| /* |
| * linux/kernel/time/tick-sched.c |
| * |
| * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> |
| * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
| * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner |
| * |
| * No idle tick implementation for low and high resolution timers |
| * |
| * Started by: Thomas Gleixner and Ingo Molnar |
| * |
| * For licencing details see kernel-base/COPYING |
| */ |
| #include <linux/cpu.h> |
| #include <linux/err.h> |
| #include <linux/hrtimer.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/percpu.h> |
| #include <linux/profile.h> |
| #include <linux/sched.h> |
| #include <linux/tick.h> |
| |
| #include <asm/irq_regs.h> |
| |
| #include "tick-internal.h" |
| |
| /* |
| * Per cpu nohz control structure |
| */ |
| static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); |
| |
| /* |
| * The time, when the last jiffy update happened. Protected by xtime_lock. |
| */ |
| static ktime_t last_jiffies_update; |
| |
| struct tick_sched *tick_get_tick_sched(int cpu) |
| { |
| return &per_cpu(tick_cpu_sched, cpu); |
| } |
| |
| /* |
| * Must be called with interrupts disabled ! |
| */ |
| static void tick_do_update_jiffies64(ktime_t now) |
| { |
| unsigned long ticks = 0; |
| ktime_t delta; |
| |
| /* Reevalute with xtime_lock held */ |
| write_seqlock(&xtime_lock); |
| |
| delta = ktime_sub(now, last_jiffies_update); |
| if (delta.tv64 >= tick_period.tv64) { |
| |
| delta = ktime_sub(delta, tick_period); |
| last_jiffies_update = ktime_add(last_jiffies_update, |
| tick_period); |
| |
| /* Slow path for long timeouts */ |
| if (unlikely(delta.tv64 >= tick_period.tv64)) { |
| s64 incr = ktime_to_ns(tick_period); |
| |
| ticks = ktime_divns(delta, incr); |
| |
| last_jiffies_update = ktime_add_ns(last_jiffies_update, |
| incr * ticks); |
| } |
| do_timer(++ticks); |
| } |
| write_sequnlock(&xtime_lock); |
| } |
| |
| /* |
| * Initialize and return retrieve the jiffies update. |
| */ |
| static ktime_t tick_init_jiffy_update(void) |
| { |
| ktime_t period; |
| |
| write_seqlock(&xtime_lock); |
| /* Did we start the jiffies update yet ? */ |
| if (last_jiffies_update.tv64 == 0) |
| last_jiffies_update = tick_next_period; |
| period = last_jiffies_update; |
| write_sequnlock(&xtime_lock); |
| return period; |
| } |
| |
| /* |
| * NOHZ - aka dynamic tick functionality |
| */ |
| #ifdef CONFIG_NO_HZ |
| /* |
| * NO HZ enabled ? |
| */ |
| static int tick_nohz_enabled __read_mostly = 1; |
| |
| /* |
| * Enable / Disable tickless mode |
| */ |
| static int __init setup_tick_nohz(char *str) |
| { |
| if (!strcmp(str, "off")) |
| tick_nohz_enabled = 0; |
| else if (!strcmp(str, "on")) |
| tick_nohz_enabled = 1; |
| else |
| return 0; |
| return 1; |
| } |
| |
| __setup("nohz=", setup_tick_nohz); |
| |
| /** |
| * tick_nohz_update_jiffies - update jiffies when idle was interrupted |
| * |
| * Called from interrupt entry when the CPU was idle |
| * |
| * In case the sched_tick was stopped on this CPU, we have to check if jiffies |
| * must be updated. Otherwise an interrupt handler could use a stale jiffy |
| * value. We do this unconditionally on any cpu, as we don't know whether the |
| * cpu, which has the update task assigned is in a long sleep. |
| */ |
| void tick_nohz_update_jiffies(void) |
| { |
| int cpu = smp_processor_id(); |
| struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); |
| unsigned long flags; |
| ktime_t now; |
| |
| if (!ts->tick_stopped) |
| return; |
| |
| cpu_clear(cpu, nohz_cpu_mask); |
| now = ktime_get(); |
| |
| local_irq_save(flags); |
| tick_do_update_jiffies64(now); |
| local_irq_restore(flags); |
| } |
| |
| /** |
| * tick_nohz_stop_sched_tick - stop the idle tick from the idle task |
| * |
| * When the next event is more than a tick into the future, stop the idle tick |
| * Called either from the idle loop or from irq_exit() when an idle period was |
| * just interrupted by an interrupt which did not cause a reschedule. |
| */ |
| void tick_nohz_stop_sched_tick(void) |
| { |
| unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags; |
| struct tick_sched *ts; |
| ktime_t last_update, expires, now, delta; |
| int cpu; |
| |
| local_irq_save(flags); |
| |
| cpu = smp_processor_id(); |
| ts = &per_cpu(tick_cpu_sched, cpu); |
| |
| /* |
| * If this cpu is offline and it is the one which updates |
| * jiffies, then give up the assignment and let it be taken by |
| * the cpu which runs the tick timer next. If we don't drop |
| * this here the jiffies might be stale and do_timer() never |
| * invoked. |
| */ |
| if (unlikely(!cpu_online(cpu))) { |
| if (cpu == tick_do_timer_cpu) |
| tick_do_timer_cpu = -1; |
| } |
| |
| if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) |
| goto end; |
| |
| if (need_resched()) |
| goto end; |
| |
| cpu = smp_processor_id(); |
| if (unlikely(local_softirq_pending())) { |
| static int ratelimit; |
| |
| if (ratelimit < 10) { |
| printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", |
| local_softirq_pending()); |
| ratelimit++; |
| } |
| } |
| |
| now = ktime_get(); |
| /* |
| * When called from irq_exit we need to account the idle sleep time |
| * correctly. |
| */ |
| if (ts->tick_stopped) { |
| delta = ktime_sub(now, ts->idle_entrytime); |
| ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); |
| } |
| |
| ts->idle_entrytime = now; |
| ts->idle_calls++; |
| |
| /* Read jiffies and the time when jiffies were updated last */ |
| do { |
| seq = read_seqbegin(&xtime_lock); |
| last_update = last_jiffies_update; |
| last_jiffies = jiffies; |
| } while (read_seqretry(&xtime_lock, seq)); |
| |
| /* Get the next timer wheel timer */ |
| next_jiffies = get_next_timer_interrupt(last_jiffies); |
| delta_jiffies = next_jiffies - last_jiffies; |
| |
| if (rcu_needs_cpu(cpu)) |
| delta_jiffies = 1; |
| /* |
| * Do not stop the tick, if we are only one off |
| * or if the cpu is required for rcu |
| */ |
| if (!ts->tick_stopped && delta_jiffies == 1) |
| goto out; |
| |
| /* Schedule the tick, if we are at least one jiffie off */ |
| if ((long)delta_jiffies >= 1) { |
| |
| if (delta_jiffies > 1) |
| cpu_set(cpu, nohz_cpu_mask); |
| /* |
| * nohz_stop_sched_tick can be called several times before |
| * the nohz_restart_sched_tick is called. This happens when |
| * interrupts arrive which do not cause a reschedule. In the |
| * first call we save the current tick time, so we can restart |
| * the scheduler tick in nohz_restart_sched_tick. |
| */ |
| if (!ts->tick_stopped) { |
| if (select_nohz_load_balancer(1)) { |
| /* |
| * sched tick not stopped! |
| */ |
| cpu_clear(cpu, nohz_cpu_mask); |
| goto out; |
| } |
| |
| ts->idle_tick = ts->sched_timer.expires; |
| ts->tick_stopped = 1; |
| ts->idle_jiffies = last_jiffies; |
| } |
| |
| /* |
| * If this cpu is the one which updates jiffies, then |
| * give up the assignment and let it be taken by the |
| * cpu which runs the tick timer next, which might be |
| * this cpu as well. If we don't drop this here the |
| * jiffies might be stale and do_timer() never |
| * invoked. |
| */ |
| if (cpu == tick_do_timer_cpu) |
| tick_do_timer_cpu = -1; |
| |
| ts->idle_sleeps++; |
| |
| /* |
| * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that |
| * there is no timer pending or at least extremly far |
| * into the future (12 days for HZ=1000). In this case |
| * we simply stop the tick timer: |
| */ |
| if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) { |
| ts->idle_expires.tv64 = KTIME_MAX; |
| if (ts->nohz_mode == NOHZ_MODE_HIGHRES) |
| hrtimer_cancel(&ts->sched_timer); |
| goto out; |
| } |
| |
| /* |
| * calculate the expiry time for the next timer wheel |
| * timer |
| */ |
| expires = ktime_add_ns(last_update, tick_period.tv64 * |
| delta_jiffies); |
| ts->idle_expires = expires; |
| |
| if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { |
| hrtimer_start(&ts->sched_timer, expires, |
| HRTIMER_MODE_ABS); |
| /* Check, if the timer was already in the past */ |
| if (hrtimer_active(&ts->sched_timer)) |
| goto out; |
| } else if(!tick_program_event(expires, 0)) |
| goto out; |
| /* |
| * We are past the event already. So we crossed a |
| * jiffie boundary. Update jiffies and raise the |
| * softirq. |
| */ |
| tick_do_update_jiffies64(ktime_get()); |
| cpu_clear(cpu, nohz_cpu_mask); |
| } |
| raise_softirq_irqoff(TIMER_SOFTIRQ); |
| out: |
| ts->next_jiffies = next_jiffies; |
| ts->last_jiffies = last_jiffies; |
| end: |
| local_irq_restore(flags); |
| } |
| |
| /** |
| * nohz_restart_sched_tick - restart the idle tick from the idle task |
| * |
| * Restart the idle tick when the CPU is woken up from idle |
| */ |
| void tick_nohz_restart_sched_tick(void) |
| { |
| int cpu = smp_processor_id(); |
| struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); |
| unsigned long ticks; |
| ktime_t now, delta; |
| |
| if (!ts->tick_stopped) |
| return; |
| |
| /* Update jiffies first */ |
| now = ktime_get(); |
| |
| local_irq_disable(); |
| select_nohz_load_balancer(0); |
| tick_do_update_jiffies64(now); |
| cpu_clear(cpu, nohz_cpu_mask); |
| |
| /* Account the idle time */ |
| delta = ktime_sub(now, ts->idle_entrytime); |
| ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); |
| |
| /* |
| * We stopped the tick in idle. Update process times would miss the |
| * time we slept as update_process_times does only a 1 tick |
| * accounting. Enforce that this is accounted to idle ! |
| */ |
| ticks = jiffies - ts->idle_jiffies; |
| /* |
| * We might be one off. Do not randomly account a huge number of ticks! |
| */ |
| if (ticks && ticks < LONG_MAX) { |
| add_preempt_count(HARDIRQ_OFFSET); |
| account_system_time(current, HARDIRQ_OFFSET, |
| jiffies_to_cputime(ticks)); |
| sub_preempt_count(HARDIRQ_OFFSET); |
| } |
| |
| /* |
| * Cancel the scheduled timer and restore the tick |
| */ |
| ts->tick_stopped = 0; |
| hrtimer_cancel(&ts->sched_timer); |
| ts->sched_timer.expires = ts->idle_tick; |
| |
| while (1) { |
| /* Forward the time to expire in the future */ |
| hrtimer_forward(&ts->sched_timer, now, tick_period); |
| |
| if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { |
| hrtimer_start(&ts->sched_timer, |
| ts->sched_timer.expires, |
| HRTIMER_MODE_ABS); |
| /* Check, if the timer was already in the past */ |
| if (hrtimer_active(&ts->sched_timer)) |
| break; |
| } else { |
| if (!tick_program_event(ts->sched_timer.expires, 0)) |
| break; |
| } |
| /* Update jiffies and reread time */ |
| tick_do_update_jiffies64(now); |
| now = ktime_get(); |
| } |
| local_irq_enable(); |
| } |
| |
| static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) |
| { |
| hrtimer_forward(&ts->sched_timer, now, tick_period); |
| return tick_program_event(ts->sched_timer.expires, 0); |
| } |
| |
| /* |
| * The nohz low res interrupt handler |
| */ |
| static void tick_nohz_handler(struct clock_event_device *dev) |
| { |
| struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); |
| struct pt_regs *regs = get_irq_regs(); |
| int cpu = smp_processor_id(); |
| ktime_t now = ktime_get(); |
| |
| dev->next_event.tv64 = KTIME_MAX; |
| |
| /* |
| * Check if the do_timer duty was dropped. We don't care about |
| * concurrency: This happens only when the cpu in charge went |
| * into a long sleep. If two cpus happen to assign themself to |
| * this duty, then the jiffies update is still serialized by |
| * xtime_lock. |
| */ |
| if (unlikely(tick_do_timer_cpu == -1)) |
| tick_do_timer_cpu = cpu; |
| |
| /* Check, if the jiffies need an update */ |
| if (tick_do_timer_cpu == cpu) |
| tick_do_update_jiffies64(now); |
| |
| /* |
| * When we are idle and the tick is stopped, we have to touch |
| * the watchdog as we might not schedule for a really long |
| * time. This happens on complete idle SMP systems while |
| * waiting on the login prompt. We also increment the "start |
| * of idle" jiffy stamp so the idle accounting adjustment we |
| * do when we go busy again does not account too much ticks. |
| */ |
| if (ts->tick_stopped) { |
| touch_softlockup_watchdog(); |
| ts->idle_jiffies++; |
| } |
| |
| update_process_times(user_mode(regs)); |
| profile_tick(CPU_PROFILING); |
| |
| /* Do not restart, when we are in the idle loop */ |
| if (ts->tick_stopped) |
| return; |
| |
| while (tick_nohz_reprogram(ts, now)) { |
| now = ktime_get(); |
| tick_do_update_jiffies64(now); |
| } |
| } |
| |
| /** |
| * tick_nohz_switch_to_nohz - switch to nohz mode |
| */ |
| static void tick_nohz_switch_to_nohz(void) |
| { |
| struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); |
| ktime_t next; |
| |
| if (!tick_nohz_enabled) |
| return; |
| |
| local_irq_disable(); |
| if (tick_switch_to_oneshot(tick_nohz_handler)) { |
| local_irq_enable(); |
| return; |
| } |
| |
| ts->nohz_mode = NOHZ_MODE_LOWRES; |
| |
| /* |
| * Recycle the hrtimer in ts, so we can share the |
| * hrtimer_forward with the highres code. |
| */ |
| hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); |
| /* Get the next period */ |
| next = tick_init_jiffy_update(); |
| |
| for (;;) { |
| ts->sched_timer.expires = next; |
| if (!tick_program_event(next, 0)) |
| break; |
| next = ktime_add(next, tick_period); |
| } |
| local_irq_enable(); |
| |
| printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", |
| smp_processor_id()); |
| } |
| |
| #else |
| |
| static inline void tick_nohz_switch_to_nohz(void) { } |
| |
| #endif /* NO_HZ */ |
| |
| /* |
| * High resolution timer specific code |
| */ |
| #ifdef CONFIG_HIGH_RES_TIMERS |
| /* |
| * We rearm the timer until we get disabled by the idle code |
| * Called with interrupts disabled and timer->base->cpu_base->lock held. |
| */ |
| static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) |
| { |
| struct tick_sched *ts = |
| container_of(timer, struct tick_sched, sched_timer); |
| struct hrtimer_cpu_base *base = timer->base->cpu_base; |
| struct pt_regs *regs = get_irq_regs(); |
| ktime_t now = ktime_get(); |
| int cpu = smp_processor_id(); |
| |
| #ifdef CONFIG_NO_HZ |
| /* |
| * Check if the do_timer duty was dropped. We don't care about |
| * concurrency: This happens only when the cpu in charge went |
| * into a long sleep. If two cpus happen to assign themself to |
| * this duty, then the jiffies update is still serialized by |
| * xtime_lock. |
| */ |
| if (unlikely(tick_do_timer_cpu == -1)) |
| tick_do_timer_cpu = cpu; |
| #endif |
| |
| /* Check, if the jiffies need an update */ |
| if (tick_do_timer_cpu == cpu) |
| tick_do_update_jiffies64(now); |
| |
| /* |
| * Do not call, when we are not in irq context and have |
| * no valid regs pointer |
| */ |
| if (regs) { |
| /* |
| * When we are idle and the tick is stopped, we have to touch |
| * the watchdog as we might not schedule for a really long |
| * time. This happens on complete idle SMP systems while |
| * waiting on the login prompt. We also increment the "start of |
| * idle" jiffy stamp so the idle accounting adjustment we do |
| * when we go busy again does not account too much ticks. |
| */ |
| if (ts->tick_stopped) { |
| touch_softlockup_watchdog(); |
| ts->idle_jiffies++; |
| } |
| /* |
| * update_process_times() might take tasklist_lock, hence |
| * drop the base lock. sched-tick hrtimers are per-CPU and |
| * never accessible by userspace APIs, so this is safe to do. |
| */ |
| spin_unlock(&base->lock); |
| update_process_times(user_mode(regs)); |
| profile_tick(CPU_PROFILING); |
| spin_lock(&base->lock); |
| } |
| |
| /* Do not restart, when we are in the idle loop */ |
| if (ts->tick_stopped) |
| return HRTIMER_NORESTART; |
| |
| hrtimer_forward(timer, now, tick_period); |
| |
| return HRTIMER_RESTART; |
| } |
| |
| /** |
| * tick_setup_sched_timer - setup the tick emulation timer |
| */ |
| void tick_setup_sched_timer(void) |
| { |
| struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); |
| ktime_t now = ktime_get(); |
| u64 offset; |
| |
| /* |
| * Emulate tick processing via per-CPU hrtimers: |
| */ |
| hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); |
| ts->sched_timer.function = tick_sched_timer; |
| ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; |
| |
| /* Get the next period (per cpu) */ |
| ts->sched_timer.expires = tick_init_jiffy_update(); |
| offset = ktime_to_ns(tick_period) >> 1; |
| do_div(offset, num_possible_cpus()); |
| offset *= smp_processor_id(); |
| ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset); |
| |
| for (;;) { |
| hrtimer_forward(&ts->sched_timer, now, tick_period); |
| hrtimer_start(&ts->sched_timer, ts->sched_timer.expires, |
| HRTIMER_MODE_ABS); |
| /* Check, if the timer was already in the past */ |
| if (hrtimer_active(&ts->sched_timer)) |
| break; |
| now = ktime_get(); |
| } |
| |
| #ifdef CONFIG_NO_HZ |
| if (tick_nohz_enabled) |
| ts->nohz_mode = NOHZ_MODE_HIGHRES; |
| #endif |
| } |
| |
| void tick_cancel_sched_timer(int cpu) |
| { |
| struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); |
| |
| if (ts->sched_timer.base) |
| hrtimer_cancel(&ts->sched_timer); |
| ts->tick_stopped = 0; |
| ts->nohz_mode = NOHZ_MODE_INACTIVE; |
| } |
| #endif /* HIGH_RES_TIMERS */ |
| |
| /** |
| * Async notification about clocksource changes |
| */ |
| void tick_clock_notify(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) |
| set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); |
| } |
| |
| /* |
| * Async notification about clock event changes |
| */ |
| void tick_oneshot_notify(void) |
| { |
| struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); |
| |
| set_bit(0, &ts->check_clocks); |
| } |
| |
| /** |
| * Check, if a change happened, which makes oneshot possible. |
| * |
| * Called cyclic from the hrtimer softirq (driven by the timer |
| * softirq) allow_nohz signals, that we can switch into low-res nohz |
| * mode, because high resolution timers are disabled (either compile |
| * or runtime). |
| */ |
| int tick_check_oneshot_change(int allow_nohz) |
| { |
| struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); |
| |
| if (!test_and_clear_bit(0, &ts->check_clocks)) |
| return 0; |
| |
| if (ts->nohz_mode != NOHZ_MODE_INACTIVE) |
| return 0; |
| |
| if (!timekeeping_is_continuous() || !tick_is_oneshot_available()) |
| return 0; |
| |
| if (!allow_nohz) |
| return 1; |
| |
| tick_nohz_switch_to_nohz(); |
| return 0; |
| } |