| /* |
| * Copyright (C) 2012,2013 - ARM Ltd |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| * |
| * Derived from arch/arm/kvm/coproc.c: |
| * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| * Authors: Rusty Russell <rusty@rustcorp.com.au> |
| * Christoffer Dall <c.dall@virtualopensystems.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, version 2, as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include <linux/bsearch.h> |
| #include <linux/kvm_host.h> |
| #include <linux/mm.h> |
| #include <linux/uaccess.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/cputype.h> |
| #include <asm/debug-monitors.h> |
| #include <asm/esr.h> |
| #include <asm/kvm_arm.h> |
| #include <asm/kvm_asm.h> |
| #include <asm/kvm_coproc.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_host.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/perf_event.h> |
| #include <asm/sysreg.h> |
| |
| #include <trace/events/kvm.h> |
| |
| #include "sys_regs.h" |
| |
| #include "trace.h" |
| |
| /* |
| * All of this file is extremly similar to the ARM coproc.c, but the |
| * types are different. My gut feeling is that it should be pretty |
| * easy to merge, but that would be an ABI breakage -- again. VFP |
| * would also need to be abstracted. |
| * |
| * For AArch32, we only take care of what is being trapped. Anything |
| * that has to do with init and userspace access has to go via the |
| * 64bit interface. |
| */ |
| |
| static bool read_from_write_only(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *params, |
| const struct sys_reg_desc *r) |
| { |
| WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n"); |
| print_sys_reg_instr(params); |
| kvm_inject_undefined(vcpu); |
| return false; |
| } |
| |
| static bool write_to_read_only(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *params, |
| const struct sys_reg_desc *r) |
| { |
| WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n"); |
| print_sys_reg_instr(params); |
| kvm_inject_undefined(vcpu); |
| return false; |
| } |
| |
| /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */ |
| static u32 cache_levels; |
| |
| /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ |
| #define CSSELR_MAX 12 |
| |
| /* Which cache CCSIDR represents depends on CSSELR value. */ |
| static u32 get_ccsidr(u32 csselr) |
| { |
| u32 ccsidr; |
| |
| /* Make sure noone else changes CSSELR during this! */ |
| local_irq_disable(); |
| write_sysreg(csselr, csselr_el1); |
| isb(); |
| ccsidr = read_sysreg(ccsidr_el1); |
| local_irq_enable(); |
| |
| return ccsidr; |
| } |
| |
| /* |
| * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). |
| */ |
| static bool access_dcsw(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (!p->is_write) |
| return read_from_write_only(vcpu, p, r); |
| |
| kvm_set_way_flush(vcpu); |
| return true; |
| } |
| |
| /* |
| * Generic accessor for VM registers. Only called as long as HCR_TVM |
| * is set. If the guest enables the MMU, we stop trapping the VM |
| * sys_regs and leave it in complete control of the caches. |
| */ |
| static bool access_vm_reg(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| bool was_enabled = vcpu_has_cache_enabled(vcpu); |
| |
| BUG_ON(!p->is_write); |
| |
| if (!p->is_aarch32) { |
| vcpu_sys_reg(vcpu, r->reg) = p->regval; |
| } else { |
| if (!p->is_32bit) |
| vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval); |
| vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval); |
| } |
| |
| kvm_toggle_cache(vcpu, was_enabled); |
| return true; |
| } |
| |
| /* |
| * Trap handler for the GICv3 SGI generation system register. |
| * Forward the request to the VGIC emulation. |
| * The cp15_64 code makes sure this automatically works |
| * for both AArch64 and AArch32 accesses. |
| */ |
| static bool access_gic_sgi(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (!p->is_write) |
| return read_from_write_only(vcpu, p, r); |
| |
| vgic_v3_dispatch_sgi(vcpu, p->regval); |
| |
| return true; |
| } |
| |
| static bool access_gic_sre(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) |
| return ignore_write(vcpu, p); |
| |
| p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre; |
| return true; |
| } |
| |
| static bool trap_raz_wi(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) |
| return ignore_write(vcpu, p); |
| else |
| return read_zero(vcpu, p); |
| } |
| |
| static bool trap_oslsr_el1(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) { |
| return ignore_write(vcpu, p); |
| } else { |
| p->regval = (1 << 3); |
| return true; |
| } |
| } |
| |
| static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) { |
| return ignore_write(vcpu, p); |
| } else { |
| p->regval = read_sysreg(dbgauthstatus_el1); |
| return true; |
| } |
| } |
| |
| /* |
| * We want to avoid world-switching all the DBG registers all the |
| * time: |
| * |
| * - If we've touched any debug register, it is likely that we're |
| * going to touch more of them. It then makes sense to disable the |
| * traps and start doing the save/restore dance |
| * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is |
| * then mandatory to save/restore the registers, as the guest |
| * depends on them. |
| * |
| * For this, we use a DIRTY bit, indicating the guest has modified the |
| * debug registers, used as follow: |
| * |
| * On guest entry: |
| * - If the dirty bit is set (because we're coming back from trapping), |
| * disable the traps, save host registers, restore guest registers. |
| * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), |
| * set the dirty bit, disable the traps, save host registers, |
| * restore guest registers. |
| * - Otherwise, enable the traps |
| * |
| * On guest exit: |
| * - If the dirty bit is set, save guest registers, restore host |
| * registers and clear the dirty bit. This ensure that the host can |
| * now use the debug registers. |
| */ |
| static bool trap_debug_regs(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) { |
| vcpu_sys_reg(vcpu, r->reg) = p->regval; |
| vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY; |
| } else { |
| p->regval = vcpu_sys_reg(vcpu, r->reg); |
| } |
| |
| trace_trap_reg(__func__, r->reg, p->is_write, p->regval); |
| |
| return true; |
| } |
| |
| /* |
| * reg_to_dbg/dbg_to_reg |
| * |
| * A 32 bit write to a debug register leave top bits alone |
| * A 32 bit read from a debug register only returns the bottom bits |
| * |
| * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the |
| * hyp.S code switches between host and guest values in future. |
| */ |
| static void reg_to_dbg(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| u64 *dbg_reg) |
| { |
| u64 val = p->regval; |
| |
| if (p->is_32bit) { |
| val &= 0xffffffffUL; |
| val |= ((*dbg_reg >> 32) << 32); |
| } |
| |
| *dbg_reg = val; |
| vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY; |
| } |
| |
| static void dbg_to_reg(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| u64 *dbg_reg) |
| { |
| p->regval = *dbg_reg; |
| if (p->is_32bit) |
| p->regval &= 0xffffffffUL; |
| } |
| |
| static bool trap_bvr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *rd) |
| { |
| u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg]; |
| |
| if (p->is_write) |
| reg_to_dbg(vcpu, p, dbg_reg); |
| else |
| dbg_to_reg(vcpu, p, dbg_reg); |
| |
| trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg); |
| |
| return true; |
| } |
| |
| static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg]; |
| |
| if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg]; |
| |
| if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static void reset_bvr(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val; |
| } |
| |
| static bool trap_bcr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *rd) |
| { |
| u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg]; |
| |
| if (p->is_write) |
| reg_to_dbg(vcpu, p, dbg_reg); |
| else |
| dbg_to_reg(vcpu, p, dbg_reg); |
| |
| trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg); |
| |
| return true; |
| } |
| |
| static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg]; |
| |
| if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg]; |
| |
| if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static void reset_bcr(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val; |
| } |
| |
| static bool trap_wvr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *rd) |
| { |
| u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]; |
| |
| if (p->is_write) |
| reg_to_dbg(vcpu, p, dbg_reg); |
| else |
| dbg_to_reg(vcpu, p, dbg_reg); |
| |
| trace_trap_reg(__func__, rd->reg, p->is_write, |
| vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]); |
| |
| return true; |
| } |
| |
| static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]; |
| |
| if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]; |
| |
| if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static void reset_wvr(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val; |
| } |
| |
| static bool trap_wcr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *rd) |
| { |
| u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg]; |
| |
| if (p->is_write) |
| reg_to_dbg(vcpu, p, dbg_reg); |
| else |
| dbg_to_reg(vcpu, p, dbg_reg); |
| |
| trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg); |
| |
| return true; |
| } |
| |
| static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg]; |
| |
| if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg]; |
| |
| if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static void reset_wcr(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val; |
| } |
| |
| static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| vcpu_sys_reg(vcpu, AMAIR_EL1) = read_sysreg(amair_el1); |
| } |
| |
| static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| u64 mpidr; |
| |
| /* |
| * Map the vcpu_id into the first three affinity level fields of |
| * the MPIDR. We limit the number of VCPUs in level 0 due to a |
| * limitation to 16 CPUs in that level in the ICC_SGIxR registers |
| * of the GICv3 to be able to address each CPU directly when |
| * sending IPIs. |
| */ |
| mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0); |
| mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1); |
| mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2); |
| vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr; |
| } |
| |
| static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| u64 pmcr, val; |
| |
| pmcr = read_sysreg(pmcr_el0); |
| /* |
| * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN |
| * except PMCR.E resetting to zero. |
| */ |
| val = ((pmcr & ~ARMV8_PMU_PMCR_MASK) |
| | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E); |
| vcpu_sys_reg(vcpu, PMCR_EL0) = val; |
| } |
| |
| static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags) |
| { |
| u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0); |
| bool enabled = (reg & flags) || vcpu_mode_priv(vcpu); |
| |
| if (!enabled) |
| kvm_inject_undefined(vcpu); |
| |
| return !enabled; |
| } |
| |
| static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu) |
| { |
| return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN); |
| } |
| |
| static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu) |
| { |
| return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN); |
| } |
| |
| static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu) |
| { |
| return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN); |
| } |
| |
| static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu) |
| { |
| return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN); |
| } |
| |
| static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 val; |
| |
| if (!kvm_arm_pmu_v3_ready(vcpu)) |
| return trap_raz_wi(vcpu, p, r); |
| |
| if (pmu_access_el0_disabled(vcpu)) |
| return false; |
| |
| if (p->is_write) { |
| /* Only update writeable bits of PMCR */ |
| val = vcpu_sys_reg(vcpu, PMCR_EL0); |
| val &= ~ARMV8_PMU_PMCR_MASK; |
| val |= p->regval & ARMV8_PMU_PMCR_MASK; |
| vcpu_sys_reg(vcpu, PMCR_EL0) = val; |
| kvm_pmu_handle_pmcr(vcpu, val); |
| } else { |
| /* PMCR.P & PMCR.C are RAZ */ |
| val = vcpu_sys_reg(vcpu, PMCR_EL0) |
| & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C); |
| p->regval = val; |
| } |
| |
| return true; |
| } |
| |
| static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (!kvm_arm_pmu_v3_ready(vcpu)) |
| return trap_raz_wi(vcpu, p, r); |
| |
| if (pmu_access_event_counter_el0_disabled(vcpu)) |
| return false; |
| |
| if (p->is_write) |
| vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval; |
| else |
| /* return PMSELR.SEL field */ |
| p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0) |
| & ARMV8_PMU_COUNTER_MASK; |
| |
| return true; |
| } |
| |
| static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 pmceid; |
| |
| if (!kvm_arm_pmu_v3_ready(vcpu)) |
| return trap_raz_wi(vcpu, p, r); |
| |
| BUG_ON(p->is_write); |
| |
| if (pmu_access_el0_disabled(vcpu)) |
| return false; |
| |
| if (!(p->Op2 & 1)) |
| pmceid = read_sysreg(pmceid0_el0); |
| else |
| pmceid = read_sysreg(pmceid1_el0); |
| |
| p->regval = pmceid; |
| |
| return true; |
| } |
| |
| static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx) |
| { |
| u64 pmcr, val; |
| |
| pmcr = vcpu_sys_reg(vcpu, PMCR_EL0); |
| val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK; |
| if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) { |
| kvm_inject_undefined(vcpu); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool access_pmu_evcntr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 idx; |
| |
| if (!kvm_arm_pmu_v3_ready(vcpu)) |
| return trap_raz_wi(vcpu, p, r); |
| |
| if (r->CRn == 9 && r->CRm == 13) { |
| if (r->Op2 == 2) { |
| /* PMXEVCNTR_EL0 */ |
| if (pmu_access_event_counter_el0_disabled(vcpu)) |
| return false; |
| |
| idx = vcpu_sys_reg(vcpu, PMSELR_EL0) |
| & ARMV8_PMU_COUNTER_MASK; |
| } else if (r->Op2 == 0) { |
| /* PMCCNTR_EL0 */ |
| if (pmu_access_cycle_counter_el0_disabled(vcpu)) |
| return false; |
| |
| idx = ARMV8_PMU_CYCLE_IDX; |
| } else { |
| return false; |
| } |
| } else if (r->CRn == 0 && r->CRm == 9) { |
| /* PMCCNTR */ |
| if (pmu_access_event_counter_el0_disabled(vcpu)) |
| return false; |
| |
| idx = ARMV8_PMU_CYCLE_IDX; |
| } else if (r->CRn == 14 && (r->CRm & 12) == 8) { |
| /* PMEVCNTRn_EL0 */ |
| if (pmu_access_event_counter_el0_disabled(vcpu)) |
| return false; |
| |
| idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); |
| } else { |
| return false; |
| } |
| |
| if (!pmu_counter_idx_valid(vcpu, idx)) |
| return false; |
| |
| if (p->is_write) { |
| if (pmu_access_el0_disabled(vcpu)) |
| return false; |
| |
| kvm_pmu_set_counter_value(vcpu, idx, p->regval); |
| } else { |
| p->regval = kvm_pmu_get_counter_value(vcpu, idx); |
| } |
| |
| return true; |
| } |
| |
| static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 idx, reg; |
| |
| if (!kvm_arm_pmu_v3_ready(vcpu)) |
| return trap_raz_wi(vcpu, p, r); |
| |
| if (pmu_access_el0_disabled(vcpu)) |
| return false; |
| |
| if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) { |
| /* PMXEVTYPER_EL0 */ |
| idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK; |
| reg = PMEVTYPER0_EL0 + idx; |
| } else if (r->CRn == 14 && (r->CRm & 12) == 12) { |
| idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); |
| if (idx == ARMV8_PMU_CYCLE_IDX) |
| reg = PMCCFILTR_EL0; |
| else |
| /* PMEVTYPERn_EL0 */ |
| reg = PMEVTYPER0_EL0 + idx; |
| } else { |
| BUG(); |
| } |
| |
| if (!pmu_counter_idx_valid(vcpu, idx)) |
| return false; |
| |
| if (p->is_write) { |
| kvm_pmu_set_counter_event_type(vcpu, p->regval, idx); |
| vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK; |
| } else { |
| p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK; |
| } |
| |
| return true; |
| } |
| |
| static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 val, mask; |
| |
| if (!kvm_arm_pmu_v3_ready(vcpu)) |
| return trap_raz_wi(vcpu, p, r); |
| |
| if (pmu_access_el0_disabled(vcpu)) |
| return false; |
| |
| mask = kvm_pmu_valid_counter_mask(vcpu); |
| if (p->is_write) { |
| val = p->regval & mask; |
| if (r->Op2 & 0x1) { |
| /* accessing PMCNTENSET_EL0 */ |
| vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val; |
| kvm_pmu_enable_counter(vcpu, val); |
| } else { |
| /* accessing PMCNTENCLR_EL0 */ |
| vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val; |
| kvm_pmu_disable_counter(vcpu, val); |
| } |
| } else { |
| p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask; |
| } |
| |
| return true; |
| } |
| |
| static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 mask = kvm_pmu_valid_counter_mask(vcpu); |
| |
| if (!kvm_arm_pmu_v3_ready(vcpu)) |
| return trap_raz_wi(vcpu, p, r); |
| |
| if (!vcpu_mode_priv(vcpu)) { |
| kvm_inject_undefined(vcpu); |
| return false; |
| } |
| |
| if (p->is_write) { |
| u64 val = p->regval & mask; |
| |
| if (r->Op2 & 0x1) |
| /* accessing PMINTENSET_EL1 */ |
| vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val; |
| else |
| /* accessing PMINTENCLR_EL1 */ |
| vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val; |
| } else { |
| p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask; |
| } |
| |
| return true; |
| } |
| |
| static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 mask = kvm_pmu_valid_counter_mask(vcpu); |
| |
| if (!kvm_arm_pmu_v3_ready(vcpu)) |
| return trap_raz_wi(vcpu, p, r); |
| |
| if (pmu_access_el0_disabled(vcpu)) |
| return false; |
| |
| if (p->is_write) { |
| if (r->CRm & 0x2) |
| /* accessing PMOVSSET_EL0 */ |
| kvm_pmu_overflow_set(vcpu, p->regval & mask); |
| else |
| /* accessing PMOVSCLR_EL0 */ |
| vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask); |
| } else { |
| p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask; |
| } |
| |
| return true; |
| } |
| |
| static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 mask; |
| |
| if (!kvm_arm_pmu_v3_ready(vcpu)) |
| return trap_raz_wi(vcpu, p, r); |
| |
| if (!p->is_write) |
| return read_from_write_only(vcpu, p, r); |
| |
| if (pmu_write_swinc_el0_disabled(vcpu)) |
| return false; |
| |
| mask = kvm_pmu_valid_counter_mask(vcpu); |
| kvm_pmu_software_increment(vcpu, p->regval & mask); |
| return true; |
| } |
| |
| static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (!kvm_arm_pmu_v3_ready(vcpu)) |
| return trap_raz_wi(vcpu, p, r); |
| |
| if (p->is_write) { |
| if (!vcpu_mode_priv(vcpu)) { |
| kvm_inject_undefined(vcpu); |
| return false; |
| } |
| |
| vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval |
| & ARMV8_PMU_USERENR_MASK; |
| } else { |
| p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0) |
| & ARMV8_PMU_USERENR_MASK; |
| } |
| |
| return true; |
| } |
| |
| /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */ |
| #define DBG_BCR_BVR_WCR_WVR_EL1(n) \ |
| { SYS_DESC(SYS_DBGBVRn_EL1(n)), \ |
| trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \ |
| { SYS_DESC(SYS_DBGBCRn_EL1(n)), \ |
| trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \ |
| { SYS_DESC(SYS_DBGWVRn_EL1(n)), \ |
| trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \ |
| { SYS_DESC(SYS_DBGWCRn_EL1(n)), \ |
| trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr } |
| |
| /* Macro to expand the PMEVCNTRn_EL0 register */ |
| #define PMU_PMEVCNTR_EL0(n) \ |
| { SYS_DESC(SYS_PMEVCNTRn_EL0(n)), \ |
| access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), } |
| |
| /* Macro to expand the PMEVTYPERn_EL0 register */ |
| #define PMU_PMEVTYPER_EL0(n) \ |
| { SYS_DESC(SYS_PMEVTYPERn_EL0(n)), \ |
| access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), } |
| |
| static bool access_cntp_tval(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); |
| u64 now = kvm_phys_timer_read(); |
| |
| if (p->is_write) |
| ptimer->cnt_cval = p->regval + now; |
| else |
| p->regval = ptimer->cnt_cval - now; |
| |
| return true; |
| } |
| |
| static bool access_cntp_ctl(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); |
| |
| if (p->is_write) { |
| /* ISTATUS bit is read-only */ |
| ptimer->cnt_ctl = p->regval & ~ARCH_TIMER_CTRL_IT_STAT; |
| } else { |
| u64 now = kvm_phys_timer_read(); |
| |
| p->regval = ptimer->cnt_ctl; |
| /* |
| * Set ISTATUS bit if it's expired. |
| * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is |
| * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit |
| * regardless of ENABLE bit for our implementation convenience. |
| */ |
| if (ptimer->cnt_cval <= now) |
| p->regval |= ARCH_TIMER_CTRL_IT_STAT; |
| } |
| |
| return true; |
| } |
| |
| static bool access_cntp_cval(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); |
| |
| if (p->is_write) |
| ptimer->cnt_cval = p->regval; |
| else |
| p->regval = ptimer->cnt_cval; |
| |
| return true; |
| } |
| |
| /* |
| * Architected system registers. |
| * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2 |
| * |
| * Debug handling: We do trap most, if not all debug related system |
| * registers. The implementation is good enough to ensure that a guest |
| * can use these with minimal performance degradation. The drawback is |
| * that we don't implement any of the external debug, none of the |
| * OSlock protocol. This should be revisited if we ever encounter a |
| * more demanding guest... |
| */ |
| static const struct sys_reg_desc sys_reg_descs[] = { |
| { SYS_DESC(SYS_DC_ISW), access_dcsw }, |
| { SYS_DESC(SYS_DC_CSW), access_dcsw }, |
| { SYS_DESC(SYS_DC_CISW), access_dcsw }, |
| |
| DBG_BCR_BVR_WCR_WVR_EL1(0), |
| DBG_BCR_BVR_WCR_WVR_EL1(1), |
| { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 }, |
| { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 }, |
| DBG_BCR_BVR_WCR_WVR_EL1(2), |
| DBG_BCR_BVR_WCR_WVR_EL1(3), |
| DBG_BCR_BVR_WCR_WVR_EL1(4), |
| DBG_BCR_BVR_WCR_WVR_EL1(5), |
| DBG_BCR_BVR_WCR_WVR_EL1(6), |
| DBG_BCR_BVR_WCR_WVR_EL1(7), |
| DBG_BCR_BVR_WCR_WVR_EL1(8), |
| DBG_BCR_BVR_WCR_WVR_EL1(9), |
| DBG_BCR_BVR_WCR_WVR_EL1(10), |
| DBG_BCR_BVR_WCR_WVR_EL1(11), |
| DBG_BCR_BVR_WCR_WVR_EL1(12), |
| DBG_BCR_BVR_WCR_WVR_EL1(13), |
| DBG_BCR_BVR_WCR_WVR_EL1(14), |
| DBG_BCR_BVR_WCR_WVR_EL1(15), |
| |
| { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 }, |
| { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi }, |
| { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 }, |
| |
| { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi }, |
| { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi }, |
| // DBGDTR[TR]X_EL0 share the same encoding |
| { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi }, |
| |
| { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 }, |
| |
| { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 }, |
| { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 }, |
| { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 }, |
| { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 }, |
| { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 }, |
| { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 }, |
| |
| { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 }, |
| { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 }, |
| { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 }, |
| { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 }, |
| { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 }, |
| |
| { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 }, |
| { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 }, |
| |
| { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 }, |
| { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 }, |
| |
| { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 }, |
| |
| { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only }, |
| { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only }, |
| { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only }, |
| { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only }, |
| { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only }, |
| { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi }, |
| { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only }, |
| { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only }, |
| { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only }, |
| { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre }, |
| |
| { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 }, |
| { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 }, |
| |
| { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0}, |
| |
| { SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 }, |
| |
| { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, }, |
| { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 }, |
| { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 }, |
| { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 }, |
| { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 }, |
| { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 }, |
| { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid }, |
| { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid }, |
| { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 }, |
| { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper }, |
| { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr }, |
| /* |
| * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero |
| * in 32bit mode. Here we choose to reset it as zero for consistency. |
| */ |
| { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 }, |
| { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 }, |
| |
| { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 }, |
| { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 }, |
| |
| { SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval }, |
| { SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl }, |
| { SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval }, |
| |
| /* PMEVCNTRn_EL0 */ |
| PMU_PMEVCNTR_EL0(0), |
| PMU_PMEVCNTR_EL0(1), |
| PMU_PMEVCNTR_EL0(2), |
| PMU_PMEVCNTR_EL0(3), |
| PMU_PMEVCNTR_EL0(4), |
| PMU_PMEVCNTR_EL0(5), |
| PMU_PMEVCNTR_EL0(6), |
| PMU_PMEVCNTR_EL0(7), |
| PMU_PMEVCNTR_EL0(8), |
| PMU_PMEVCNTR_EL0(9), |
| PMU_PMEVCNTR_EL0(10), |
| PMU_PMEVCNTR_EL0(11), |
| PMU_PMEVCNTR_EL0(12), |
| PMU_PMEVCNTR_EL0(13), |
| PMU_PMEVCNTR_EL0(14), |
| PMU_PMEVCNTR_EL0(15), |
| PMU_PMEVCNTR_EL0(16), |
| PMU_PMEVCNTR_EL0(17), |
| PMU_PMEVCNTR_EL0(18), |
| PMU_PMEVCNTR_EL0(19), |
| PMU_PMEVCNTR_EL0(20), |
| PMU_PMEVCNTR_EL0(21), |
| PMU_PMEVCNTR_EL0(22), |
| PMU_PMEVCNTR_EL0(23), |
| PMU_PMEVCNTR_EL0(24), |
| PMU_PMEVCNTR_EL0(25), |
| PMU_PMEVCNTR_EL0(26), |
| PMU_PMEVCNTR_EL0(27), |
| PMU_PMEVCNTR_EL0(28), |
| PMU_PMEVCNTR_EL0(29), |
| PMU_PMEVCNTR_EL0(30), |
| /* PMEVTYPERn_EL0 */ |
| PMU_PMEVTYPER_EL0(0), |
| PMU_PMEVTYPER_EL0(1), |
| PMU_PMEVTYPER_EL0(2), |
| PMU_PMEVTYPER_EL0(3), |
| PMU_PMEVTYPER_EL0(4), |
| PMU_PMEVTYPER_EL0(5), |
| PMU_PMEVTYPER_EL0(6), |
| PMU_PMEVTYPER_EL0(7), |
| PMU_PMEVTYPER_EL0(8), |
| PMU_PMEVTYPER_EL0(9), |
| PMU_PMEVTYPER_EL0(10), |
| PMU_PMEVTYPER_EL0(11), |
| PMU_PMEVTYPER_EL0(12), |
| PMU_PMEVTYPER_EL0(13), |
| PMU_PMEVTYPER_EL0(14), |
| PMU_PMEVTYPER_EL0(15), |
| PMU_PMEVTYPER_EL0(16), |
| PMU_PMEVTYPER_EL0(17), |
| PMU_PMEVTYPER_EL0(18), |
| PMU_PMEVTYPER_EL0(19), |
| PMU_PMEVTYPER_EL0(20), |
| PMU_PMEVTYPER_EL0(21), |
| PMU_PMEVTYPER_EL0(22), |
| PMU_PMEVTYPER_EL0(23), |
| PMU_PMEVTYPER_EL0(24), |
| PMU_PMEVTYPER_EL0(25), |
| PMU_PMEVTYPER_EL0(26), |
| PMU_PMEVTYPER_EL0(27), |
| PMU_PMEVTYPER_EL0(28), |
| PMU_PMEVTYPER_EL0(29), |
| PMU_PMEVTYPER_EL0(30), |
| /* |
| * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero |
| * in 32bit mode. Here we choose to reset it as zero for consistency. |
| */ |
| { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 }, |
| |
| { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 }, |
| { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 }, |
| { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x70 }, |
| }; |
| |
| static bool trap_dbgidr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) { |
| return ignore_write(vcpu, p); |
| } else { |
| u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1); |
| u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); |
| u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT); |
| |
| p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) | |
| (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) | |
| (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20) |
| | (6 << 16) | (el3 << 14) | (el3 << 12)); |
| return true; |
| } |
| } |
| |
| static bool trap_debug32(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) { |
| vcpu_cp14(vcpu, r->reg) = p->regval; |
| vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY; |
| } else { |
| p->regval = vcpu_cp14(vcpu, r->reg); |
| } |
| |
| return true; |
| } |
| |
| /* AArch32 debug register mappings |
| * |
| * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0] |
| * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32] |
| * |
| * All control registers and watchpoint value registers are mapped to |
| * the lower 32 bits of their AArch64 equivalents. We share the trap |
| * handlers with the above AArch64 code which checks what mode the |
| * system is in. |
| */ |
| |
| static bool trap_xvr(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *p, |
| const struct sys_reg_desc *rd) |
| { |
| u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg]; |
| |
| if (p->is_write) { |
| u64 val = *dbg_reg; |
| |
| val &= 0xffffffffUL; |
| val |= p->regval << 32; |
| *dbg_reg = val; |
| |
| vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY; |
| } else { |
| p->regval = *dbg_reg >> 32; |
| } |
| |
| trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg); |
| |
| return true; |
| } |
| |
| #define DBG_BCR_BVR_WCR_WVR(n) \ |
| /* DBGBVRn */ \ |
| { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \ |
| /* DBGBCRn */ \ |
| { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \ |
| /* DBGWVRn */ \ |
| { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \ |
| /* DBGWCRn */ \ |
| { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n } |
| |
| #define DBGBXVR(n) \ |
| { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n } |
| |
| /* |
| * Trapped cp14 registers. We generally ignore most of the external |
| * debug, on the principle that they don't really make sense to a |
| * guest. Revisit this one day, would this principle change. |
| */ |
| static const struct sys_reg_desc cp14_regs[] = { |
| /* DBGIDR */ |
| { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr }, |
| /* DBGDTRRXext */ |
| { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi }, |
| |
| DBG_BCR_BVR_WCR_WVR(0), |
| /* DBGDSCRint */ |
| { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi }, |
| DBG_BCR_BVR_WCR_WVR(1), |
| /* DBGDCCINT */ |
| { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 }, |
| /* DBGDSCRext */ |
| { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 }, |
| DBG_BCR_BVR_WCR_WVR(2), |
| /* DBGDTR[RT]Xint */ |
| { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi }, |
| /* DBGDTR[RT]Xext */ |
| { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi }, |
| DBG_BCR_BVR_WCR_WVR(3), |
| DBG_BCR_BVR_WCR_WVR(4), |
| DBG_BCR_BVR_WCR_WVR(5), |
| /* DBGWFAR */ |
| { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi }, |
| /* DBGOSECCR */ |
| { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi }, |
| DBG_BCR_BVR_WCR_WVR(6), |
| /* DBGVCR */ |
| { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 }, |
| DBG_BCR_BVR_WCR_WVR(7), |
| DBG_BCR_BVR_WCR_WVR(8), |
| DBG_BCR_BVR_WCR_WVR(9), |
| DBG_BCR_BVR_WCR_WVR(10), |
| DBG_BCR_BVR_WCR_WVR(11), |
| DBG_BCR_BVR_WCR_WVR(12), |
| DBG_BCR_BVR_WCR_WVR(13), |
| DBG_BCR_BVR_WCR_WVR(14), |
| DBG_BCR_BVR_WCR_WVR(15), |
| |
| /* DBGDRAR (32bit) */ |
| { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi }, |
| |
| DBGBXVR(0), |
| /* DBGOSLAR */ |
| { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi }, |
| DBGBXVR(1), |
| /* DBGOSLSR */ |
| { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 }, |
| DBGBXVR(2), |
| DBGBXVR(3), |
| /* DBGOSDLR */ |
| { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi }, |
| DBGBXVR(4), |
| /* DBGPRCR */ |
| { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi }, |
| DBGBXVR(5), |
| DBGBXVR(6), |
| DBGBXVR(7), |
| DBGBXVR(8), |
| DBGBXVR(9), |
| DBGBXVR(10), |
| DBGBXVR(11), |
| DBGBXVR(12), |
| DBGBXVR(13), |
| DBGBXVR(14), |
| DBGBXVR(15), |
| |
| /* DBGDSAR (32bit) */ |
| { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi }, |
| |
| /* DBGDEVID2 */ |
| { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi }, |
| /* DBGDEVID1 */ |
| { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi }, |
| /* DBGDEVID */ |
| { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi }, |
| /* DBGCLAIMSET */ |
| { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi }, |
| /* DBGCLAIMCLR */ |
| { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi }, |
| /* DBGAUTHSTATUS */ |
| { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 }, |
| }; |
| |
| /* Trapped cp14 64bit registers */ |
| static const struct sys_reg_desc cp14_64_regs[] = { |
| /* DBGDRAR (64bit) */ |
| { Op1( 0), CRm( 1), .access = trap_raz_wi }, |
| |
| /* DBGDSAR (64bit) */ |
| { Op1( 0), CRm( 2), .access = trap_raz_wi }, |
| }; |
| |
| /* Macro to expand the PMEVCNTRn register */ |
| #define PMU_PMEVCNTR(n) \ |
| /* PMEVCNTRn */ \ |
| { Op1(0), CRn(0b1110), \ |
| CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \ |
| access_pmu_evcntr } |
| |
| /* Macro to expand the PMEVTYPERn register */ |
| #define PMU_PMEVTYPER(n) \ |
| /* PMEVTYPERn */ \ |
| { Op1(0), CRn(0b1110), \ |
| CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \ |
| access_pmu_evtyper } |
| |
| /* |
| * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding, |
| * depending on the way they are accessed (as a 32bit or a 64bit |
| * register). |
| */ |
| static const struct sys_reg_desc cp15_regs[] = { |
| { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, |
| |
| { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR }, |
| { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 }, |
| { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 }, |
| { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR }, |
| { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR }, |
| { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR }, |
| { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR }, |
| { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR }, |
| { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR }, |
| { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR }, |
| { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR }, |
| |
| /* |
| * DC{C,I,CI}SW operations: |
| */ |
| { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw }, |
| { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw }, |
| { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw }, |
| |
| /* PMU */ |
| { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr }, |
| { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten }, |
| { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten }, |
| { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs }, |
| { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc }, |
| { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr }, |
| { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid }, |
| { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid }, |
| { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr }, |
| { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper }, |
| { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr }, |
| { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr }, |
| { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten }, |
| { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten }, |
| { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs }, |
| |
| { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR }, |
| { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR }, |
| { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 }, |
| { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 }, |
| |
| /* ICC_SRE */ |
| { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre }, |
| |
| { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID }, |
| |
| /* PMEVCNTRn */ |
| PMU_PMEVCNTR(0), |
| PMU_PMEVCNTR(1), |
| PMU_PMEVCNTR(2), |
| PMU_PMEVCNTR(3), |
| PMU_PMEVCNTR(4), |
| PMU_PMEVCNTR(5), |
| PMU_PMEVCNTR(6), |
| PMU_PMEVCNTR(7), |
| PMU_PMEVCNTR(8), |
| PMU_PMEVCNTR(9), |
| PMU_PMEVCNTR(10), |
| PMU_PMEVCNTR(11), |
| PMU_PMEVCNTR(12), |
| PMU_PMEVCNTR(13), |
| PMU_PMEVCNTR(14), |
| PMU_PMEVCNTR(15), |
| PMU_PMEVCNTR(16), |
| PMU_PMEVCNTR(17), |
| PMU_PMEVCNTR(18), |
| PMU_PMEVCNTR(19), |
| PMU_PMEVCNTR(20), |
| PMU_PMEVCNTR(21), |
| PMU_PMEVCNTR(22), |
| PMU_PMEVCNTR(23), |
| PMU_PMEVCNTR(24), |
| PMU_PMEVCNTR(25), |
| PMU_PMEVCNTR(26), |
| PMU_PMEVCNTR(27), |
| PMU_PMEVCNTR(28), |
| PMU_PMEVCNTR(29), |
| PMU_PMEVCNTR(30), |
| /* PMEVTYPERn */ |
| PMU_PMEVTYPER(0), |
| PMU_PMEVTYPER(1), |
| PMU_PMEVTYPER(2), |
| PMU_PMEVTYPER(3), |
| PMU_PMEVTYPER(4), |
| PMU_PMEVTYPER(5), |
| PMU_PMEVTYPER(6), |
| PMU_PMEVTYPER(7), |
| PMU_PMEVTYPER(8), |
| PMU_PMEVTYPER(9), |
| PMU_PMEVTYPER(10), |
| PMU_PMEVTYPER(11), |
| PMU_PMEVTYPER(12), |
| PMU_PMEVTYPER(13), |
| PMU_PMEVTYPER(14), |
| PMU_PMEVTYPER(15), |
| PMU_PMEVTYPER(16), |
| PMU_PMEVTYPER(17), |
| PMU_PMEVTYPER(18), |
| PMU_PMEVTYPER(19), |
| PMU_PMEVTYPER(20), |
| PMU_PMEVTYPER(21), |
| PMU_PMEVTYPER(22), |
| PMU_PMEVTYPER(23), |
| PMU_PMEVTYPER(24), |
| PMU_PMEVTYPER(25), |
| PMU_PMEVTYPER(26), |
| PMU_PMEVTYPER(27), |
| PMU_PMEVTYPER(28), |
| PMU_PMEVTYPER(29), |
| PMU_PMEVTYPER(30), |
| /* PMCCFILTR */ |
| { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper }, |
| }; |
| |
| static const struct sys_reg_desc cp15_64_regs[] = { |
| { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 }, |
| { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr }, |
| { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, |
| { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 }, |
| }; |
| |
| /* Target specific emulation tables */ |
| static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS]; |
| |
| void kvm_register_target_sys_reg_table(unsigned int target, |
| struct kvm_sys_reg_target_table *table) |
| { |
| target_tables[target] = table; |
| } |
| |
| /* Get specific register table for this target. */ |
| static const struct sys_reg_desc *get_target_table(unsigned target, |
| bool mode_is_64, |
| size_t *num) |
| { |
| struct kvm_sys_reg_target_table *table; |
| |
| table = target_tables[target]; |
| if (mode_is_64) { |
| *num = table->table64.num; |
| return table->table64.table; |
| } else { |
| *num = table->table32.num; |
| return table->table32.table; |
| } |
| } |
| |
| #define reg_to_match_value(x) \ |
| ({ \ |
| unsigned long val; \ |
| val = (x)->Op0 << 14; \ |
| val |= (x)->Op1 << 11; \ |
| val |= (x)->CRn << 7; \ |
| val |= (x)->CRm << 3; \ |
| val |= (x)->Op2; \ |
| val; \ |
| }) |
| |
| static int match_sys_reg(const void *key, const void *elt) |
| { |
| const unsigned long pval = (unsigned long)key; |
| const struct sys_reg_desc *r = elt; |
| |
| return pval - reg_to_match_value(r); |
| } |
| |
| static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params, |
| const struct sys_reg_desc table[], |
| unsigned int num) |
| { |
| unsigned long pval = reg_to_match_value(params); |
| |
| return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg); |
| } |
| |
| int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| kvm_inject_undefined(vcpu); |
| return 1; |
| } |
| |
| static void perform_access(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *params, |
| const struct sys_reg_desc *r) |
| { |
| /* |
| * Not having an accessor means that we have configured a trap |
| * that we don't know how to handle. This certainly qualifies |
| * as a gross bug that should be fixed right away. |
| */ |
| BUG_ON(!r->access); |
| |
| /* Skip instruction if instructed so */ |
| if (likely(r->access(vcpu, params, r))) |
| kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); |
| } |
| |
| /* |
| * emulate_cp -- tries to match a sys_reg access in a handling table, and |
| * call the corresponding trap handler. |
| * |
| * @params: pointer to the descriptor of the access |
| * @table: array of trap descriptors |
| * @num: size of the trap descriptor array |
| * |
| * Return 0 if the access has been handled, and -1 if not. |
| */ |
| static int emulate_cp(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *params, |
| const struct sys_reg_desc *table, |
| size_t num) |
| { |
| const struct sys_reg_desc *r; |
| |
| if (!table) |
| return -1; /* Not handled */ |
| |
| r = find_reg(params, table, num); |
| |
| if (r) { |
| perform_access(vcpu, params, r); |
| return 0; |
| } |
| |
| /* Not handled */ |
| return -1; |
| } |
| |
| static void unhandled_cp_access(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *params) |
| { |
| u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu); |
| int cp = -1; |
| |
| switch(hsr_ec) { |
| case ESR_ELx_EC_CP15_32: |
| case ESR_ELx_EC_CP15_64: |
| cp = 15; |
| break; |
| case ESR_ELx_EC_CP14_MR: |
| case ESR_ELx_EC_CP14_64: |
| cp = 14; |
| break; |
| default: |
| WARN_ON(1); |
| } |
| |
| kvm_err("Unsupported guest CP%d access at: %08lx\n", |
| cp, *vcpu_pc(vcpu)); |
| print_sys_reg_instr(params); |
| kvm_inject_undefined(vcpu); |
| } |
| |
| /** |
| * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access |
| * @vcpu: The VCPU pointer |
| * @run: The kvm_run struct |
| */ |
| static int kvm_handle_cp_64(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *global, |
| size_t nr_global, |
| const struct sys_reg_desc *target_specific, |
| size_t nr_specific) |
| { |
| struct sys_reg_params params; |
| u32 hsr = kvm_vcpu_get_hsr(vcpu); |
| int Rt = kvm_vcpu_sys_get_rt(vcpu); |
| int Rt2 = (hsr >> 10) & 0x1f; |
| |
| params.is_aarch32 = true; |
| params.is_32bit = false; |
| params.CRm = (hsr >> 1) & 0xf; |
| params.is_write = ((hsr & 1) == 0); |
| |
| params.Op0 = 0; |
| params.Op1 = (hsr >> 16) & 0xf; |
| params.Op2 = 0; |
| params.CRn = 0; |
| |
| /* |
| * Make a 64-bit value out of Rt and Rt2. As we use the same trap |
| * backends between AArch32 and AArch64, we get away with it. |
| */ |
| if (params.is_write) { |
| params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff; |
| params.regval |= vcpu_get_reg(vcpu, Rt2) << 32; |
| } |
| |
| /* |
| * Try to emulate the coprocessor access using the target |
| * specific table first, and using the global table afterwards. |
| * If either of the tables contains a handler, handle the |
| * potential register operation in the case of a read and return |
| * with success. |
| */ |
| if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific) || |
| !emulate_cp(vcpu, ¶ms, global, nr_global)) { |
| /* Split up the value between registers for the read side */ |
| if (!params.is_write) { |
| vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval)); |
| vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval)); |
| } |
| |
| return 1; |
| } |
| |
| unhandled_cp_access(vcpu, ¶ms); |
| return 1; |
| } |
| |
| /** |
| * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access |
| * @vcpu: The VCPU pointer |
| * @run: The kvm_run struct |
| */ |
| static int kvm_handle_cp_32(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *global, |
| size_t nr_global, |
| const struct sys_reg_desc *target_specific, |
| size_t nr_specific) |
| { |
| struct sys_reg_params params; |
| u32 hsr = kvm_vcpu_get_hsr(vcpu); |
| int Rt = kvm_vcpu_sys_get_rt(vcpu); |
| |
| params.is_aarch32 = true; |
| params.is_32bit = true; |
| params.CRm = (hsr >> 1) & 0xf; |
| params.regval = vcpu_get_reg(vcpu, Rt); |
| params.is_write = ((hsr & 1) == 0); |
| params.CRn = (hsr >> 10) & 0xf; |
| params.Op0 = 0; |
| params.Op1 = (hsr >> 14) & 0x7; |
| params.Op2 = (hsr >> 17) & 0x7; |
| |
| if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific) || |
| !emulate_cp(vcpu, ¶ms, global, nr_global)) { |
| if (!params.is_write) |
| vcpu_set_reg(vcpu, Rt, params.regval); |
| return 1; |
| } |
| |
| unhandled_cp_access(vcpu, ¶ms); |
| return 1; |
| } |
| |
| int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| const struct sys_reg_desc *target_specific; |
| size_t num; |
| |
| target_specific = get_target_table(vcpu->arch.target, false, &num); |
| return kvm_handle_cp_64(vcpu, |
| cp15_64_regs, ARRAY_SIZE(cp15_64_regs), |
| target_specific, num); |
| } |
| |
| int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| const struct sys_reg_desc *target_specific; |
| size_t num; |
| |
| target_specific = get_target_table(vcpu->arch.target, false, &num); |
| return kvm_handle_cp_32(vcpu, |
| cp15_regs, ARRAY_SIZE(cp15_regs), |
| target_specific, num); |
| } |
| |
| int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| return kvm_handle_cp_64(vcpu, |
| cp14_64_regs, ARRAY_SIZE(cp14_64_regs), |
| NULL, 0); |
| } |
| |
| int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| return kvm_handle_cp_32(vcpu, |
| cp14_regs, ARRAY_SIZE(cp14_regs), |
| NULL, 0); |
| } |
| |
| static int emulate_sys_reg(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *params) |
| { |
| size_t num; |
| const struct sys_reg_desc *table, *r; |
| |
| table = get_target_table(vcpu->arch.target, true, &num); |
| |
| /* Search target-specific then generic table. */ |
| r = find_reg(params, table, num); |
| if (!r) |
| r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); |
| |
| if (likely(r)) { |
| perform_access(vcpu, params, r); |
| } else { |
| kvm_err("Unsupported guest sys_reg access at: %lx\n", |
| *vcpu_pc(vcpu)); |
| print_sys_reg_instr(params); |
| kvm_inject_undefined(vcpu); |
| } |
| return 1; |
| } |
| |
| static void reset_sys_reg_descs(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *table, size_t num) |
| { |
| unsigned long i; |
| |
| for (i = 0; i < num; i++) |
| if (table[i].reset) |
| table[i].reset(vcpu, &table[i]); |
| } |
| |
| /** |
| * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access |
| * @vcpu: The VCPU pointer |
| * @run: The kvm_run struct |
| */ |
| int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| struct sys_reg_params params; |
| unsigned long esr = kvm_vcpu_get_hsr(vcpu); |
| int Rt = kvm_vcpu_sys_get_rt(vcpu); |
| int ret; |
| |
| trace_kvm_handle_sys_reg(esr); |
| |
| params.is_aarch32 = false; |
| params.is_32bit = false; |
| params.Op0 = (esr >> 20) & 3; |
| params.Op1 = (esr >> 14) & 0x7; |
| params.CRn = (esr >> 10) & 0xf; |
| params.CRm = (esr >> 1) & 0xf; |
| params.Op2 = (esr >> 17) & 0x7; |
| params.regval = vcpu_get_reg(vcpu, Rt); |
| params.is_write = !(esr & 1); |
| |
| ret = emulate_sys_reg(vcpu, ¶ms); |
| |
| if (!params.is_write) |
| vcpu_set_reg(vcpu, Rt, params.regval); |
| return ret; |
| } |
| |
| /****************************************************************************** |
| * Userspace API |
| *****************************************************************************/ |
| |
| static bool index_to_params(u64 id, struct sys_reg_params *params) |
| { |
| switch (id & KVM_REG_SIZE_MASK) { |
| case KVM_REG_SIZE_U64: |
| /* Any unused index bits means it's not valid. */ |
| if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK |
| | KVM_REG_ARM_COPROC_MASK |
| | KVM_REG_ARM64_SYSREG_OP0_MASK |
| | KVM_REG_ARM64_SYSREG_OP1_MASK |
| | KVM_REG_ARM64_SYSREG_CRN_MASK |
| | KVM_REG_ARM64_SYSREG_CRM_MASK |
| | KVM_REG_ARM64_SYSREG_OP2_MASK)) |
| return false; |
| params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK) |
| >> KVM_REG_ARM64_SYSREG_OP0_SHIFT); |
| params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK) |
| >> KVM_REG_ARM64_SYSREG_OP1_SHIFT); |
| params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK) |
| >> KVM_REG_ARM64_SYSREG_CRN_SHIFT); |
| params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK) |
| >> KVM_REG_ARM64_SYSREG_CRM_SHIFT); |
| params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK) |
| >> KVM_REG_ARM64_SYSREG_OP2_SHIFT); |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| const struct sys_reg_desc *find_reg_by_id(u64 id, |
| struct sys_reg_params *params, |
| const struct sys_reg_desc table[], |
| unsigned int num) |
| { |
| if (!index_to_params(id, params)) |
| return NULL; |
| |
| return find_reg(params, table, num); |
| } |
| |
| /* Decode an index value, and find the sys_reg_desc entry. */ |
| static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu, |
| u64 id) |
| { |
| size_t num; |
| const struct sys_reg_desc *table, *r; |
| struct sys_reg_params params; |
| |
| /* We only do sys_reg for now. */ |
| if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG) |
| return NULL; |
| |
| table = get_target_table(vcpu->arch.target, true, &num); |
| r = find_reg_by_id(id, ¶ms, table, num); |
| if (!r) |
| r = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); |
| |
| /* Not saved in the sys_reg array? */ |
| if (r && !r->reg) |
| r = NULL; |
| |
| return r; |
| } |
| |
| /* |
| * These are the invariant sys_reg registers: we let the guest see the |
| * host versions of these, so they're part of the guest state. |
| * |
| * A future CPU may provide a mechanism to present different values to |
| * the guest, or a future kvm may trap them. |
| */ |
| |
| #define FUNCTION_INVARIANT(reg) \ |
| static void get_##reg(struct kvm_vcpu *v, \ |
| const struct sys_reg_desc *r) \ |
| { \ |
| ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \ |
| } |
| |
| FUNCTION_INVARIANT(midr_el1) |
| FUNCTION_INVARIANT(ctr_el0) |
| FUNCTION_INVARIANT(revidr_el1) |
| FUNCTION_INVARIANT(id_pfr0_el1) |
| FUNCTION_INVARIANT(id_pfr1_el1) |
| FUNCTION_INVARIANT(id_dfr0_el1) |
| FUNCTION_INVARIANT(id_afr0_el1) |
| FUNCTION_INVARIANT(id_mmfr0_el1) |
| FUNCTION_INVARIANT(id_mmfr1_el1) |
| FUNCTION_INVARIANT(id_mmfr2_el1) |
| FUNCTION_INVARIANT(id_mmfr3_el1) |
| FUNCTION_INVARIANT(id_isar0_el1) |
| FUNCTION_INVARIANT(id_isar1_el1) |
| FUNCTION_INVARIANT(id_isar2_el1) |
| FUNCTION_INVARIANT(id_isar3_el1) |
| FUNCTION_INVARIANT(id_isar4_el1) |
| FUNCTION_INVARIANT(id_isar5_el1) |
| FUNCTION_INVARIANT(clidr_el1) |
| FUNCTION_INVARIANT(aidr_el1) |
| |
| /* ->val is filled in by kvm_sys_reg_table_init() */ |
| static struct sys_reg_desc invariant_sys_regs[] = { |
| { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 }, |
| { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 }, |
| { SYS_DESC(SYS_ID_PFR0_EL1), NULL, get_id_pfr0_el1 }, |
| { SYS_DESC(SYS_ID_PFR1_EL1), NULL, get_id_pfr1_el1 }, |
| { SYS_DESC(SYS_ID_DFR0_EL1), NULL, get_id_dfr0_el1 }, |
| { SYS_DESC(SYS_ID_AFR0_EL1), NULL, get_id_afr0_el1 }, |
| { SYS_DESC(SYS_ID_MMFR0_EL1), NULL, get_id_mmfr0_el1 }, |
| { SYS_DESC(SYS_ID_MMFR1_EL1), NULL, get_id_mmfr1_el1 }, |
| { SYS_DESC(SYS_ID_MMFR2_EL1), NULL, get_id_mmfr2_el1 }, |
| { SYS_DESC(SYS_ID_MMFR3_EL1), NULL, get_id_mmfr3_el1 }, |
| { SYS_DESC(SYS_ID_ISAR0_EL1), NULL, get_id_isar0_el1 }, |
| { SYS_DESC(SYS_ID_ISAR1_EL1), NULL, get_id_isar1_el1 }, |
| { SYS_DESC(SYS_ID_ISAR2_EL1), NULL, get_id_isar2_el1 }, |
| { SYS_DESC(SYS_ID_ISAR3_EL1), NULL, get_id_isar3_el1 }, |
| { SYS_DESC(SYS_ID_ISAR4_EL1), NULL, get_id_isar4_el1 }, |
| { SYS_DESC(SYS_ID_ISAR5_EL1), NULL, get_id_isar5_el1 }, |
| { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 }, |
| { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 }, |
| { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 }, |
| }; |
| |
| static int reg_from_user(u64 *val, const void __user *uaddr, u64 id) |
| { |
| if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int reg_to_user(void __user *uaddr, const u64 *val, u64 id) |
| { |
| if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int get_invariant_sys_reg(u64 id, void __user *uaddr) |
| { |
| struct sys_reg_params params; |
| const struct sys_reg_desc *r; |
| |
| r = find_reg_by_id(id, ¶ms, invariant_sys_regs, |
| ARRAY_SIZE(invariant_sys_regs)); |
| if (!r) |
| return -ENOENT; |
| |
| return reg_to_user(uaddr, &r->val, id); |
| } |
| |
| static int set_invariant_sys_reg(u64 id, void __user *uaddr) |
| { |
| struct sys_reg_params params; |
| const struct sys_reg_desc *r; |
| int err; |
| u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */ |
| |
| r = find_reg_by_id(id, ¶ms, invariant_sys_regs, |
| ARRAY_SIZE(invariant_sys_regs)); |
| if (!r) |
| return -ENOENT; |
| |
| err = reg_from_user(&val, uaddr, id); |
| if (err) |
| return err; |
| |
| /* This is what we mean by invariant: you can't change it. */ |
| if (r->val != val) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static bool is_valid_cache(u32 val) |
| { |
| u32 level, ctype; |
| |
| if (val >= CSSELR_MAX) |
| return false; |
| |
| /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */ |
| level = (val >> 1); |
| ctype = (cache_levels >> (level * 3)) & 7; |
| |
| switch (ctype) { |
| case 0: /* No cache */ |
| return false; |
| case 1: /* Instruction cache only */ |
| return (val & 1); |
| case 2: /* Data cache only */ |
| case 4: /* Unified cache */ |
| return !(val & 1); |
| case 3: /* Separate instruction and data caches */ |
| return true; |
| default: /* Reserved: we can't know instruction or data. */ |
| return false; |
| } |
| } |
| |
| static int demux_c15_get(u64 id, void __user *uaddr) |
| { |
| u32 val; |
| u32 __user *uval = uaddr; |
| |
| /* Fail if we have unknown bits set. */ |
| if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK |
| | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) |
| return -ENOENT; |
| |
| switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { |
| case KVM_REG_ARM_DEMUX_ID_CCSIDR: |
| if (KVM_REG_SIZE(id) != 4) |
| return -ENOENT; |
| val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) |
| >> KVM_REG_ARM_DEMUX_VAL_SHIFT; |
| if (!is_valid_cache(val)) |
| return -ENOENT; |
| |
| return put_user(get_ccsidr(val), uval); |
| default: |
| return -ENOENT; |
| } |
| } |
| |
| static int demux_c15_set(u64 id, void __user *uaddr) |
| { |
| u32 val, newval; |
| u32 __user *uval = uaddr; |
| |
| /* Fail if we have unknown bits set. */ |
| if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK |
| | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) |
| return -ENOENT; |
| |
| switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { |
| case KVM_REG_ARM_DEMUX_ID_CCSIDR: |
| if (KVM_REG_SIZE(id) != 4) |
| return -ENOENT; |
| val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) |
| >> KVM_REG_ARM_DEMUX_VAL_SHIFT; |
| if (!is_valid_cache(val)) |
| return -ENOENT; |
| |
| if (get_user(newval, uval)) |
| return -EFAULT; |
| |
| /* This is also invariant: you can't change it. */ |
| if (newval != get_ccsidr(val)) |
| return -EINVAL; |
| return 0; |
| default: |
| return -ENOENT; |
| } |
| } |
| |
| int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| const struct sys_reg_desc *r; |
| void __user *uaddr = (void __user *)(unsigned long)reg->addr; |
| |
| if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) |
| return demux_c15_get(reg->id, uaddr); |
| |
| if (KVM_REG_SIZE(reg->id) != sizeof(__u64)) |
| return -ENOENT; |
| |
| r = index_to_sys_reg_desc(vcpu, reg->id); |
| if (!r) |
| return get_invariant_sys_reg(reg->id, uaddr); |
| |
| if (r->get_user) |
| return (r->get_user)(vcpu, r, reg, uaddr); |
| |
| return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id); |
| } |
| |
| int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| const struct sys_reg_desc *r; |
| void __user *uaddr = (void __user *)(unsigned long)reg->addr; |
| |
| if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) |
| return demux_c15_set(reg->id, uaddr); |
| |
| if (KVM_REG_SIZE(reg->id) != sizeof(__u64)) |
| return -ENOENT; |
| |
| r = index_to_sys_reg_desc(vcpu, reg->id); |
| if (!r) |
| return set_invariant_sys_reg(reg->id, uaddr); |
| |
| if (r->set_user) |
| return (r->set_user)(vcpu, r, reg, uaddr); |
| |
| return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id); |
| } |
| |
| static unsigned int num_demux_regs(void) |
| { |
| unsigned int i, count = 0; |
| |
| for (i = 0; i < CSSELR_MAX; i++) |
| if (is_valid_cache(i)) |
| count++; |
| |
| return count; |
| } |
| |
| static int write_demux_regids(u64 __user *uindices) |
| { |
| u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; |
| unsigned int i; |
| |
| val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; |
| for (i = 0; i < CSSELR_MAX; i++) { |
| if (!is_valid_cache(i)) |
| continue; |
| if (put_user(val | i, uindices)) |
| return -EFAULT; |
| uindices++; |
| } |
| return 0; |
| } |
| |
| static u64 sys_reg_to_index(const struct sys_reg_desc *reg) |
| { |
| return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | |
| KVM_REG_ARM64_SYSREG | |
| (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) | |
| (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) | |
| (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) | |
| (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) | |
| (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT)); |
| } |
| |
| static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind) |
| { |
| if (!*uind) |
| return true; |
| |
| if (put_user(sys_reg_to_index(reg), *uind)) |
| return false; |
| |
| (*uind)++; |
| return true; |
| } |
| |
| /* Assumed ordered tables, see kvm_sys_reg_table_init. */ |
| static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind) |
| { |
| const struct sys_reg_desc *i1, *i2, *end1, *end2; |
| unsigned int total = 0; |
| size_t num; |
| |
| /* We check for duplicates here, to allow arch-specific overrides. */ |
| i1 = get_target_table(vcpu->arch.target, true, &num); |
| end1 = i1 + num; |
| i2 = sys_reg_descs; |
| end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs); |
| |
| BUG_ON(i1 == end1 || i2 == end2); |
| |
| /* Walk carefully, as both tables may refer to the same register. */ |
| while (i1 || i2) { |
| int cmp = cmp_sys_reg(i1, i2); |
| /* target-specific overrides generic entry. */ |
| if (cmp <= 0) { |
| /* Ignore registers we trap but don't save. */ |
| if (i1->reg) { |
| if (!copy_reg_to_user(i1, &uind)) |
| return -EFAULT; |
| total++; |
| } |
| } else { |
| /* Ignore registers we trap but don't save. */ |
| if (i2->reg) { |
| if (!copy_reg_to_user(i2, &uind)) |
| return -EFAULT; |
| total++; |
| } |
| } |
| |
| if (cmp <= 0 && ++i1 == end1) |
| i1 = NULL; |
| if (cmp >= 0 && ++i2 == end2) |
| i2 = NULL; |
| } |
| return total; |
| } |
| |
| unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu) |
| { |
| return ARRAY_SIZE(invariant_sys_regs) |
| + num_demux_regs() |
| + walk_sys_regs(vcpu, (u64 __user *)NULL); |
| } |
| |
| int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) |
| { |
| unsigned int i; |
| int err; |
| |
| /* Then give them all the invariant registers' indices. */ |
| for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) { |
| if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices)) |
| return -EFAULT; |
| uindices++; |
| } |
| |
| err = walk_sys_regs(vcpu, uindices); |
| if (err < 0) |
| return err; |
| uindices += err; |
| |
| return write_demux_regids(uindices); |
| } |
| |
| static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n) |
| { |
| unsigned int i; |
| |
| for (i = 1; i < n; i++) { |
| if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) { |
| kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| void kvm_sys_reg_table_init(void) |
| { |
| unsigned int i; |
| struct sys_reg_desc clidr; |
| |
| /* Make sure tables are unique and in order. */ |
| BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs))); |
| BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs))); |
| BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs))); |
| BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs))); |
| BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs))); |
| BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs))); |
| |
| /* We abuse the reset function to overwrite the table itself. */ |
| for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) |
| invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]); |
| |
| /* |
| * CLIDR format is awkward, so clean it up. See ARM B4.1.20: |
| * |
| * If software reads the Cache Type fields from Ctype1 |
| * upwards, once it has seen a value of 0b000, no caches |
| * exist at further-out levels of the hierarchy. So, for |
| * example, if Ctype3 is the first Cache Type field with a |
| * value of 0b000, the values of Ctype4 to Ctype7 must be |
| * ignored. |
| */ |
| get_clidr_el1(NULL, &clidr); /* Ugly... */ |
| cache_levels = clidr.val; |
| for (i = 0; i < 7; i++) |
| if (((cache_levels >> (i*3)) & 7) == 0) |
| break; |
| /* Clear all higher bits. */ |
| cache_levels &= (1 << (i*3))-1; |
| } |
| |
| /** |
| * kvm_reset_sys_regs - sets system registers to reset value |
| * @vcpu: The VCPU pointer |
| * |
| * This function finds the right table above and sets the registers on the |
| * virtual CPU struct to their architecturally defined reset values. |
| */ |
| void kvm_reset_sys_regs(struct kvm_vcpu *vcpu) |
| { |
| size_t num; |
| const struct sys_reg_desc *table; |
| |
| /* Catch someone adding a register without putting in reset entry. */ |
| memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs)); |
| |
| /* Generic chip reset first (so target could override). */ |
| reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); |
| |
| table = get_target_table(vcpu->arch.target, true, &num); |
| reset_sys_reg_descs(vcpu, table, num); |
| |
| for (num = 1; num < NR_SYS_REGS; num++) |
| if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242) |
| panic("Didn't reset vcpu_sys_reg(%zi)", num); |
| } |