { |
| if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) |
| dev_priv->no_aux_handshake = |
| intel_dp->dpcd[DP_MAX_DOWNSPREAD] & |
| DP_NO_AUX_HANDSHAKE_LINK_TRAINING; |
| } else { |
| /* if this fails, presume the device is a ghost */ |
| DRM_INFO("failed to retrieve link info, disabling eDP\n"); |
| intel_dp_encoder_destroy(&intel_dp->base.base); |
| intel_dp_destroy(&intel_connector->base); |
| return; |
| } |
| |
| ironlake_edp_panel_vdd_on(intel_dp); |
| edid = drm_get_edid(connector, &intel_dp->adapter); |
| if (edid) { |
| drm_mode_connector_update_edid_property(connector, |
| edid); |
| intel_dp->edid_mode_count = |
| drm_add_edid_modes(connector, edid); |
| drm_edid_to_eld(connector, edid); |
| intel_dp->edid = edid; |
| } |
| ironlake_edp_panel_vdd_off(intel_dp, false); |
| } |
| |
| intel_encoder->hot_plug = intel_dp_hot_plug; |
| |
| if (is_edp(intel_dp)) { |
| dev_priv->int_edp_connector = connector; |
| intel_panel_setup_backlight(dev); |
| } |
| |
| intel_dp_add_properties(intel_dp, connector); |
| |
| /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written |
| * 0xd. Failure to do so will result in spurious interrupts being |
| * generated on the port when a cable is not attached. |
| */ |
| if (IS_G4X(dev) && !IS_GM45(dev)) { |
| u32 temp = I915_READ(PEG_BAND_GAP_DATA); |
| I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); |
| } |
| } |