| /* |
| * This test checks the response of the system clock to frequency |
| * steps made with adjtimex(). The frequency error and stability of |
| * the CLOCK_MONOTONIC clock relative to the CLOCK_MONOTONIC_RAW clock |
| * is measured in two intervals following the step. The test fails if |
| * values from the second interval exceed specified limits. |
| * |
| * Copyright (C) Miroslav Lichvar <mlichvar@redhat.com> 2017 |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| */ |
| |
| #include <math.h> |
| #include <stdio.h> |
| #include <sys/timex.h> |
| #include <time.h> |
| #include <unistd.h> |
| |
| #include "../kselftest.h" |
| |
| #define SAMPLES 100 |
| #define SAMPLE_READINGS 10 |
| #define MEAN_SAMPLE_INTERVAL 0.1 |
| #define STEP_INTERVAL 1.0 |
| #define MAX_PRECISION 100e-9 |
| #define MAX_FREQ_ERROR 10e-6 |
| #define MAX_STDDEV 1000e-9 |
| |
| struct sample { |
| double offset; |
| double time; |
| }; |
| |
| static time_t mono_raw_base; |
| static time_t mono_base; |
| static long user_hz; |
| static double precision; |
| static double mono_freq_offset; |
| |
| static double diff_timespec(struct timespec *ts1, struct timespec *ts2) |
| { |
| return ts1->tv_sec - ts2->tv_sec + (ts1->tv_nsec - ts2->tv_nsec) / 1e9; |
| } |
| |
| static double get_sample(struct sample *sample) |
| { |
| double delay, mindelay = 0.0; |
| struct timespec ts1, ts2, ts3; |
| int i; |
| |
| for (i = 0; i < SAMPLE_READINGS; i++) { |
| clock_gettime(CLOCK_MONOTONIC_RAW, &ts1); |
| clock_gettime(CLOCK_MONOTONIC, &ts2); |
| clock_gettime(CLOCK_MONOTONIC_RAW, &ts3); |
| |
| ts1.tv_sec -= mono_raw_base; |
| ts2.tv_sec -= mono_base; |
| ts3.tv_sec -= mono_raw_base; |
| |
| delay = diff_timespec(&ts3, &ts1); |
| if (delay <= 1e-9) { |
| i--; |
| continue; |
| } |
| |
| if (!i || delay < mindelay) { |
| sample->offset = diff_timespec(&ts2, &ts1); |
| sample->offset -= delay / 2.0; |
| sample->time = ts1.tv_sec + ts1.tv_nsec / 1e9; |
| mindelay = delay; |
| } |
| } |
| |
| return mindelay; |
| } |
| |
| static void reset_ntp_error(void) |
| { |
| struct timex txc; |
| |
| txc.modes = ADJ_SETOFFSET; |
| txc.time.tv_sec = 0; |
| txc.time.tv_usec = 0; |
| |
| if (adjtimex(&txc) < 0) { |
| perror("[FAIL] adjtimex"); |
| ksft_exit_fail(); |
| } |
| } |
| |
| static void set_frequency(double freq) |
| { |
| struct timex txc; |
| int tick_offset; |
| |
| tick_offset = 1e6 * freq / user_hz; |
| |
| txc.modes = ADJ_TICK | ADJ_FREQUENCY; |
| txc.tick = 1000000 / user_hz + tick_offset; |
| txc.freq = (1e6 * freq - user_hz * tick_offset) * (1 << 16); |
| |
| if (adjtimex(&txc) < 0) { |
| perror("[FAIL] adjtimex"); |
| ksft_exit_fail(); |
| } |
| } |
| |
| static void regress(struct sample *samples, int n, double *intercept, |
| double *slope, double *r_stddev, double *r_max) |
| { |
| double x, y, r, x_sum, y_sum, xy_sum, x2_sum, r2_sum; |
| int i; |
| |
| x_sum = 0.0, y_sum = 0.0, xy_sum = 0.0, x2_sum = 0.0; |
| |
| for (i = 0; i < n; i++) { |
| x = samples[i].time; |
| y = samples[i].offset; |
| |
| x_sum += x; |
| y_sum += y; |
| xy_sum += x * y; |
| x2_sum += x * x; |
| } |
| |
| *slope = (xy_sum - x_sum * y_sum / n) / (x2_sum - x_sum * x_sum / n); |
| *intercept = (y_sum - *slope * x_sum) / n; |
| |
| *r_max = 0.0, r2_sum = 0.0; |
| |
| for (i = 0; i < n; i++) { |
| x = samples[i].time; |
| y = samples[i].offset; |
| r = fabs(x * *slope + *intercept - y); |
| if (*r_max < r) |
| *r_max = r; |
| r2_sum += r * r; |
| } |
| |
| *r_stddev = sqrt(r2_sum / n); |
| } |
| |
| static int run_test(int calibration, double freq_base, double freq_step) |
| { |
| struct sample samples[SAMPLES]; |
| double intercept, slope, stddev1, max1, stddev2, max2; |
| double freq_error1, freq_error2; |
| int i; |
| |
| set_frequency(freq_base); |
| |
| for (i = 0; i < 10; i++) |
| usleep(1e6 * MEAN_SAMPLE_INTERVAL / 10); |
| |
| reset_ntp_error(); |
| |
| set_frequency(freq_base + freq_step); |
| |
| for (i = 0; i < 10; i++) |
| usleep(rand() % 2000000 * STEP_INTERVAL / 10); |
| |
| set_frequency(freq_base); |
| |
| for (i = 0; i < SAMPLES; i++) { |
| usleep(rand() % 2000000 * MEAN_SAMPLE_INTERVAL); |
| get_sample(&samples[i]); |
| } |
| |
| if (calibration) { |
| regress(samples, SAMPLES, &intercept, &slope, &stddev1, &max1); |
| mono_freq_offset = slope; |
| printf("CLOCK_MONOTONIC_RAW frequency offset: %11.3f ppm\n", |
| 1e6 * mono_freq_offset); |
| return 0; |
| } |
| |
| regress(samples, SAMPLES / 2, &intercept, &slope, &stddev1, &max1); |
| freq_error1 = slope * (1.0 - mono_freq_offset) - mono_freq_offset - |
| freq_base; |
| |
| regress(samples + SAMPLES / 2, SAMPLES / 2, &intercept, &slope, |
| &stddev2, &max2); |
| freq_error2 = slope * (1.0 - mono_freq_offset) - mono_freq_offset - |
| freq_base; |
| |
| printf("%6.0f %+10.3f %6.0f %7.0f %+10.3f %6.0f %7.0f\t", |
| 1e6 * freq_step, |
| 1e6 * freq_error1, 1e9 * stddev1, 1e9 * max1, |
| 1e6 * freq_error2, 1e9 * stddev2, 1e9 * max2); |
| |
| if (fabs(freq_error2) > MAX_FREQ_ERROR || stddev2 > MAX_STDDEV) { |
| printf("[FAIL]\n"); |
| return 1; |
| } |
| |
| printf("[OK]\n"); |
| return 0; |
| } |
| |
| static void init_test(void) |
| { |
| struct timespec ts; |
| struct sample sample; |
| |
| if (clock_gettime(CLOCK_MONOTONIC_RAW, &ts)) { |
| perror("[FAIL] clock_gettime(CLOCK_MONOTONIC_RAW)"); |
| ksft_exit_fail(); |
| } |
| |
| mono_raw_base = ts.tv_sec; |
| |
| if (clock_gettime(CLOCK_MONOTONIC, &ts)) { |
| perror("[FAIL] clock_gettime(CLOCK_MONOTONIC)"); |
| ksft_exit_fail(); |
| } |
| |
| mono_base = ts.tv_sec; |
| |
| user_hz = sysconf(_SC_CLK_TCK); |
| |
| precision = get_sample(&sample) / 2.0; |
| printf("CLOCK_MONOTONIC_RAW+CLOCK_MONOTONIC precision: %.0f ns\t\t", |
| 1e9 * precision); |
| |
| if (precision > MAX_PRECISION) { |
| printf("[SKIP]\n"); |
| ksft_exit_skip(); |
| } |
| |
| printf("[OK]\n"); |
| srand(ts.tv_sec ^ ts.tv_nsec); |
| |
| run_test(1, 0.0, 0.0); |
| } |
| |
| int main(int argc, char **argv) |
| { |
| double freq_base, freq_step; |
| int i, j, fails = 0; |
| |
| init_test(); |
| |
| printf("Checking response to frequency step:\n"); |
| printf(" Step 1st interval 2nd interval\n"); |
| printf(" Freq Dev Max Freq Dev Max\n"); |
| |
| for (i = 2; i >= 0; i--) { |
| for (j = 0; j < 5; j++) { |
| freq_base = (rand() % (1 << 24) - (1 << 23)) / 65536e6; |
| freq_step = 10e-6 * (1 << (6 * i)); |
| fails += run_test(0, freq_base, freq_step); |
| } |
| } |
| |
| set_frequency(0.0); |
| |
| if (fails) |
| ksft_exit_fail(); |
| |
| ksft_exit_pass(); |
| } |