| /* |
| * S390 version |
| * Copyright IBM Corp. 1999 |
| * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com) |
| * |
| * Derived from "include/asm-i386/bitops.h" |
| * Copyright (C) 1992, Linus Torvalds |
| * |
| */ |
| |
| #ifndef _S390_BITOPS_H |
| #define _S390_BITOPS_H |
| |
| #ifndef _LINUX_BITOPS_H |
| #error only <linux/bitops.h> can be included directly |
| #endif |
| |
| #include <linux/compiler.h> |
| |
| /* |
| * 32 bit bitops format: |
| * bit 0 is the LSB of *addr; bit 31 is the MSB of *addr; |
| * bit 32 is the LSB of *(addr+4). That combined with the |
| * big endian byte order on S390 give the following bit |
| * order in memory: |
| * 1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10 \ |
| * 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00 |
| * after that follows the next long with bit numbers |
| * 3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30 |
| * 2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20 |
| * The reason for this bit ordering is the fact that |
| * in the architecture independent code bits operations |
| * of the form "flags |= (1 << bitnr)" are used INTERMIXED |
| * with operation of the form "set_bit(bitnr, flags)". |
| * |
| * 64 bit bitops format: |
| * bit 0 is the LSB of *addr; bit 63 is the MSB of *addr; |
| * bit 64 is the LSB of *(addr+8). That combined with the |
| * big endian byte order on S390 give the following bit |
| * order in memory: |
| * 3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30 |
| * 2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20 |
| * 1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10 |
| * 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00 |
| * after that follows the next long with bit numbers |
| * 7f 7e 7d 7c 7b 7a 79 78 77 76 75 74 73 72 71 70 |
| * 6f 6e 6d 6c 6b 6a 69 68 67 66 65 64 63 62 61 60 |
| * 5f 5e 5d 5c 5b 5a 59 58 57 56 55 54 53 52 51 50 |
| * 4f 4e 4d 4c 4b 4a 49 48 47 46 45 44 43 42 41 40 |
| * The reason for this bit ordering is the fact that |
| * in the architecture independent code bits operations |
| * of the form "flags |= (1 << bitnr)" are used INTERMIXED |
| * with operation of the form "set_bit(bitnr, flags)". |
| */ |
| |
| /* bitmap tables from arch/s390/kernel/bitmap.c */ |
| extern const char _oi_bitmap[]; |
| extern const char _ni_bitmap[]; |
| extern const char _zb_findmap[]; |
| extern const char _sb_findmap[]; |
| |
| #ifndef CONFIG_64BIT |
| |
| #define __BITOPS_OR "or" |
| #define __BITOPS_AND "nr" |
| #define __BITOPS_XOR "xr" |
| |
| #define __BITOPS_LOOP(__old, __new, __addr, __val, __op_string) \ |
| asm volatile( \ |
| " l %0,%2\n" \ |
| "0: lr %1,%0\n" \ |
| __op_string " %1,%3\n" \ |
| " cs %0,%1,%2\n" \ |
| " jl 0b" \ |
| : "=&d" (__old), "=&d" (__new), \ |
| "=Q" (*(unsigned long *) __addr) \ |
| : "d" (__val), "Q" (*(unsigned long *) __addr) \ |
| : "cc"); |
| |
| #else /* CONFIG_64BIT */ |
| |
| #define __BITOPS_OR "ogr" |
| #define __BITOPS_AND "ngr" |
| #define __BITOPS_XOR "xgr" |
| |
| #define __BITOPS_LOOP(__old, __new, __addr, __val, __op_string) \ |
| asm volatile( \ |
| " lg %0,%2\n" \ |
| "0: lgr %1,%0\n" \ |
| __op_string " %1,%3\n" \ |
| " csg %0,%1,%2\n" \ |
| " jl 0b" \ |
| : "=&d" (__old), "=&d" (__new), \ |
| "=Q" (*(unsigned long *) __addr) \ |
| : "d" (__val), "Q" (*(unsigned long *) __addr) \ |
| : "cc"); |
| |
| #endif /* CONFIG_64BIT */ |
| |
| #define __BITOPS_WORDS(bits) (((bits) + BITS_PER_LONG - 1) / BITS_PER_LONG) |
| |
| #ifdef CONFIG_SMP |
| /* |
| * SMP safe set_bit routine based on compare and swap (CS) |
| */ |
| static inline void set_bit_cs(unsigned long nr, volatile unsigned long *ptr) |
| { |
| unsigned long addr, old, new, mask; |
| |
| addr = (unsigned long) ptr; |
| /* calculate address for CS */ |
| addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3; |
| /* make OR mask */ |
| mask = 1UL << (nr & (BITS_PER_LONG - 1)); |
| /* Do the atomic update. */ |
| __BITOPS_LOOP(old, new, addr, mask, __BITOPS_OR); |
| } |
| |
| /* |
| * SMP safe clear_bit routine based on compare and swap (CS) |
| */ |
| static inline void clear_bit_cs(unsigned long nr, volatile unsigned long *ptr) |
| { |
| unsigned long addr, old, new, mask; |
| |
| addr = (unsigned long) ptr; |
| /* calculate address for CS */ |
| addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3; |
| /* make AND mask */ |
| mask = ~(1UL << (nr & (BITS_PER_LONG - 1))); |
| /* Do the atomic update. */ |
| __BITOPS_LOOP(old, new, addr, mask, __BITOPS_AND); |
| } |
| |
| /* |
| * SMP safe change_bit routine based on compare and swap (CS) |
| */ |
| static inline void change_bit_cs(unsigned long nr, volatile unsigned long *ptr) |
| { |
| unsigned long addr, old, new, mask; |
| |
| addr = (unsigned long) ptr; |
| /* calculate address for CS */ |
| addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3; |
| /* make XOR mask */ |
| mask = 1UL << (nr & (BITS_PER_LONG - 1)); |
| /* Do the atomic update. */ |
| __BITOPS_LOOP(old, new, addr, mask, __BITOPS_XOR); |
| } |
| |
| /* |
| * SMP safe test_and_set_bit routine based on compare and swap (CS) |
| */ |
| static inline int |
| test_and_set_bit_cs(unsigned long nr, volatile unsigned long *ptr) |
| { |
| unsigned long addr, old, new, mask; |
| |
| addr = (unsigned long) ptr; |
| /* calculate address for CS */ |
| addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3; |
| /* make OR/test mask */ |
| mask = 1UL << (nr & (BITS_PER_LONG - 1)); |
| /* Do the atomic update. */ |
| __BITOPS_LOOP(old, new, addr, mask, __BITOPS_OR); |
| barrier(); |
| return (old & mask) != 0; |
| } |
| |
| /* |
| * SMP safe test_and_clear_bit routine based on compare and swap (CS) |
| */ |
| static inline int |
| test_and_clear_bit_cs(unsigned long nr, volatile unsigned long *ptr) |
| { |
| unsigned long addr, old, new, mask; |
| |
| addr = (unsigned long) ptr; |
| /* calculate address for CS */ |
| addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3; |
| /* make AND/test mask */ |
| mask = ~(1UL << (nr & (BITS_PER_LONG - 1))); |
| /* Do the atomic update. */ |
| __BITOPS_LOOP(old, new, addr, mask, __BITOPS_AND); |
| barrier(); |
| return (old ^ new) != 0; |
| } |
| |
| /* |
| * SMP safe test_and_change_bit routine based on compare and swap (CS) |
| */ |
| static inline int |
| test_and_change_bit_cs(unsigned long nr, volatile unsigned long *ptr) |
| { |
| unsigned long addr, old, new, mask; |
| |
| addr = (unsigned long) ptr; |
| /* calculate address for CS */ |
| addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3; |
| /* make XOR/test mask */ |
| mask = 1UL << (nr & (BITS_PER_LONG - 1)); |
| /* Do the atomic update. */ |
| __BITOPS_LOOP(old, new, addr, mask, __BITOPS_XOR); |
| barrier(); |
| return (old & mask) != 0; |
| } |
| #endif /* CONFIG_SMP */ |
| |
| /* |
| * fast, non-SMP set_bit routine |
| */ |
| static inline void __set_bit(unsigned long nr, volatile unsigned long *ptr) |
| { |
| unsigned long addr; |
| |
| addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3); |
| asm volatile( |
| " oc %O0(1,%R0),%1" |
| : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7]) : "cc" ); |
| } |
| |
| static inline void |
| __constant_set_bit(const unsigned long nr, volatile unsigned long *ptr) |
| { |
| unsigned long addr; |
| |
| addr = ((unsigned long) ptr) + ((nr ^ (BITS_PER_LONG - 8)) >> 3); |
| *(unsigned char *) addr |= 1 << (nr & 7); |
| } |
| |
| #define set_bit_simple(nr,addr) \ |
| (__builtin_constant_p((nr)) ? \ |
| __constant_set_bit((nr),(addr)) : \ |
| __set_bit((nr),(addr)) ) |
| |
| /* |
| * fast, non-SMP clear_bit routine |
| */ |
| static inline void |
| __clear_bit(unsigned long nr, volatile unsigned long *ptr) |
| { |
| unsigned long addr; |
| |
| addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3); |
| asm volatile( |
| " nc %O0(1,%R0),%1" |
| : "=Q" (*(char *) addr) : "Q" (_ni_bitmap[nr & 7]) : "cc" ); |
| } |
| |
| static inline void |
| __constant_clear_bit(const unsigned long nr, volatile unsigned long *ptr) |
| { |
| unsigned long addr; |
| |
| addr = ((unsigned long) ptr) + ((nr ^ (BITS_PER_LONG - 8)) >> 3); |
| *(unsigned char *) addr &= ~(1 << (nr & 7)); |
| } |
| |
| #define clear_bit_simple(nr,addr) \ |
| (__builtin_constant_p((nr)) ? \ |
| __constant_clear_bit((nr),(addr)) : \ |
| __clear_bit((nr),(addr)) ) |
| |
| /* |
| * fast, non-SMP change_bit routine |
| */ |
| static inline void __change_bit(unsigned long nr, volatile unsigned long *ptr) |
| { |
| unsigned long addr; |
| |
| addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3); |
| asm volatile( |
| " xc %O0(1,%R0),%1" |
| : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7]) : "cc" ); |
| } |
| |
| static inline void |
| __constant_change_bit(const unsigned long nr, volatile unsigned long *ptr) |
| { |
| unsigned long addr; |
| |
| addr = ((unsigned long) ptr) + ((nr ^ (BITS_PER_LONG - 8)) >> 3); |
| *(unsigned char *) addr ^= 1 << (nr & 7); |
| } |
| |
| #define change_bit_simple(nr,addr) \ |
| (__builtin_constant_p((nr)) ? \ |
| __constant_change_bit((nr),(addr)) : \ |
| __change_bit((nr),(addr)) ) |
| |
| /* |
| * fast, non-SMP test_and_set_bit routine |
| */ |
| static inline int |
| test_and_set_bit_simple(unsigned long nr, volatile unsigned long *ptr) |
| { |
| unsigned long addr; |
| unsigned char ch; |
| |
| addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3); |
| ch = *(unsigned char *) addr; |
| asm volatile( |
| " oc %O0(1,%R0),%1" |
| : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7]) |
| : "cc", "memory"); |
| return (ch >> (nr & 7)) & 1; |
| } |
| #define __test_and_set_bit(X,Y) test_and_set_bit_simple(X,Y) |
| |
| /* |
| * fast, non-SMP test_and_clear_bit routine |
| */ |
| static inline int |
| test_and_clear_bit_simple(unsigned long nr, volatile unsigned long *ptr) |
| { |
| unsigned long addr; |
| unsigned char ch; |
| |
| addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3); |
| ch = *(unsigned char *) addr; |
| asm volatile( |
| " nc %O0(1,%R0),%1" |
| : "=Q" (*(char *) addr) : "Q" (_ni_bitmap[nr & 7]) |
| : "cc", "memory"); |
| return (ch >> (nr & 7)) & 1; |
| } |
| #define __test_and_clear_bit(X,Y) test_and_clear_bit_simple(X,Y) |
| |
| /* |
| * fast, non-SMP test_and_change_bit routine |
| */ |
| static inline int |
| test_and_change_bit_simple(unsigned long nr, volatile unsigned long *ptr) |
| { |
| unsigned long addr; |
| unsigned char ch; |
| |
| addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3); |
| ch = *(unsigned char *) addr; |
| asm volatile( |
| " xc %O0(1,%R0),%1" |
| : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7]) |
| : "cc", "memory"); |
| return (ch >> (nr & 7)) & 1; |
| } |
| #define __test_and_change_bit(X,Y) test_and_change_bit_simple(X,Y) |
| |
| #ifdef CONFIG_SMP |
| #define set_bit set_bit_cs |
| #define clear_bit clear_bit_cs |
| #define change_bit change_bit_cs |
| #define test_and_set_bit test_and_set_bit_cs |
| #define test_and_clear_bit test_and_clear_bit_cs |
| #define test_and_change_bit test_and_change_bit_cs |
| #else |
| #define set_bit set_bit_simple |
| #define clear_bit clear_bit_simple |
| #define change_bit change_bit_simple |
| #define test_and_set_bit test_and_set_bit_simple |
| #define test_and_clear_bit test_and_clear_bit_simple |
| #define test_and_change_bit test_and_change_bit_simple |
| #endif |
| |
| |
| /* |
| * This routine doesn't need to be atomic. |
| */ |
| |
| static inline int __test_bit(unsigned long nr, const volatile unsigned long *ptr) |
| { |
| unsigned long addr; |
| unsigned char ch; |
| |
| addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3); |
| ch = *(volatile unsigned char *) addr; |
| return (ch >> (nr & 7)) & 1; |
| } |
| |
| static inline int |
| __constant_test_bit(unsigned long nr, const volatile unsigned long *addr) { |
| return (((volatile char *) addr) |
| [(nr^(BITS_PER_LONG-8))>>3] & (1<<(nr&7))) != 0; |
| } |
| |
| #define test_bit(nr,addr) \ |
| (__builtin_constant_p((nr)) ? \ |
| __constant_test_bit((nr),(addr)) : \ |
| __test_bit((nr),(addr)) ) |
| |
| /* |
| * Optimized find bit helper functions. |
| */ |
| |
| /** |
| * __ffz_word_loop - find byte offset of first long != -1UL |
| * @addr: pointer to array of unsigned long |
| * @size: size of the array in bits |
| */ |
| static inline unsigned long __ffz_word_loop(const unsigned long *addr, |
| unsigned long size) |
| { |
| typedef struct { long _[__BITOPS_WORDS(size)]; } addrtype; |
| unsigned long bytes = 0; |
| |
| asm volatile( |
| #ifndef CONFIG_64BIT |
| " ahi %1,-1\n" |
| " sra %1,5\n" |
| " jz 1f\n" |
| "0: c %2,0(%0,%3)\n" |
| " jne 1f\n" |
| " la %0,4(%0)\n" |
| " brct %1,0b\n" |
| "1:\n" |
| #else |
| " aghi %1,-1\n" |
| " srag %1,%1,6\n" |
| " jz 1f\n" |
| "0: cg %2,0(%0,%3)\n" |
| " jne 1f\n" |
| " la %0,8(%0)\n" |
| " brct %1,0b\n" |
| "1:\n" |
| #endif |
| : "+&a" (bytes), "+&d" (size) |
| : "d" (-1UL), "a" (addr), "m" (*(addrtype *) addr) |
| : "cc" ); |
| return bytes; |
| } |
| |
| /** |
| * __ffs_word_loop - find byte offset of first long != 0UL |
| * @addr: pointer to array of unsigned long |
| * @size: size of the array in bits |
| */ |
| static inline unsigned long __ffs_word_loop(const unsigned long *addr, |
| unsigned long size) |
| { |
| typedef struct { long _[__BITOPS_WORDS(size)]; } addrtype; |
| unsigned long bytes = 0; |
| |
| asm volatile( |
| #ifndef CONFIG_64BIT |
| " ahi %1,-1\n" |
| " sra %1,5\n" |
| " jz 1f\n" |
| "0: c %2,0(%0,%3)\n" |
| " jne 1f\n" |
| " la %0,4(%0)\n" |
| " brct %1,0b\n" |
| "1:\n" |
| #else |
| " aghi %1,-1\n" |
| " srag %1,%1,6\n" |
| " jz 1f\n" |
| "0: cg %2,0(%0,%3)\n" |
| " jne 1f\n" |
| " la %0,8(%0)\n" |
| " brct %1,0b\n" |
| "1:\n" |
| #endif |
| : "+&a" (bytes), "+&a" (size) |
| : "d" (0UL), "a" (addr), "m" (*(addrtype *) addr) |
| : "cc" ); |
| return bytes; |
| } |
| |
| /** |
| * __ffz_word - add number of the first unset bit |
| * @nr: base value the bit number is added to |
| * @word: the word that is searched for unset bits |
| */ |
| static inline unsigned long __ffz_word(unsigned long nr, unsigned long word) |
| { |
| #ifdef CONFIG_64BIT |
| if ((word & 0xffffffff) == 0xffffffff) { |
| word >>= 32; |
| nr += 32; |
| } |
| #endif |
| if ((word & 0xffff) == 0xffff) { |
| word >>= 16; |
| nr += 16; |
| } |
| if ((word & 0xff) == 0xff) { |
| word >>= 8; |
| nr += 8; |
| } |
| return nr + _zb_findmap[(unsigned char) word]; |
| } |
| |
| /** |
| * __ffs_word - add number of the first set bit |
| * @nr: base value the bit number is added to |
| * @word: the word that is searched for set bits |
| */ |
| static inline unsigned long __ffs_word(unsigned long nr, unsigned long word) |
| { |
| #ifdef CONFIG_64BIT |
| if ((word & 0xffffffff) == 0) { |
| word >>= 32; |
| nr += 32; |
| } |
| #endif |
| if ((word & 0xffff) == 0) { |
| word >>= 16; |
| nr += 16; |
| } |
| if ((word & 0xff) == 0) { |
| word >>= 8; |
| nr += 8; |
| } |
| return nr + _sb_findmap[(unsigned char) word]; |
| } |
| |
| |
| /** |
| * __load_ulong_be - load big endian unsigned long |
| * @p: pointer to array of unsigned long |
| * @offset: byte offset of source value in the array |
| */ |
| static inline unsigned long __load_ulong_be(const unsigned long *p, |
| unsigned long offset) |
| { |
| p = (unsigned long *)((unsigned long) p + offset); |
| return *p; |
| } |
| |
| /** |
| * __load_ulong_le - load little endian unsigned long |
| * @p: pointer to array of unsigned long |
| * @offset: byte offset of source value in the array |
| */ |
| static inline unsigned long __load_ulong_le(const unsigned long *p, |
| unsigned long offset) |
| { |
| unsigned long word; |
| |
| p = (unsigned long *)((unsigned long) p + offset); |
| #ifndef CONFIG_64BIT |
| asm volatile( |
| " ic %0,%O1(%R1)\n" |
| " icm %0,2,%O1+1(%R1)\n" |
| " icm %0,4,%O1+2(%R1)\n" |
| " icm %0,8,%O1+3(%R1)" |
| : "=&d" (word) : "Q" (*p) : "cc"); |
| #else |
| asm volatile( |
| " lrvg %0,%1" |
| : "=d" (word) : "m" (*p) ); |
| #endif |
| return word; |
| } |
| |
| /* |
| * The various find bit functions. |
| */ |
| |
| /* |
| * ffz - find first zero in word. |
| * @word: The word to search |
| * |
| * Undefined if no zero exists, so code should check against ~0UL first. |
| */ |
| static inline unsigned long ffz(unsigned long word) |
| { |
| return __ffz_word(0, word); |
| } |
| |
| /** |
| * __ffs - find first bit in word. |
| * @word: The word to search |
| * |
| * Undefined if no bit exists, so code should check against 0 first. |
| */ |
| static inline unsigned long __ffs (unsigned long word) |
| { |
| return __ffs_word(0, word); |
| } |
| |
| /** |
| * ffs - find first bit set |
| * @x: the word to search |
| * |
| * This is defined the same way as |
| * the libc and compiler builtin ffs routines, therefore |
| * differs in spirit from the above ffz (man ffs). |
| */ |
| static inline int ffs(int x) |
| { |
| if (!x) |
| return 0; |
| return __ffs_word(1, x); |
| } |
| |
| /** |
| * find_first_zero_bit - find the first zero bit in a memory region |
| * @addr: The address to start the search at |
| * @size: The maximum size to search |
| * |
| * Returns the bit-number of the first zero bit, not the number of the byte |
| * containing a bit. |
| */ |
| static inline unsigned long find_first_zero_bit(const unsigned long *addr, |
| unsigned long size) |
| { |
| unsigned long bytes, bits; |
| |
| if (!size) |
| return 0; |
| bytes = __ffz_word_loop(addr, size); |
| bits = __ffz_word(bytes*8, __load_ulong_be(addr, bytes)); |
| return (bits < size) ? bits : size; |
| } |
| #define find_first_zero_bit find_first_zero_bit |
| |
| /** |
| * find_first_bit - find the first set bit in a memory region |
| * @addr: The address to start the search at |
| * @size: The maximum size to search |
| * |
| * Returns the bit-number of the first set bit, not the number of the byte |
| * containing a bit. |
| */ |
| static inline unsigned long find_first_bit(const unsigned long * addr, |
| unsigned long size) |
| { |
| unsigned long bytes, bits; |
| |
| if (!size) |
| return 0; |
| bytes = __ffs_word_loop(addr, size); |
| bits = __ffs_word(bytes*8, __load_ulong_be(addr, bytes)); |
| return (bits < size) ? bits : size; |
| } |
| #define find_first_bit find_first_bit |
| |
| /* |
| * Big endian variant whichs starts bit counting from left using |
| * the flogr (find leftmost one) instruction. |
| */ |
| static inline unsigned long __flo_word(unsigned long nr, unsigned long val) |
| { |
| register unsigned long bit asm("2") = val; |
| register unsigned long out asm("3"); |
| |
| asm volatile ( |
| " .insn rre,0xb9830000,%[bit],%[bit]\n" |
| : [bit] "+d" (bit), [out] "=d" (out) : : "cc"); |
| return nr + bit; |
| } |
| |
| /* |
| * 64 bit special left bitops format: |
| * order in memory: |
| * 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f |
| * 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f |
| * 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f |
| * 30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f |
| * after that follows the next long with bit numbers |
| * 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f |
| * 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f |
| * 60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f |
| * 70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f |
| * The reason for this bit ordering is the fact that |
| * the hardware sets bits in a bitmap starting at bit 0 |
| * and we don't want to scan the bitmap from the 'wrong |
| * end'. |
| */ |
| static inline unsigned long find_first_bit_left(const unsigned long *addr, |
| unsigned long size) |
| { |
| unsigned long bytes, bits; |
| |
| if (!size) |
| return 0; |
| bytes = __ffs_word_loop(addr, size); |
| bits = __flo_word(bytes * 8, __load_ulong_be(addr, bytes)); |
| return (bits < size) ? bits : size; |
| } |
| |
| static inline int find_next_bit_left(const unsigned long *addr, |
| unsigned long size, |
| unsigned long offset) |
| { |
| const unsigned long *p; |
| unsigned long bit, set; |
| |
| if (offset >= size) |
| return size; |
| bit = offset & (BITS_PER_LONG - 1); |
| offset -= bit; |
| size -= offset; |
| p = addr + offset / BITS_PER_LONG; |
| if (bit) { |
| set = __flo_word(0, *p & (~0UL >> bit)); |
| if (set >= size) |
| return size + offset; |
| if (set < BITS_PER_LONG) |
| return set + offset; |
| offset += BITS_PER_LONG; |
| size -= BITS_PER_LONG; |
| p++; |
| } |
| return offset + find_first_bit_left(p, size); |
| } |
| |
| #define for_each_set_bit_left(bit, addr, size) \ |
| for ((bit) = find_first_bit_left((addr), (size)); \ |
| (bit) < (size); \ |
| (bit) = find_next_bit_left((addr), (size), (bit) + 1)) |
| |
| /* same as for_each_set_bit() but use bit as value to start with */ |
| #define for_each_set_bit_left_cont(bit, addr, size) \ |
| for ((bit) = find_next_bit_left((addr), (size), (bit)); \ |
| (bit) < (size); \ |
| (bit) = find_next_bit_left((addr), (size), (bit) + 1)) |
| |
| /** |
| * find_next_zero_bit - find the first zero bit in a memory region |
| * @addr: The address to base the search on |
| * @offset: The bitnumber to start searching at |
| * @size: The maximum size to search |
| */ |
| static inline int find_next_zero_bit (const unsigned long * addr, |
| unsigned long size, |
| unsigned long offset) |
| { |
| const unsigned long *p; |
| unsigned long bit, set; |
| |
| if (offset >= size) |
| return size; |
| bit = offset & (BITS_PER_LONG - 1); |
| offset -= bit; |
| size -= offset; |
| p = addr + offset / BITS_PER_LONG; |
| if (bit) { |
| /* |
| * __ffz_word returns BITS_PER_LONG |
| * if no zero bit is present in the word. |
| */ |
| set = __ffz_word(bit, *p >> bit); |
| if (set >= size) |
| return size + offset; |
| if (set < BITS_PER_LONG) |
| return set + offset; |
| offset += BITS_PER_LONG; |
| size -= BITS_PER_LONG; |
| p++; |
| } |
| return offset + find_first_zero_bit(p, size); |
| } |
| #define find_next_zero_bit find_next_zero_bit |
| |
| /** |
| * find_next_bit - find the first set bit in a memory region |
| * @addr: The address to base the search on |
| * @offset: The bitnumber to start searching at |
| * @size: The maximum size to search |
| */ |
| static inline int find_next_bit (const unsigned long * addr, |
| unsigned long size, |
| unsigned long offset) |
| { |
| const unsigned long *p; |
| unsigned long bit, set; |
| |
| if (offset >= size) |
| return size; |
| bit = offset & (BITS_PER_LONG - 1); |
| offset -= bit; |
| size -= offset; |
| p = addr + offset / BITS_PER_LONG; |
| if (bit) { |
| /* |
| * __ffs_word returns BITS_PER_LONG |
| * if no one bit is present in the word. |
| */ |
| set = __ffs_word(0, *p & (~0UL << bit)); |
| if (set >= size) |
| return size + offset; |
| if (set < BITS_PER_LONG) |
| return set + offset; |
| offset += BITS_PER_LONG; |
| size -= BITS_PER_LONG; |
| p++; |
| } |
| return offset + find_first_bit(p, size); |
| } |
| #define find_next_bit find_next_bit |
| |
| /* |
| * Every architecture must define this function. It's the fastest |
| * way of searching a 140-bit bitmap where the first 100 bits are |
| * unlikely to be set. It's guaranteed that at least one of the 140 |
| * bits is cleared. |
| */ |
| static inline int sched_find_first_bit(unsigned long *b) |
| { |
| return find_first_bit(b, 140); |
| } |
| |
| #include <asm-generic/bitops/fls.h> |
| #include <asm-generic/bitops/__fls.h> |
| #include <asm-generic/bitops/fls64.h> |
| |
| #include <asm-generic/bitops/hweight.h> |
| #include <asm-generic/bitops/lock.h> |
| |
| /* |
| * ATTENTION: intel byte ordering convention for ext2 and minix !! |
| * bit 0 is the LSB of addr; bit 31 is the MSB of addr; |
| * bit 32 is the LSB of (addr+4). |
| * That combined with the little endian byte order of Intel gives the |
| * following bit order in memory: |
| * 07 06 05 04 03 02 01 00 15 14 13 12 11 10 09 08 \ |
| * 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24 |
| */ |
| |
| static inline int find_first_zero_bit_le(void *vaddr, unsigned int size) |
| { |
| unsigned long bytes, bits; |
| |
| if (!size) |
| return 0; |
| bytes = __ffz_word_loop(vaddr, size); |
| bits = __ffz_word(bytes*8, __load_ulong_le(vaddr, bytes)); |
| return (bits < size) ? bits : size; |
| } |
| #define find_first_zero_bit_le find_first_zero_bit_le |
| |
| static inline int find_next_zero_bit_le(void *vaddr, unsigned long size, |
| unsigned long offset) |
| { |
| unsigned long *addr = vaddr, *p; |
| unsigned long bit, set; |
| |
| if (offset >= size) |
| return size; |
| bit = offset & (BITS_PER_LONG - 1); |
| offset -= bit; |
| size -= offset; |
| p = addr + offset / BITS_PER_LONG; |
| if (bit) { |
| /* |
| * s390 version of ffz returns BITS_PER_LONG |
| * if no zero bit is present in the word. |
| */ |
| set = __ffz_word(bit, __load_ulong_le(p, 0) >> bit); |
| if (set >= size) |
| return size + offset; |
| if (set < BITS_PER_LONG) |
| return set + offset; |
| offset += BITS_PER_LONG; |
| size -= BITS_PER_LONG; |
| p++; |
| } |
| return offset + find_first_zero_bit_le(p, size); |
| } |
| #define find_next_zero_bit_le find_next_zero_bit_le |
| |
| static inline unsigned long find_first_bit_le(void *vaddr, unsigned long size) |
| { |
| unsigned long bytes, bits; |
| |
| if (!size) |
| return 0; |
| bytes = __ffs_word_loop(vaddr, size); |
| bits = __ffs_word(bytes*8, __load_ulong_le(vaddr, bytes)); |
| return (bits < size) ? bits : size; |
| } |
| #define find_first_bit_le find_first_bit_le |
| |
| static inline int find_next_bit_le(void *vaddr, unsigned long size, |
| unsigned long offset) |
| { |
| unsigned long *addr = vaddr, *p; |
| unsigned long bit, set; |
| |
| if (offset >= size) |
| return size; |
| bit = offset & (BITS_PER_LONG - 1); |
| offset -= bit; |
| size -= offset; |
| p = addr + offset / BITS_PER_LONG; |
| if (bit) { |
| /* |
| * s390 version of ffz returns BITS_PER_LONG |
| * if no zero bit is present in the word. |
| */ |
| set = __ffs_word(0, __load_ulong_le(p, 0) & (~0UL << bit)); |
| if (set >= size) |
| return size + offset; |
| if (set < BITS_PER_LONG) |
| return set + offset; |
| offset += BITS_PER_LONG; |
| size -= BITS_PER_LONG; |
| p++; |
| } |
| return offset + find_first_bit_le(p, size); |
| } |
| #define find_next_bit_le find_next_bit_le |
| |
| #include <asm-generic/bitops/le.h> |
| |
| #include <asm-generic/bitops/ext2-atomic-setbit.h> |
| |
| #endif /* _S390_BITOPS_H */ |