| /* |
| * raid5.c : Multiple Devices driver for Linux |
| * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman |
| * Copyright (C) 1999, 2000 Ingo Molnar |
| * Copyright (C) 2002, 2003 H. Peter Anvin |
| * |
| * RAID-4/5/6 management functions. |
| * Thanks to Penguin Computing for making the RAID-6 development possible |
| * by donating a test server! |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * You should have received a copy of the GNU General Public License |
| * (for example /usr/src/linux/COPYING); if not, write to the Free |
| * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| /* |
| * BITMAP UNPLUGGING: |
| * |
| * The sequencing for updating the bitmap reliably is a little |
| * subtle (and I got it wrong the first time) so it deserves some |
| * explanation. |
| * |
| * We group bitmap updates into batches. Each batch has a number. |
| * We may write out several batches at once, but that isn't very important. |
| * conf->seq_write is the number of the last batch successfully written. |
| * conf->seq_flush is the number of the last batch that was closed to |
| * new additions. |
| * When we discover that we will need to write to any block in a stripe |
| * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq |
| * the number of the batch it will be in. This is seq_flush+1. |
| * When we are ready to do a write, if that batch hasn't been written yet, |
| * we plug the array and queue the stripe for later. |
| * When an unplug happens, we increment bm_flush, thus closing the current |
| * batch. |
| * When we notice that bm_flush > bm_write, we write out all pending updates |
| * to the bitmap, and advance bm_write to where bm_flush was. |
| * This may occasionally write a bit out twice, but is sure never to |
| * miss any bits. |
| */ |
| |
| #include <linux/blkdev.h> |
| #include <linux/kthread.h> |
| #include <linux/raid/pq.h> |
| #include <linux/async_tx.h> |
| #include <linux/module.h> |
| #include <linux/async.h> |
| #include <linux/seq_file.h> |
| #include <linux/cpu.h> |
| #include <linux/slab.h> |
| #include <linux/ratelimit.h> |
| #include <linux/nodemask.h> |
| #include <linux/flex_array.h> |
| #include <trace/events/block.h> |
| |
| #include "md.h" |
| #include "raid5.h" |
| #include "raid0.h" |
| #include "bitmap.h" |
| |
| #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) |
| |
| #define cpu_to_group(cpu) cpu_to_node(cpu) |
| #define ANY_GROUP NUMA_NO_NODE |
| |
| static bool devices_handle_discard_safely = false; |
| module_param(devices_handle_discard_safely, bool, 0644); |
| MODULE_PARM_DESC(devices_handle_discard_safely, |
| "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); |
| static struct workqueue_struct *raid5_wq; |
| |
| static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) |
| { |
| int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; |
| return &conf->stripe_hashtbl[hash]; |
| } |
| |
| static inline int stripe_hash_locks_hash(sector_t sect) |
| { |
| return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; |
| } |
| |
| static inline void lock_device_hash_lock(struct r5conf *conf, int hash) |
| { |
| spin_lock_irq(conf->hash_locks + hash); |
| spin_lock(&conf->device_lock); |
| } |
| |
| static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) |
| { |
| spin_unlock(&conf->device_lock); |
| spin_unlock_irq(conf->hash_locks + hash); |
| } |
| |
| static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) |
| { |
| int i; |
| local_irq_disable(); |
| spin_lock(conf->hash_locks); |
| for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) |
| spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); |
| spin_lock(&conf->device_lock); |
| } |
| |
| static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) |
| { |
| int i; |
| spin_unlock(&conf->device_lock); |
| for (i = NR_STRIPE_HASH_LOCKS; i; i--) |
| spin_unlock(conf->hash_locks + i - 1); |
| local_irq_enable(); |
| } |
| |
| /* Find first data disk in a raid6 stripe */ |
| static inline int raid6_d0(struct stripe_head *sh) |
| { |
| if (sh->ddf_layout) |
| /* ddf always start from first device */ |
| return 0; |
| /* md starts just after Q block */ |
| if (sh->qd_idx == sh->disks - 1) |
| return 0; |
| else |
| return sh->qd_idx + 1; |
| } |
| static inline int raid6_next_disk(int disk, int raid_disks) |
| { |
| disk++; |
| return (disk < raid_disks) ? disk : 0; |
| } |
| |
| /* When walking through the disks in a raid5, starting at raid6_d0, |
| * We need to map each disk to a 'slot', where the data disks are slot |
| * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk |
| * is raid_disks-1. This help does that mapping. |
| */ |
| static int raid6_idx_to_slot(int idx, struct stripe_head *sh, |
| int *count, int syndrome_disks) |
| { |
| int slot = *count; |
| |
| if (sh->ddf_layout) |
| (*count)++; |
| if (idx == sh->pd_idx) |
| return syndrome_disks; |
| if (idx == sh->qd_idx) |
| return syndrome_disks + 1; |
| if (!sh->ddf_layout) |
| (*count)++; |
| return slot; |
| } |
| |
| static void return_io(struct bio_list *return_bi) |
| { |
| struct bio *bi; |
| while ((bi = bio_list_pop(return_bi)) != NULL) { |
| bi->bi_iter.bi_size = 0; |
| trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), |
| bi, 0); |
| bio_endio(bi); |
| } |
| } |
| |
| static void print_raid5_conf (struct r5conf *conf); |
| |
| static int stripe_operations_active(struct stripe_head *sh) |
| { |
| return sh->check_state || sh->reconstruct_state || |
| test_bit(STRIPE_BIOFILL_RUN, &sh->state) || |
| test_bit(STRIPE_COMPUTE_RUN, &sh->state); |
| } |
| |
| static void raid5_wakeup_stripe_thread(struct stripe_head *sh) |
| { |
| struct r5conf *conf = sh->raid_conf; |
| struct r5worker_group *group; |
| int thread_cnt; |
| int i, cpu = sh->cpu; |
| |
| if (!cpu_online(cpu)) { |
| cpu = cpumask_any(cpu_online_mask); |
| sh->cpu = cpu; |
| } |
| |
| if (list_empty(&sh->lru)) { |
| struct r5worker_group *group; |
| group = conf->worker_groups + cpu_to_group(cpu); |
| list_add_tail(&sh->lru, &group->handle_list); |
| group->stripes_cnt++; |
| sh->group = group; |
| } |
| |
| if (conf->worker_cnt_per_group == 0) { |
| md_wakeup_thread(conf->mddev->thread); |
| return; |
| } |
| |
| group = conf->worker_groups + cpu_to_group(sh->cpu); |
| |
| group->workers[0].working = true; |
| /* at least one worker should run to avoid race */ |
| queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); |
| |
| thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; |
| /* wakeup more workers */ |
| for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { |
| if (group->workers[i].working == false) { |
| group->workers[i].working = true; |
| queue_work_on(sh->cpu, raid5_wq, |
| &group->workers[i].work); |
| thread_cnt--; |
| } |
| } |
| } |
| |
| static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, |
| struct list_head *temp_inactive_list) |
| { |
| int i; |
| int injournal = 0; /* number of date pages with R5_InJournal */ |
| |
| BUG_ON(!list_empty(&sh->lru)); |
| BUG_ON(atomic_read(&conf->active_stripes)==0); |
| |
| if (r5c_is_writeback(conf->log)) |
| for (i = sh->disks; i--; ) |
| if (test_bit(R5_InJournal, &sh->dev[i].flags)) |
| injournal++; |
| /* |
| * When quiesce in r5c write back, set STRIPE_HANDLE for stripes with |
| * data in journal, so they are not released to cached lists |
| */ |
| if (conf->quiesce && r5c_is_writeback(conf->log) && |
| !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0) { |
| if (test_bit(STRIPE_R5C_CACHING, &sh->state)) |
| r5c_make_stripe_write_out(sh); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| } |
| |
| if (test_bit(STRIPE_HANDLE, &sh->state)) { |
| if (test_bit(STRIPE_DELAYED, &sh->state) && |
| !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) |
| list_add_tail(&sh->lru, &conf->delayed_list); |
| else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && |
| sh->bm_seq - conf->seq_write > 0) |
| list_add_tail(&sh->lru, &conf->bitmap_list); |
| else { |
| clear_bit(STRIPE_DELAYED, &sh->state); |
| clear_bit(STRIPE_BIT_DELAY, &sh->state); |
| if (conf->worker_cnt_per_group == 0) { |
| list_add_tail(&sh->lru, &conf->handle_list); |
| } else { |
| raid5_wakeup_stripe_thread(sh); |
| return; |
| } |
| } |
| md_wakeup_thread(conf->mddev->thread); |
| } else { |
| BUG_ON(stripe_operations_active(sh)); |
| if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) |
| if (atomic_dec_return(&conf->preread_active_stripes) |
| < IO_THRESHOLD) |
| md_wakeup_thread(conf->mddev->thread); |
| atomic_dec(&conf->active_stripes); |
| if (!test_bit(STRIPE_EXPANDING, &sh->state)) { |
| if (!r5c_is_writeback(conf->log)) |
| list_add_tail(&sh->lru, temp_inactive_list); |
| else { |
| WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); |
| if (injournal == 0) |
| list_add_tail(&sh->lru, temp_inactive_list); |
| else if (injournal == conf->raid_disks - conf->max_degraded) { |
| /* full stripe */ |
| if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) |
| atomic_inc(&conf->r5c_cached_full_stripes); |
| if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) |
| atomic_dec(&conf->r5c_cached_partial_stripes); |
| list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); |
| r5c_check_cached_full_stripe(conf); |
| } else { |
| /* partial stripe */ |
| if (!test_and_set_bit(STRIPE_R5C_PARTIAL_STRIPE, |
| &sh->state)) |
| atomic_inc(&conf->r5c_cached_partial_stripes); |
| list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); |
| } |
| } |
| } |
| } |
| } |
| |
| static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, |
| struct list_head *temp_inactive_list) |
| { |
| if (atomic_dec_and_test(&sh->count)) |
| do_release_stripe(conf, sh, temp_inactive_list); |
| } |
| |
| /* |
| * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list |
| * |
| * Be careful: Only one task can add/delete stripes from temp_inactive_list at |
| * given time. Adding stripes only takes device lock, while deleting stripes |
| * only takes hash lock. |
| */ |
| static void release_inactive_stripe_list(struct r5conf *conf, |
| struct list_head *temp_inactive_list, |
| int hash) |
| { |
| int size; |
| bool do_wakeup = false; |
| unsigned long flags; |
| |
| if (hash == NR_STRIPE_HASH_LOCKS) { |
| size = NR_STRIPE_HASH_LOCKS; |
| hash = NR_STRIPE_HASH_LOCKS - 1; |
| } else |
| size = 1; |
| while (size) { |
| struct list_head *list = &temp_inactive_list[size - 1]; |
| |
| /* |
| * We don't hold any lock here yet, raid5_get_active_stripe() might |
| * remove stripes from the list |
| */ |
| if (!list_empty_careful(list)) { |
| spin_lock_irqsave(conf->hash_locks + hash, flags); |
| if (list_empty(conf->inactive_list + hash) && |
| !list_empty(list)) |
| atomic_dec(&conf->empty_inactive_list_nr); |
| list_splice_tail_init(list, conf->inactive_list + hash); |
| do_wakeup = true; |
| spin_unlock_irqrestore(conf->hash_locks + hash, flags); |
| } |
| size--; |
| hash--; |
| } |
| |
| if (do_wakeup) { |
| wake_up(&conf->wait_for_stripe); |
| if (atomic_read(&conf->active_stripes) == 0) |
| wake_up(&conf->wait_for_quiescent); |
| if (conf->retry_read_aligned) |
| md_wakeup_thread(conf->mddev->thread); |
| } |
| } |
| |
| /* should hold conf->device_lock already */ |
| static int release_stripe_list(struct r5conf *conf, |
| struct list_head *temp_inactive_list) |
| { |
| struct stripe_head *sh; |
| int count = 0; |
| struct llist_node *head; |
| |
| head = llist_del_all(&conf->released_stripes); |
| head = llist_reverse_order(head); |
| while (head) { |
| int hash; |
| |
| sh = llist_entry(head, struct stripe_head, release_list); |
| head = llist_next(head); |
| /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ |
| smp_mb(); |
| clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); |
| /* |
| * Don't worry the bit is set here, because if the bit is set |
| * again, the count is always > 1. This is true for |
| * STRIPE_ON_UNPLUG_LIST bit too. |
| */ |
| hash = sh->hash_lock_index; |
| __release_stripe(conf, sh, &temp_inactive_list[hash]); |
| count++; |
| } |
| |
| return count; |
| } |
| |
| void raid5_release_stripe(struct stripe_head *sh) |
| { |
| struct r5conf *conf = sh->raid_conf; |
| unsigned long flags; |
| struct list_head list; |
| int hash; |
| bool wakeup; |
| |
| /* Avoid release_list until the last reference. |
| */ |
| if (atomic_add_unless(&sh->count, -1, 1)) |
| return; |
| |
| if (unlikely(!conf->mddev->thread) || |
| test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) |
| goto slow_path; |
| wakeup = llist_add(&sh->release_list, &conf->released_stripes); |
| if (wakeup) |
| md_wakeup_thread(conf->mddev->thread); |
| return; |
| slow_path: |
| local_irq_save(flags); |
| /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ |
| if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { |
| INIT_LIST_HEAD(&list); |
| hash = sh->hash_lock_index; |
| do_release_stripe(conf, sh, &list); |
| spin_unlock(&conf->device_lock); |
| release_inactive_stripe_list(conf, &list, hash); |
| } |
| local_irq_restore(flags); |
| } |
| |
| static inline void remove_hash(struct stripe_head *sh) |
| { |
| pr_debug("remove_hash(), stripe %llu\n", |
| (unsigned long long)sh->sector); |
| |
| hlist_del_init(&sh->hash); |
| } |
| |
| static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) |
| { |
| struct hlist_head *hp = stripe_hash(conf, sh->sector); |
| |
| pr_debug("insert_hash(), stripe %llu\n", |
| (unsigned long long)sh->sector); |
| |
| hlist_add_head(&sh->hash, hp); |
| } |
| |
| /* find an idle stripe, make sure it is unhashed, and return it. */ |
| static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) |
| { |
| struct stripe_head *sh = NULL; |
| struct list_head *first; |
| |
| if (list_empty(conf->inactive_list + hash)) |
| goto out; |
| first = (conf->inactive_list + hash)->next; |
| sh = list_entry(first, struct stripe_head, lru); |
| list_del_init(first); |
| remove_hash(sh); |
| atomic_inc(&conf->active_stripes); |
| BUG_ON(hash != sh->hash_lock_index); |
| if (list_empty(conf->inactive_list + hash)) |
| atomic_inc(&conf->empty_inactive_list_nr); |
| out: |
| return sh; |
| } |
| |
| static void shrink_buffers(struct stripe_head *sh) |
| { |
| struct page *p; |
| int i; |
| int num = sh->raid_conf->pool_size; |
| |
| for (i = 0; i < num ; i++) { |
| WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); |
| p = sh->dev[i].page; |
| if (!p) |
| continue; |
| sh->dev[i].page = NULL; |
| put_page(p); |
| } |
| } |
| |
| static int grow_buffers(struct stripe_head *sh, gfp_t gfp) |
| { |
| int i; |
| int num = sh->raid_conf->pool_size; |
| |
| for (i = 0; i < num; i++) { |
| struct page *page; |
| |
| if (!(page = alloc_page(gfp))) { |
| return 1; |
| } |
| sh->dev[i].page = page; |
| sh->dev[i].orig_page = page; |
| } |
| return 0; |
| } |
| |
| static void raid5_build_block(struct stripe_head *sh, int i, int previous); |
| static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, |
| struct stripe_head *sh); |
| |
| static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) |
| { |
| struct r5conf *conf = sh->raid_conf; |
| int i, seq; |
| |
| BUG_ON(atomic_read(&sh->count) != 0); |
| BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); |
| BUG_ON(stripe_operations_active(sh)); |
| BUG_ON(sh->batch_head); |
| |
| pr_debug("init_stripe called, stripe %llu\n", |
| (unsigned long long)sector); |
| retry: |
| seq = read_seqcount_begin(&conf->gen_lock); |
| sh->generation = conf->generation - previous; |
| sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; |
| sh->sector = sector; |
| stripe_set_idx(sector, conf, previous, sh); |
| sh->state = 0; |
| |
| for (i = sh->disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| |
| if (dev->toread || dev->read || dev->towrite || dev->written || |
| test_bit(R5_LOCKED, &dev->flags)) { |
| pr_err("sector=%llx i=%d %p %p %p %p %d\n", |
| (unsigned long long)sh->sector, i, dev->toread, |
| dev->read, dev->towrite, dev->written, |
| test_bit(R5_LOCKED, &dev->flags)); |
| WARN_ON(1); |
| } |
| dev->flags = 0; |
| raid5_build_block(sh, i, previous); |
| } |
| if (read_seqcount_retry(&conf->gen_lock, seq)) |
| goto retry; |
| sh->overwrite_disks = 0; |
| insert_hash(conf, sh); |
| sh->cpu = smp_processor_id(); |
| set_bit(STRIPE_BATCH_READY, &sh->state); |
| } |
| |
| static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, |
| short generation) |
| { |
| struct stripe_head *sh; |
| |
| pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); |
| hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) |
| if (sh->sector == sector && sh->generation == generation) |
| return sh; |
| pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); |
| return NULL; |
| } |
| |
| /* |
| * Need to check if array has failed when deciding whether to: |
| * - start an array |
| * - remove non-faulty devices |
| * - add a spare |
| * - allow a reshape |
| * This determination is simple when no reshape is happening. |
| * However if there is a reshape, we need to carefully check |
| * both the before and after sections. |
| * This is because some failed devices may only affect one |
| * of the two sections, and some non-in_sync devices may |
| * be insync in the section most affected by failed devices. |
| */ |
| int raid5_calc_degraded(struct r5conf *conf) |
| { |
| int degraded, degraded2; |
| int i; |
| |
| rcu_read_lock(); |
| degraded = 0; |
| for (i = 0; i < conf->previous_raid_disks; i++) { |
| struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); |
| if (rdev && test_bit(Faulty, &rdev->flags)) |
| rdev = rcu_dereference(conf->disks[i].replacement); |
| if (!rdev || test_bit(Faulty, &rdev->flags)) |
| degraded++; |
| else if (test_bit(In_sync, &rdev->flags)) |
| ; |
| else |
| /* not in-sync or faulty. |
| * If the reshape increases the number of devices, |
| * this is being recovered by the reshape, so |
| * this 'previous' section is not in_sync. |
| * If the number of devices is being reduced however, |
| * the device can only be part of the array if |
| * we are reverting a reshape, so this section will |
| * be in-sync. |
| */ |
| if (conf->raid_disks >= conf->previous_raid_disks) |
| degraded++; |
| } |
| rcu_read_unlock(); |
| if (conf->raid_disks == conf->previous_raid_disks) |
| return degraded; |
| rcu_read_lock(); |
| degraded2 = 0; |
| for (i = 0; i < conf->raid_disks; i++) { |
| struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); |
| if (rdev && test_bit(Faulty, &rdev->flags)) |
| rdev = rcu_dereference(conf->disks[i].replacement); |
| if (!rdev || test_bit(Faulty, &rdev->flags)) |
| degraded2++; |
| else if (test_bit(In_sync, &rdev->flags)) |
| ; |
| else |
| /* not in-sync or faulty. |
| * If reshape increases the number of devices, this |
| * section has already been recovered, else it |
| * almost certainly hasn't. |
| */ |
| if (conf->raid_disks <= conf->previous_raid_disks) |
| degraded2++; |
| } |
| rcu_read_unlock(); |
| if (degraded2 > degraded) |
| return degraded2; |
| return degraded; |
| } |
| |
| static int has_failed(struct r5conf *conf) |
| { |
| int degraded; |
| |
| if (conf->mddev->reshape_position == MaxSector) |
| return conf->mddev->degraded > conf->max_degraded; |
| |
| degraded = raid5_calc_degraded(conf); |
| if (degraded > conf->max_degraded) |
| return 1; |
| return 0; |
| } |
| |
| struct stripe_head * |
| raid5_get_active_stripe(struct r5conf *conf, sector_t sector, |
| int previous, int noblock, int noquiesce) |
| { |
| struct stripe_head *sh; |
| int hash = stripe_hash_locks_hash(sector); |
| int inc_empty_inactive_list_flag; |
| |
| pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); |
| |
| spin_lock_irq(conf->hash_locks + hash); |
| |
| do { |
| wait_event_lock_irq(conf->wait_for_quiescent, |
| conf->quiesce == 0 || noquiesce, |
| *(conf->hash_locks + hash)); |
| sh = __find_stripe(conf, sector, conf->generation - previous); |
| if (!sh) { |
| if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { |
| sh = get_free_stripe(conf, hash); |
| if (!sh && !test_bit(R5_DID_ALLOC, |
| &conf->cache_state)) |
| set_bit(R5_ALLOC_MORE, |
| &conf->cache_state); |
| } |
| if (noblock && sh == NULL) |
| break; |
| |
| r5c_check_stripe_cache_usage(conf); |
| if (!sh) { |
| set_bit(R5_INACTIVE_BLOCKED, |
| &conf->cache_state); |
| r5l_wake_reclaim(conf->log, 0); |
| wait_event_lock_irq( |
| conf->wait_for_stripe, |
| !list_empty(conf->inactive_list + hash) && |
| (atomic_read(&conf->active_stripes) |
| < (conf->max_nr_stripes * 3 / 4) |
| || !test_bit(R5_INACTIVE_BLOCKED, |
| &conf->cache_state)), |
| *(conf->hash_locks + hash)); |
| clear_bit(R5_INACTIVE_BLOCKED, |
| &conf->cache_state); |
| } else { |
| init_stripe(sh, sector, previous); |
| atomic_inc(&sh->count); |
| } |
| } else if (!atomic_inc_not_zero(&sh->count)) { |
| spin_lock(&conf->device_lock); |
| if (!atomic_read(&sh->count)) { |
| if (!test_bit(STRIPE_HANDLE, &sh->state)) |
| atomic_inc(&conf->active_stripes); |
| BUG_ON(list_empty(&sh->lru) && |
| !test_bit(STRIPE_EXPANDING, &sh->state)); |
| inc_empty_inactive_list_flag = 0; |
| if (!list_empty(conf->inactive_list + hash)) |
| inc_empty_inactive_list_flag = 1; |
| list_del_init(&sh->lru); |
| if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) |
| atomic_inc(&conf->empty_inactive_list_nr); |
| if (sh->group) { |
| sh->group->stripes_cnt--; |
| sh->group = NULL; |
| } |
| } |
| atomic_inc(&sh->count); |
| spin_unlock(&conf->device_lock); |
| } |
| } while (sh == NULL); |
| |
| spin_unlock_irq(conf->hash_locks + hash); |
| return sh; |
| } |
| |
| static bool is_full_stripe_write(struct stripe_head *sh) |
| { |
| BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); |
| return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); |
| } |
| |
| static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) |
| { |
| local_irq_disable(); |
| if (sh1 > sh2) { |
| spin_lock(&sh2->stripe_lock); |
| spin_lock_nested(&sh1->stripe_lock, 1); |
| } else { |
| spin_lock(&sh1->stripe_lock); |
| spin_lock_nested(&sh2->stripe_lock, 1); |
| } |
| } |
| |
| static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) |
| { |
| spin_unlock(&sh1->stripe_lock); |
| spin_unlock(&sh2->stripe_lock); |
| local_irq_enable(); |
| } |
| |
| /* Only freshly new full stripe normal write stripe can be added to a batch list */ |
| static bool stripe_can_batch(struct stripe_head *sh) |
| { |
| struct r5conf *conf = sh->raid_conf; |
| |
| if (conf->log) |
| return false; |
| return test_bit(STRIPE_BATCH_READY, &sh->state) && |
| !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && |
| is_full_stripe_write(sh); |
| } |
| |
| /* we only do back search */ |
| static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) |
| { |
| struct stripe_head *head; |
| sector_t head_sector, tmp_sec; |
| int hash; |
| int dd_idx; |
| int inc_empty_inactive_list_flag; |
| |
| /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ |
| tmp_sec = sh->sector; |
| if (!sector_div(tmp_sec, conf->chunk_sectors)) |
| return; |
| head_sector = sh->sector - STRIPE_SECTORS; |
| |
| hash = stripe_hash_locks_hash(head_sector); |
| spin_lock_irq(conf->hash_locks + hash); |
| head = __find_stripe(conf, head_sector, conf->generation); |
| if (head && !atomic_inc_not_zero(&head->count)) { |
| spin_lock(&conf->device_lock); |
| if (!atomic_read(&head->count)) { |
| if (!test_bit(STRIPE_HANDLE, &head->state)) |
| atomic_inc(&conf->active_stripes); |
| BUG_ON(list_empty(&head->lru) && |
| !test_bit(STRIPE_EXPANDING, &head->state)); |
| inc_empty_inactive_list_flag = 0; |
| if (!list_empty(conf->inactive_list + hash)) |
| inc_empty_inactive_list_flag = 1; |
| list_del_init(&head->lru); |
| if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) |
| atomic_inc(&conf->empty_inactive_list_nr); |
| if (head->group) { |
| head->group->stripes_cnt--; |
| head->group = NULL; |
| } |
| } |
| atomic_inc(&head->count); |
| spin_unlock(&conf->device_lock); |
| } |
| spin_unlock_irq(conf->hash_locks + hash); |
| |
| if (!head) |
| return; |
| if (!stripe_can_batch(head)) |
| goto out; |
| |
| lock_two_stripes(head, sh); |
| /* clear_batch_ready clear the flag */ |
| if (!stripe_can_batch(head) || !stripe_can_batch(sh)) |
| goto unlock_out; |
| |
| if (sh->batch_head) |
| goto unlock_out; |
| |
| dd_idx = 0; |
| while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) |
| dd_idx++; |
| if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || |
| bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) |
| goto unlock_out; |
| |
| if (head->batch_head) { |
| spin_lock(&head->batch_head->batch_lock); |
| /* This batch list is already running */ |
| if (!stripe_can_batch(head)) { |
| spin_unlock(&head->batch_head->batch_lock); |
| goto unlock_out; |
| } |
| |
| /* |
| * at this point, head's BATCH_READY could be cleared, but we |
| * can still add the stripe to batch list |
| */ |
| list_add(&sh->batch_list, &head->batch_list); |
| spin_unlock(&head->batch_head->batch_lock); |
| |
| sh->batch_head = head->batch_head; |
| } else { |
| head->batch_head = head; |
| sh->batch_head = head->batch_head; |
| spin_lock(&head->batch_lock); |
| list_add_tail(&sh->batch_list, &head->batch_list); |
| spin_unlock(&head->batch_lock); |
| } |
| |
| if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) |
| if (atomic_dec_return(&conf->preread_active_stripes) |
| < IO_THRESHOLD) |
| md_wakeup_thread(conf->mddev->thread); |
| |
| if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { |
| int seq = sh->bm_seq; |
| if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && |
| sh->batch_head->bm_seq > seq) |
| seq = sh->batch_head->bm_seq; |
| set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); |
| sh->batch_head->bm_seq = seq; |
| } |
| |
| atomic_inc(&sh->count); |
| unlock_out: |
| unlock_two_stripes(head, sh); |
| out: |
| raid5_release_stripe(head); |
| } |
| |
| /* Determine if 'data_offset' or 'new_data_offset' should be used |
| * in this stripe_head. |
| */ |
| static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) |
| { |
| sector_t progress = conf->reshape_progress; |
| /* Need a memory barrier to make sure we see the value |
| * of conf->generation, or ->data_offset that was set before |
| * reshape_progress was updated. |
| */ |
| smp_rmb(); |
| if (progress == MaxSector) |
| return 0; |
| if (sh->generation == conf->generation - 1) |
| return 0; |
| /* We are in a reshape, and this is a new-generation stripe, |
| * so use new_data_offset. |
| */ |
| return 1; |
| } |
| |
| static void |
| raid5_end_read_request(struct bio *bi); |
| static void |
| raid5_end_write_request(struct bio *bi); |
| |
| static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) |
| { |
| struct r5conf *conf = sh->raid_conf; |
| int i, disks = sh->disks; |
| struct stripe_head *head_sh = sh; |
| |
| might_sleep(); |
| |
| if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { |
| /* writing out phase */ |
| if (s->waiting_extra_page) |
| return; |
| if (r5l_write_stripe(conf->log, sh) == 0) |
| return; |
| } else { /* caching phase */ |
| if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) { |
| r5c_cache_data(conf->log, sh, s); |
| return; |
| } |
| } |
| |
| for (i = disks; i--; ) { |
| int op, op_flags = 0; |
| int replace_only = 0; |
| struct bio *bi, *rbi; |
| struct md_rdev *rdev, *rrdev = NULL; |
| |
| sh = head_sh; |
| if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { |
| op = REQ_OP_WRITE; |
| if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) |
| op_flags = REQ_FUA; |
| if (test_bit(R5_Discard, &sh->dev[i].flags)) |
| op = REQ_OP_DISCARD; |
| } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) |
| op = REQ_OP_READ; |
| else if (test_and_clear_bit(R5_WantReplace, |
| &sh->dev[i].flags)) { |
| op = REQ_OP_WRITE; |
| replace_only = 1; |
| } else |
| continue; |
| if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) |
| op_flags |= REQ_SYNC; |
| |
| again: |
| bi = &sh->dev[i].req; |
| rbi = &sh->dev[i].rreq; /* For writing to replacement */ |
| |
| rcu_read_lock(); |
| rrdev = rcu_dereference(conf->disks[i].replacement); |
| smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ |
| rdev = rcu_dereference(conf->disks[i].rdev); |
| if (!rdev) { |
| rdev = rrdev; |
| rrdev = NULL; |
| } |
| if (op_is_write(op)) { |
| if (replace_only) |
| rdev = NULL; |
| if (rdev == rrdev) |
| /* We raced and saw duplicates */ |
| rrdev = NULL; |
| } else { |
| if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) |
| rdev = rrdev; |
| rrdev = NULL; |
| } |
| |
| if (rdev && test_bit(Faulty, &rdev->flags)) |
| rdev = NULL; |
| if (rdev) |
| atomic_inc(&rdev->nr_pending); |
| if (rrdev && test_bit(Faulty, &rrdev->flags)) |
| rrdev = NULL; |
| if (rrdev) |
| atomic_inc(&rrdev->nr_pending); |
| rcu_read_unlock(); |
| |
| /* We have already checked bad blocks for reads. Now |
| * need to check for writes. We never accept write errors |
| * on the replacement, so we don't to check rrdev. |
| */ |
| while (op_is_write(op) && rdev && |
| test_bit(WriteErrorSeen, &rdev->flags)) { |
| sector_t first_bad; |
| int bad_sectors; |
| int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, |
| &first_bad, &bad_sectors); |
| if (!bad) |
| break; |
| |
| if (bad < 0) { |
| set_bit(BlockedBadBlocks, &rdev->flags); |
| if (!conf->mddev->external && |
| conf->mddev->sb_flags) { |
| /* It is very unlikely, but we might |
| * still need to write out the |
| * bad block log - better give it |
| * a chance*/ |
| md_check_recovery(conf->mddev); |
| } |
| /* |
| * Because md_wait_for_blocked_rdev |
| * will dec nr_pending, we must |
| * increment it first. |
| */ |
| atomic_inc(&rdev->nr_pending); |
| md_wait_for_blocked_rdev(rdev, conf->mddev); |
| } else { |
| /* Acknowledged bad block - skip the write */ |
| rdev_dec_pending(rdev, conf->mddev); |
| rdev = NULL; |
| } |
| } |
| |
| if (rdev) { |
| if (s->syncing || s->expanding || s->expanded |
| || s->replacing) |
| md_sync_acct(rdev->bdev, STRIPE_SECTORS); |
| |
| set_bit(STRIPE_IO_STARTED, &sh->state); |
| |
| bi->bi_bdev = rdev->bdev; |
| bio_set_op_attrs(bi, op, op_flags); |
| bi->bi_end_io = op_is_write(op) |
| ? raid5_end_write_request |
| : raid5_end_read_request; |
| bi->bi_private = sh; |
| |
| pr_debug("%s: for %llu schedule op %d on disc %d\n", |
| __func__, (unsigned long long)sh->sector, |
| bi->bi_opf, i); |
| atomic_inc(&sh->count); |
| if (sh != head_sh) |
| atomic_inc(&head_sh->count); |
| if (use_new_offset(conf, sh)) |
| bi->bi_iter.bi_sector = (sh->sector |
| + rdev->new_data_offset); |
| else |
| bi->bi_iter.bi_sector = (sh->sector |
| + rdev->data_offset); |
| if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) |
| bi->bi_opf |= REQ_NOMERGE; |
| |
| if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) |
| WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); |
| |
| if (!op_is_write(op) && |
| test_bit(R5_InJournal, &sh->dev[i].flags)) |
| /* |
| * issuing read for a page in journal, this |
| * must be preparing for prexor in rmw; read |
| * the data into orig_page |
| */ |
| sh->dev[i].vec.bv_page = sh->dev[i].orig_page; |
| else |
| sh->dev[i].vec.bv_page = sh->dev[i].page; |
| bi->bi_vcnt = 1; |
| bi->bi_io_vec[0].bv_len = STRIPE_SIZE; |
| bi->bi_io_vec[0].bv_offset = 0; |
| bi->bi_iter.bi_size = STRIPE_SIZE; |
| /* |
| * If this is discard request, set bi_vcnt 0. We don't |
| * want to confuse SCSI because SCSI will replace payload |
| */ |
| if (op == REQ_OP_DISCARD) |
| bi->bi_vcnt = 0; |
| if (rrdev) |
| set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); |
| |
| if (conf->mddev->gendisk) |
| trace_block_bio_remap(bdev_get_queue(bi->bi_bdev), |
| bi, disk_devt(conf->mddev->gendisk), |
| sh->dev[i].sector); |
| generic_make_request(bi); |
| } |
| if (rrdev) { |
| if (s->syncing || s->expanding || s->expanded |
| || s->replacing) |
| md_sync_acct(rrdev->bdev, STRIPE_SECTORS); |
| |
| set_bit(STRIPE_IO_STARTED, &sh->state); |
| |
| rbi->bi_bdev = rrdev->bdev; |
| bio_set_op_attrs(rbi, op, op_flags); |
| BUG_ON(!op_is_write(op)); |
| rbi->bi_end_io = raid5_end_write_request; |
| rbi->bi_private = sh; |
| |
| pr_debug("%s: for %llu schedule op %d on " |
| "replacement disc %d\n", |
| __func__, (unsigned long long)sh->sector, |
| rbi->bi_opf, i); |
| atomic_inc(&sh->count); |
| if (sh != head_sh) |
| atomic_inc(&head_sh->count); |
| if (use_new_offset(conf, sh)) |
| rbi->bi_iter.bi_sector = (sh->sector |
| + rrdev->new_data_offset); |
| else |
| rbi->bi_iter.bi_sector = (sh->sector |
| + rrdev->data_offset); |
| if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) |
| WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); |
| sh->dev[i].rvec.bv_page = sh->dev[i].page; |
| rbi->bi_vcnt = 1; |
| rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; |
| rbi->bi_io_vec[0].bv_offset = 0; |
| rbi->bi_iter.bi_size = STRIPE_SIZE; |
| /* |
| * If this is discard request, set bi_vcnt 0. We don't |
| * want to confuse SCSI because SCSI will replace payload |
| */ |
| if (op == REQ_OP_DISCARD) |
| rbi->bi_vcnt = 0; |
| if (conf->mddev->gendisk) |
| trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev), |
| rbi, disk_devt(conf->mddev->gendisk), |
| sh->dev[i].sector); |
| generic_make_request(rbi); |
| } |
| if (!rdev && !rrdev) { |
| if (op_is_write(op)) |
| set_bit(STRIPE_DEGRADED, &sh->state); |
| pr_debug("skip op %d on disc %d for sector %llu\n", |
| bi->bi_opf, i, (unsigned long long)sh->sector); |
| clear_bit(R5_LOCKED, &sh->dev[i].flags); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| } |
| |
| if (!head_sh->batch_head) |
| continue; |
| sh = list_first_entry(&sh->batch_list, struct stripe_head, |
| batch_list); |
| if (sh != head_sh) |
| goto again; |
| } |
| } |
| |
| static struct dma_async_tx_descriptor * |
| async_copy_data(int frombio, struct bio *bio, struct page **page, |
| sector_t sector, struct dma_async_tx_descriptor *tx, |
| struct stripe_head *sh, int no_skipcopy) |
| { |
| struct bio_vec bvl; |
| struct bvec_iter iter; |
| struct page *bio_page; |
| int page_offset; |
| struct async_submit_ctl submit; |
| enum async_tx_flags flags = 0; |
| |
| if (bio->bi_iter.bi_sector >= sector) |
| page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; |
| else |
| page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; |
| |
| if (frombio) |
| flags |= ASYNC_TX_FENCE; |
| init_async_submit(&submit, flags, tx, NULL, NULL, NULL); |
| |
| bio_for_each_segment(bvl, bio, iter) { |
| int len = bvl.bv_len; |
| int clen; |
| int b_offset = 0; |
| |
| if (page_offset < 0) { |
| b_offset = -page_offset; |
| page_offset += b_offset; |
| len -= b_offset; |
| } |
| |
| if (len > 0 && page_offset + len > STRIPE_SIZE) |
| clen = STRIPE_SIZE - page_offset; |
| else |
| clen = len; |
| |
| if (clen > 0) { |
| b_offset += bvl.bv_offset; |
| bio_page = bvl.bv_page; |
| if (frombio) { |
| if (sh->raid_conf->skip_copy && |
| b_offset == 0 && page_offset == 0 && |
| clen == STRIPE_SIZE && |
| !no_skipcopy) |
| *page = bio_page; |
| else |
| tx = async_memcpy(*page, bio_page, page_offset, |
| b_offset, clen, &submit); |
| } else |
| tx = async_memcpy(bio_page, *page, b_offset, |
| page_offset, clen, &submit); |
| } |
| /* chain the operations */ |
| submit.depend_tx = tx; |
| |
| if (clen < len) /* hit end of page */ |
| break; |
| page_offset += len; |
| } |
| |
| return tx; |
| } |
| |
| static void ops_complete_biofill(void *stripe_head_ref) |
| { |
| struct stripe_head *sh = stripe_head_ref; |
| struct bio_list return_bi = BIO_EMPTY_LIST; |
| int i; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| /* clear completed biofills */ |
| for (i = sh->disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| |
| /* acknowledge completion of a biofill operation */ |
| /* and check if we need to reply to a read request, |
| * new R5_Wantfill requests are held off until |
| * !STRIPE_BIOFILL_RUN |
| */ |
| if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { |
| struct bio *rbi, *rbi2; |
| |
| BUG_ON(!dev->read); |
| rbi = dev->read; |
| dev->read = NULL; |
| while (rbi && rbi->bi_iter.bi_sector < |
| dev->sector + STRIPE_SECTORS) { |
| rbi2 = r5_next_bio(rbi, dev->sector); |
| if (!raid5_dec_bi_active_stripes(rbi)) |
| bio_list_add(&return_bi, rbi); |
| rbi = rbi2; |
| } |
| } |
| } |
| clear_bit(STRIPE_BIOFILL_RUN, &sh->state); |
| |
| return_io(&return_bi); |
| |
| set_bit(STRIPE_HANDLE, &sh->state); |
| raid5_release_stripe(sh); |
| } |
| |
| static void ops_run_biofill(struct stripe_head *sh) |
| { |
| struct dma_async_tx_descriptor *tx = NULL; |
| struct async_submit_ctl submit; |
| int i; |
| |
| BUG_ON(sh->batch_head); |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| for (i = sh->disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (test_bit(R5_Wantfill, &dev->flags)) { |
| struct bio *rbi; |
| spin_lock_irq(&sh->stripe_lock); |
| dev->read = rbi = dev->toread; |
| dev->toread = NULL; |
| spin_unlock_irq(&sh->stripe_lock); |
| while (rbi && rbi->bi_iter.bi_sector < |
| dev->sector + STRIPE_SECTORS) { |
| tx = async_copy_data(0, rbi, &dev->page, |
| dev->sector, tx, sh, 0); |
| rbi = r5_next_bio(rbi, dev->sector); |
| } |
| } |
| } |
| |
| atomic_inc(&sh->count); |
| init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); |
| async_trigger_callback(&submit); |
| } |
| |
| static void mark_target_uptodate(struct stripe_head *sh, int target) |
| { |
| struct r5dev *tgt; |
| |
| if (target < 0) |
| return; |
| |
| tgt = &sh->dev[target]; |
| set_bit(R5_UPTODATE, &tgt->flags); |
| BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); |
| clear_bit(R5_Wantcompute, &tgt->flags); |
| } |
| |
| static void ops_complete_compute(void *stripe_head_ref) |
| { |
| struct stripe_head *sh = stripe_head_ref; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| /* mark the computed target(s) as uptodate */ |
| mark_target_uptodate(sh, sh->ops.target); |
| mark_target_uptodate(sh, sh->ops.target2); |
| |
| clear_bit(STRIPE_COMPUTE_RUN, &sh->state); |
| if (sh->check_state == check_state_compute_run) |
| sh->check_state = check_state_compute_result; |
| set_bit(STRIPE_HANDLE, &sh->state); |
| raid5_release_stripe(sh); |
| } |
| |
| /* return a pointer to the address conversion region of the scribble buffer */ |
| static addr_conv_t *to_addr_conv(struct stripe_head *sh, |
| struct raid5_percpu *percpu, int i) |
| { |
| void *addr; |
| |
| addr = flex_array_get(percpu->scribble, i); |
| return addr + sizeof(struct page *) * (sh->disks + 2); |
| } |
| |
| /* return a pointer to the address conversion region of the scribble buffer */ |
| static struct page **to_addr_page(struct raid5_percpu *percpu, int i) |
| { |
| void *addr; |
| |
| addr = flex_array_get(percpu->scribble, i); |
| return addr; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) |
| { |
| int disks = sh->disks; |
| struct page **xor_srcs = to_addr_page(percpu, 0); |
| int target = sh->ops.target; |
| struct r5dev *tgt = &sh->dev[target]; |
| struct page *xor_dest = tgt->page; |
| int count = 0; |
| struct dma_async_tx_descriptor *tx; |
| struct async_submit_ctl submit; |
| int i; |
| |
| BUG_ON(sh->batch_head); |
| |
| pr_debug("%s: stripe %llu block: %d\n", |
| __func__, (unsigned long long)sh->sector, target); |
| BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); |
| |
| for (i = disks; i--; ) |
| if (i != target) |
| xor_srcs[count++] = sh->dev[i].page; |
| |
| atomic_inc(&sh->count); |
| |
| init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, |
| ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); |
| if (unlikely(count == 1)) |
| tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); |
| else |
| tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); |
| |
| return tx; |
| } |
| |
| /* set_syndrome_sources - populate source buffers for gen_syndrome |
| * @srcs - (struct page *) array of size sh->disks |
| * @sh - stripe_head to parse |
| * |
| * Populates srcs in proper layout order for the stripe and returns the |
| * 'count' of sources to be used in a call to async_gen_syndrome. The P |
| * destination buffer is recorded in srcs[count] and the Q destination |
| * is recorded in srcs[count+1]]. |
| */ |
| static int set_syndrome_sources(struct page **srcs, |
| struct stripe_head *sh, |
| int srctype) |
| { |
| int disks = sh->disks; |
| int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); |
| int d0_idx = raid6_d0(sh); |
| int count; |
| int i; |
| |
| for (i = 0; i < disks; i++) |
| srcs[i] = NULL; |
| |
| count = 0; |
| i = d0_idx; |
| do { |
| int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); |
| struct r5dev *dev = &sh->dev[i]; |
| |
| if (i == sh->qd_idx || i == sh->pd_idx || |
| (srctype == SYNDROME_SRC_ALL) || |
| (srctype == SYNDROME_SRC_WANT_DRAIN && |
| (test_bit(R5_Wantdrain, &dev->flags) || |
| test_bit(R5_InJournal, &dev->flags))) || |
| (srctype == SYNDROME_SRC_WRITTEN && |
| dev->written)) { |
| if (test_bit(R5_InJournal, &dev->flags)) |
| srcs[slot] = sh->dev[i].orig_page; |
| else |
| srcs[slot] = sh->dev[i].page; |
| } |
| i = raid6_next_disk(i, disks); |
| } while (i != d0_idx); |
| |
| return syndrome_disks; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) |
| { |
| int disks = sh->disks; |
| struct page **blocks = to_addr_page(percpu, 0); |
| int target; |
| int qd_idx = sh->qd_idx; |
| struct dma_async_tx_descriptor *tx; |
| struct async_submit_ctl submit; |
| struct r5dev *tgt; |
| struct page *dest; |
| int i; |
| int count; |
| |
| BUG_ON(sh->batch_head); |
| if (sh->ops.target < 0) |
| target = sh->ops.target2; |
| else if (sh->ops.target2 < 0) |
| target = sh->ops.target; |
| else |
| /* we should only have one valid target */ |
| BUG(); |
| BUG_ON(target < 0); |
| pr_debug("%s: stripe %llu block: %d\n", |
| __func__, (unsigned long long)sh->sector, target); |
| |
| tgt = &sh->dev[target]; |
| BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); |
| dest = tgt->page; |
| |
| atomic_inc(&sh->count); |
| |
| if (target == qd_idx) { |
| count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); |
| blocks[count] = NULL; /* regenerating p is not necessary */ |
| BUG_ON(blocks[count+1] != dest); /* q should already be set */ |
| init_async_submit(&submit, ASYNC_TX_FENCE, NULL, |
| ops_complete_compute, sh, |
| to_addr_conv(sh, percpu, 0)); |
| tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); |
| } else { |
| /* Compute any data- or p-drive using XOR */ |
| count = 0; |
| for (i = disks; i-- ; ) { |
| if (i == target || i == qd_idx) |
| continue; |
| blocks[count++] = sh->dev[i].page; |
| } |
| |
| init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, |
| NULL, ops_complete_compute, sh, |
| to_addr_conv(sh, percpu, 0)); |
| tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); |
| } |
| |
| return tx; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) |
| { |
| int i, count, disks = sh->disks; |
| int syndrome_disks = sh->ddf_layout ? disks : disks-2; |
| int d0_idx = raid6_d0(sh); |
| int faila = -1, failb = -1; |
| int target = sh->ops.target; |
| int target2 = sh->ops.target2; |
| struct r5dev *tgt = &sh->dev[target]; |
| struct r5dev *tgt2 = &sh->dev[target2]; |
| struct dma_async_tx_descriptor *tx; |
| struct page **blocks = to_addr_page(percpu, 0); |
| struct async_submit_ctl submit; |
| |
| BUG_ON(sh->batch_head); |
| pr_debug("%s: stripe %llu block1: %d block2: %d\n", |
| __func__, (unsigned long long)sh->sector, target, target2); |
| BUG_ON(target < 0 || target2 < 0); |
| BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); |
| BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); |
| |
| /* we need to open-code set_syndrome_sources to handle the |
| * slot number conversion for 'faila' and 'failb' |
| */ |
| for (i = 0; i < disks ; i++) |
| blocks[i] = NULL; |
| count = 0; |
| i = d0_idx; |
| do { |
| int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); |
| |
| blocks[slot] = sh->dev[i].page; |
| |
| if (i == target) |
| faila = slot; |
| if (i == target2) |
| failb = slot; |
| i = raid6_next_disk(i, disks); |
| } while (i != d0_idx); |
| |
| BUG_ON(faila == failb); |
| if (failb < faila) |
| swap(faila, failb); |
| pr_debug("%s: stripe: %llu faila: %d failb: %d\n", |
| __func__, (unsigned long long)sh->sector, faila, failb); |
| |
| atomic_inc(&sh->count); |
| |
| if (failb == syndrome_disks+1) { |
| /* Q disk is one of the missing disks */ |
| if (faila == syndrome_disks) { |
| /* Missing P+Q, just recompute */ |
| init_async_submit(&submit, ASYNC_TX_FENCE, NULL, |
| ops_complete_compute, sh, |
| to_addr_conv(sh, percpu, 0)); |
| return async_gen_syndrome(blocks, 0, syndrome_disks+2, |
| STRIPE_SIZE, &submit); |
| } else { |
| struct page *dest; |
| int data_target; |
| int qd_idx = sh->qd_idx; |
| |
| /* Missing D+Q: recompute D from P, then recompute Q */ |
| if (target == qd_idx) |
| data_target = target2; |
| else |
| data_target = target; |
| |
| count = 0; |
| for (i = disks; i-- ; ) { |
| if (i == data_target || i == qd_idx) |
| continue; |
| blocks[count++] = sh->dev[i].page; |
| } |
| dest = sh->dev[data_target].page; |
| init_async_submit(&submit, |
| ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, |
| NULL, NULL, NULL, |
| to_addr_conv(sh, percpu, 0)); |
| tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, |
| &submit); |
| |
| count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); |
| init_async_submit(&submit, ASYNC_TX_FENCE, tx, |
| ops_complete_compute, sh, |
| to_addr_conv(sh, percpu, 0)); |
| return async_gen_syndrome(blocks, 0, count+2, |
| STRIPE_SIZE, &submit); |
| } |
| } else { |
| init_async_submit(&submit, ASYNC_TX_FENCE, NULL, |
| ops_complete_compute, sh, |
| to_addr_conv(sh, percpu, 0)); |
| if (failb == syndrome_disks) { |
| /* We're missing D+P. */ |
| return async_raid6_datap_recov(syndrome_disks+2, |
| STRIPE_SIZE, faila, |
| blocks, &submit); |
| } else { |
| /* We're missing D+D. */ |
| return async_raid6_2data_recov(syndrome_disks+2, |
| STRIPE_SIZE, faila, failb, |
| blocks, &submit); |
| } |
| } |
| } |
| |
| static void ops_complete_prexor(void *stripe_head_ref) |
| { |
| struct stripe_head *sh = stripe_head_ref; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| if (r5c_is_writeback(sh->raid_conf->log)) |
| /* |
| * raid5-cache write back uses orig_page during prexor. |
| * After prexor, it is time to free orig_page |
| */ |
| r5c_release_extra_page(sh); |
| } |
| |
| static struct dma_async_tx_descriptor * |
| ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, |
| struct dma_async_tx_descriptor *tx) |
| { |
| int disks = sh->disks; |
| struct page **xor_srcs = to_addr_page(percpu, 0); |
| int count = 0, pd_idx = sh->pd_idx, i; |
| struct async_submit_ctl submit; |
| |
| /* existing parity data subtracted */ |
| struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; |
| |
| BUG_ON(sh->batch_head); |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| /* Only process blocks that are known to be uptodate */ |
| if (test_bit(R5_InJournal, &dev->flags)) |
| xor_srcs[count++] = dev->orig_page; |
| else if (test_bit(R5_Wantdrain, &dev->flags)) |
| xor_srcs[count++] = dev->page; |
| } |
| |
| init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, |
| ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); |
| tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); |
| |
| return tx; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, |
| struct dma_async_tx_descriptor *tx) |
| { |
| struct page **blocks = to_addr_page(percpu, 0); |
| int count; |
| struct async_submit_ctl submit; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN); |
| |
| init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, |
| ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); |
| tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); |
| |
| return tx; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) |
| { |
| struct r5conf *conf = sh->raid_conf; |
| int disks = sh->disks; |
| int i; |
| struct stripe_head *head_sh = sh; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| for (i = disks; i--; ) { |
| struct r5dev *dev; |
| struct bio *chosen; |
| |
| sh = head_sh; |
| if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { |
| struct bio *wbi; |
| |
| again: |
| dev = &sh->dev[i]; |
| /* |
| * clear R5_InJournal, so when rewriting a page in |
| * journal, it is not skipped by r5l_log_stripe() |
| */ |
| clear_bit(R5_InJournal, &dev->flags); |
| spin_lock_irq(&sh->stripe_lock); |
| chosen = dev->towrite; |
| dev->towrite = NULL; |
| sh->overwrite_disks = 0; |
| BUG_ON(dev->written); |
| wbi = dev->written = chosen; |
| spin_unlock_irq(&sh->stripe_lock); |
| WARN_ON(dev->page != dev->orig_page); |
| |
| while (wbi && wbi->bi_iter.bi_sector < |
| dev->sector + STRIPE_SECTORS) { |
| if (wbi->bi_opf & REQ_FUA) |
| set_bit(R5_WantFUA, &dev->flags); |
| if (wbi->bi_opf & REQ_SYNC) |
| set_bit(R5_SyncIO, &dev->flags); |
| if (bio_op(wbi) == REQ_OP_DISCARD) |
| set_bit(R5_Discard, &dev->flags); |
| else { |
| tx = async_copy_data(1, wbi, &dev->page, |
| dev->sector, tx, sh, |
| r5c_is_writeback(conf->log)); |
| if (dev->page != dev->orig_page && |
| !r5c_is_writeback(conf->log)) { |
| set_bit(R5_SkipCopy, &dev->flags); |
| clear_bit(R5_UPTODATE, &dev->flags); |
| clear_bit(R5_OVERWRITE, &dev->flags); |
| } |
| } |
| wbi = r5_next_bio(wbi, dev->sector); |
| } |
| |
| if (head_sh->batch_head) { |
| sh = list_first_entry(&sh->batch_list, |
| struct stripe_head, |
| batch_list); |
| if (sh == head_sh) |
| continue; |
| goto again; |
| } |
| } |
| } |
| |
| return tx; |
| } |
| |
| static void ops_complete_reconstruct(void *stripe_head_ref) |
| { |
| struct stripe_head *sh = stripe_head_ref; |
| int disks = sh->disks; |
| int pd_idx = sh->pd_idx; |
| int qd_idx = sh->qd_idx; |
| int i; |
| bool fua = false, sync = false, discard = false; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| for (i = disks; i--; ) { |
| fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); |
| sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); |
| discard |= test_bit(R5_Discard, &sh->dev[i].flags); |
| } |
| |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| |
| if (dev->written || i == pd_idx || i == qd_idx) { |
| if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) |
| set_bit(R5_UPTODATE, &dev->flags); |
| if (fua) |
| set_bit(R5_WantFUA, &dev->flags); |
| if (sync) |
| set_bit(R5_SyncIO, &dev->flags); |
| } |
| } |
| |
| if (sh->reconstruct_state == reconstruct_state_drain_run) |
| sh->reconstruct_state = reconstruct_state_drain_result; |
| else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) |
| sh->reconstruct_state = reconstruct_state_prexor_drain_result; |
| else { |
| BUG_ON(sh->reconstruct_state != reconstruct_state_run); |
| sh->reconstruct_state = reconstruct_state_result; |
| } |
| |
| set_bit(STRIPE_HANDLE, &sh->state); |
| raid5_release_stripe(sh); |
| } |
| |
| static void |
| ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, |
| struct dma_async_tx_descriptor *tx) |
| { |
| int disks = sh->disks; |
| struct page **xor_srcs; |
| struct async_submit_ctl submit; |
| int count, pd_idx = sh->pd_idx, i; |
| struct page *xor_dest; |
| int prexor = 0; |
| unsigned long flags; |
| int j = 0; |
| struct stripe_head *head_sh = sh; |
| int last_stripe; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| for (i = 0; i < sh->disks; i++) { |
| if (pd_idx == i) |
| continue; |
| if (!test_bit(R5_Discard, &sh->dev[i].flags)) |
| break; |
| } |
| if (i >= sh->disks) { |
| atomic_inc(&sh->count); |
| set_bit(R5_Discard, &sh->dev[pd_idx].flags); |
| ops_complete_reconstruct(sh); |
| return; |
| } |
| again: |
| count = 0; |
| xor_srcs = to_addr_page(percpu, j); |
| /* check if prexor is active which means only process blocks |
| * that are part of a read-modify-write (written) |
| */ |
| if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { |
| prexor = 1; |
| xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (head_sh->dev[i].written || |
| test_bit(R5_InJournal, &head_sh->dev[i].flags)) |
| xor_srcs[count++] = dev->page; |
| } |
| } else { |
| xor_dest = sh->dev[pd_idx].page; |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (i != pd_idx) |
| xor_srcs[count++] = dev->page; |
| } |
| } |
| |
| /* 1/ if we prexor'd then the dest is reused as a source |
| * 2/ if we did not prexor then we are redoing the parity |
| * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST |
| * for the synchronous xor case |
| */ |
| last_stripe = !head_sh->batch_head || |
| list_first_entry(&sh->batch_list, |
| struct stripe_head, batch_list) == head_sh; |
| if (last_stripe) { |
| flags = ASYNC_TX_ACK | |
| (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); |
| |
| atomic_inc(&head_sh->count); |
| init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, |
| to_addr_conv(sh, percpu, j)); |
| } else { |
| flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; |
| init_async_submit(&submit, flags, tx, NULL, NULL, |
| to_addr_conv(sh, percpu, j)); |
| } |
| |
| if (unlikely(count == 1)) |
| tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); |
| else |
| tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); |
| if (!last_stripe) { |
| j++; |
| sh = list_first_entry(&sh->batch_list, struct stripe_head, |
| batch_list); |
| goto again; |
| } |
| } |
| |
| static void |
| ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, |
| struct dma_async_tx_descriptor *tx) |
| { |
| struct async_submit_ctl submit; |
| struct page **blocks; |
| int count, i, j = 0; |
| struct stripe_head *head_sh = sh; |
| int last_stripe; |
| int synflags; |
| unsigned long txflags; |
| |
| pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); |
| |
| for (i = 0; i < sh->disks; i++) { |
| if (sh->pd_idx == i || sh->qd_idx == i) |
| continue; |
| if (!test_bit(R5_Discard, &sh->dev[i].flags)) |
| break; |
| } |
| if (i >= sh->disks) { |
| atomic_inc(&sh->count); |
| set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); |
| set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); |
| ops_complete_reconstruct(sh); |
| return; |
| } |
| |
| again: |
| blocks = to_addr_page(percpu, j); |
| |
| if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { |
| synflags = SYNDROME_SRC_WRITTEN; |
| txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; |
| } else { |
| synflags = SYNDROME_SRC_ALL; |
| txflags = ASYNC_TX_ACK; |
| } |
| |
| count = set_syndrome_sources(blocks, sh, synflags); |
| last_stripe = !head_sh->batch_head || |
| list_first_entry(&sh->batch_list, |
| struct stripe_head, batch_list) == head_sh; |
| |
| if (last_stripe) { |
| atomic_inc(&head_sh->count); |
| init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, |
| head_sh, to_addr_conv(sh, percpu, j)); |
| } else |
| init_async_submit(&submit, 0, tx, NULL, NULL, |
| to_addr_conv(sh, percpu, j)); |
| tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); |
| if (!last_stripe) { |
| j++; |
| sh = list_first_entry(&sh->batch_list, struct stripe_head, |
| batch_list); |
| goto again; |
| } |
| } |
| |
| static void ops_complete_check(void *stripe_head_ref) |
| { |
| struct stripe_head *sh = stripe_head_ref; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| sh->check_state = check_state_check_result; |
| set_bit(STRIPE_HANDLE, &sh->state); |
| raid5_release_stripe(sh); |
| } |
| |
| static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) |
| { |
| int disks = sh->disks; |
| int pd_idx = sh->pd_idx; |
| int qd_idx = sh->qd_idx; |
| struct page *xor_dest; |
| struct page **xor_srcs = to_addr_page(percpu, 0); |
| struct dma_async_tx_descriptor *tx; |
| struct async_submit_ctl submit; |
| int count; |
| int i; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| BUG_ON(sh->batch_head); |
| count = 0; |
| xor_dest = sh->dev[pd_idx].page; |
| xor_srcs[count++] = xor_dest; |
| for (i = disks; i--; ) { |
| if (i == pd_idx || i == qd_idx) |
| continue; |
| xor_srcs[count++] = sh->dev[i].page; |
| } |
| |
| init_async_submit(&submit, 0, NULL, NULL, NULL, |
| to_addr_conv(sh, percpu, 0)); |
| tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, |
| &sh->ops.zero_sum_result, &submit); |
| |
| atomic_inc(&sh->count); |
| init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); |
| tx = async_trigger_callback(&submit); |
| } |
| |
| static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) |
| { |
| struct page **srcs = to_addr_page(percpu, 0); |
| struct async_submit_ctl submit; |
| int count; |
| |
| pr_debug("%s: stripe %llu checkp: %d\n", __func__, |
| (unsigned long long)sh->sector, checkp); |
| |
| BUG_ON(sh->batch_head); |
| count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL); |
| if (!checkp) |
| srcs[count] = NULL; |
| |
| atomic_inc(&sh->count); |
| init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, |
| sh, to_addr_conv(sh, percpu, 0)); |
| async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, |
| &sh->ops.zero_sum_result, percpu->spare_page, &submit); |
| } |
| |
| static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) |
| { |
| int overlap_clear = 0, i, disks = sh->disks; |
| struct dma_async_tx_descriptor *tx = NULL; |
| struct r5conf *conf = sh->raid_conf; |
| int level = conf->level; |
| struct raid5_percpu *percpu; |
| unsigned long cpu; |
| |
| cpu = get_cpu(); |
| percpu = per_cpu_ptr(conf->percpu, cpu); |
| if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { |
| ops_run_biofill(sh); |
| overlap_clear++; |
| } |
| |
| if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { |
| if (level < 6) |
| tx = ops_run_compute5(sh, percpu); |
| else { |
| if (sh->ops.target2 < 0 || sh->ops.target < 0) |
| tx = ops_run_compute6_1(sh, percpu); |
| else |
| tx = ops_run_compute6_2(sh, percpu); |
| } |
| /* terminate the chain if reconstruct is not set to be run */ |
| if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) |
| async_tx_ack(tx); |
| } |
| |
| if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { |
| if (level < 6) |
| tx = ops_run_prexor5(sh, percpu, tx); |
| else |
| tx = ops_run_prexor6(sh, percpu, tx); |
| } |
| |
| if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { |
| tx = ops_run_biodrain(sh, tx); |
| overlap_clear++; |
| } |
| |
| if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { |
| if (level < 6) |
| ops_run_reconstruct5(sh, percpu, tx); |
| else |
| ops_run_reconstruct6(sh, percpu, tx); |
| } |
| |
| if (test_bit(STRIPE_OP_CHECK, &ops_request)) { |
| if (sh->check_state == check_state_run) |
| ops_run_check_p(sh, percpu); |
| else if (sh->check_state == check_state_run_q) |
| ops_run_check_pq(sh, percpu, 0); |
| else if (sh->check_state == check_state_run_pq) |
| ops_run_check_pq(sh, percpu, 1); |
| else |
| BUG(); |
| } |
| |
| if (overlap_clear && !sh->batch_head) |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (test_and_clear_bit(R5_Overlap, &dev->flags)) |
| wake_up(&sh->raid_conf->wait_for_overlap); |
| } |
| put_cpu(); |
| } |
| |
| static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, |
| int disks) |
| { |
| struct stripe_head *sh; |
| int i; |
| |
| sh = kmem_cache_zalloc(sc, gfp); |
| if (sh) { |
| spin_lock_init(&sh->stripe_lock); |
| spin_lock_init(&sh->batch_lock); |
| INIT_LIST_HEAD(&sh->batch_list); |
| INIT_LIST_HEAD(&sh->lru); |
| INIT_LIST_HEAD(&sh->r5c); |
| INIT_LIST_HEAD(&sh->log_list); |
| atomic_set(&sh->count, 1); |
| sh->log_start = MaxSector; |
| for (i = 0; i < disks; i++) { |
| struct r5dev *dev = &sh->dev[i]; |
| |
| bio_init(&dev->req, &dev->vec, 1); |
| bio_init(&dev->rreq, &dev->rvec, 1); |
| } |
| } |
| return sh; |
| } |
| static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) |
| { |
| struct stripe_head *sh; |
| |
| sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size); |
| if (!sh) |
| return 0; |
| |
| sh->raid_conf = conf; |
| |
| if (grow_buffers(sh, gfp)) { |
| shrink_buffers(sh); |
| kmem_cache_free(conf->slab_cache, sh); |
| return 0; |
| } |
| sh->hash_lock_index = |
| conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; |
| /* we just created an active stripe so... */ |
| atomic_inc(&conf->active_stripes); |
| |
| raid5_release_stripe(sh); |
| conf->max_nr_stripes++; |
| return 1; |
| } |
| |
| static int grow_stripes(struct r5conf *conf, int num) |
| { |
| struct kmem_cache *sc; |
| int devs = max(conf->raid_disks, conf->previous_raid_disks); |
| |
| if (conf->mddev->gendisk) |
| sprintf(conf->cache_name[0], |
| "raid%d-%s", conf->level, mdname(conf->mddev)); |
| else |
| sprintf(conf->cache_name[0], |
| "raid%d-%p", conf->level, conf->mddev); |
| sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); |
| |
| conf->active_name = 0; |
| sc = kmem_cache_create(conf->cache_name[conf->active_name], |
| sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), |
| 0, 0, NULL); |
| if (!sc) |
| return 1; |
| conf->slab_cache = sc; |
| conf->pool_size = devs; |
| while (num--) |
| if (!grow_one_stripe(conf, GFP_KERNEL)) |
| return 1; |
| |
| return 0; |
| } |
| |
| /** |
| * scribble_len - return the required size of the scribble region |
| * @num - total number of disks in the array |
| * |
| * The size must be enough to contain: |
| * 1/ a struct page pointer for each device in the array +2 |
| * 2/ room to convert each entry in (1) to its corresponding dma |
| * (dma_map_page()) or page (page_address()) address. |
| * |
| * Note: the +2 is for the destination buffers of the ddf/raid6 case where we |
| * calculate over all devices (not just the data blocks), using zeros in place |
| * of the P and Q blocks. |
| */ |
| static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags) |
| { |
| struct flex_array *ret; |
| size_t len; |
| |
| len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); |
| ret = flex_array_alloc(len, cnt, flags); |
| if (!ret) |
| return NULL; |
| /* always prealloc all elements, so no locking is required */ |
| if (flex_array_prealloc(ret, 0, cnt, flags)) { |
| flex_array_free(ret); |
| return NULL; |
| } |
| return ret; |
| } |
| |
| static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) |
| { |
| unsigned long cpu; |
| int err = 0; |
| |
| /* |
| * Never shrink. And mddev_suspend() could deadlock if this is called |
| * from raid5d. In that case, scribble_disks and scribble_sectors |
| * should equal to new_disks and new_sectors |
| */ |
| if (conf->scribble_disks >= new_disks && |
| conf->scribble_sectors >= new_sectors) |
| return 0; |
| mddev_suspend(conf->mddev); |
| get_online_cpus(); |
| for_each_present_cpu(cpu) { |
| struct raid5_percpu *percpu; |
| struct flex_array *scribble; |
| |
| percpu = per_cpu_ptr(conf->percpu, cpu); |
| scribble = scribble_alloc(new_disks, |
| new_sectors / STRIPE_SECTORS, |
| GFP_NOIO); |
| |
| if (scribble) { |
| flex_array_free(percpu->scribble); |
| percpu->scribble = scribble; |
| } else { |
| err = -ENOMEM; |
| break; |
| } |
| } |
| put_online_cpus(); |
| mddev_resume(conf->mddev); |
| if (!err) { |
| conf->scribble_disks = new_disks; |
| conf->scribble_sectors = new_sectors; |
| } |
| return err; |
| } |
| |
| static int resize_stripes(struct r5conf *conf, int newsize) |
| { |
| /* Make all the stripes able to hold 'newsize' devices. |
| * New slots in each stripe get 'page' set to a new page. |
| * |
| * This happens in stages: |
| * 1/ create a new kmem_cache and allocate the required number of |
| * stripe_heads. |
| * 2/ gather all the old stripe_heads and transfer the pages across |
| * to the new stripe_heads. This will have the side effect of |
| * freezing the array as once all stripe_heads have been collected, |
| * no IO will be possible. Old stripe heads are freed once their |
| * pages have been transferred over, and the old kmem_cache is |
| * freed when all stripes are done. |
| * 3/ reallocate conf->disks to be suitable bigger. If this fails, |
| * we simple return a failre status - no need to clean anything up. |
| * 4/ allocate new pages for the new slots in the new stripe_heads. |
| * If this fails, we don't bother trying the shrink the |
| * stripe_heads down again, we just leave them as they are. |
| * As each stripe_head is processed the new one is released into |
| * active service. |
| * |
| * Once step2 is started, we cannot afford to wait for a write, |
| * so we use GFP_NOIO allocations. |
| */ |
| struct stripe_head *osh, *nsh; |
| LIST_HEAD(newstripes); |
| struct disk_info *ndisks; |
| int err; |
| struct kmem_cache *sc; |
| int i; |
| int hash, cnt; |
| |
| if (newsize <= conf->pool_size) |
| return 0; /* never bother to shrink */ |
| |
| err = md_allow_write(conf->mddev); |
| if (err) |
| return err; |
| |
| /* Step 1 */ |
| sc = kmem_cache_create(conf->cache_name[1-conf->active_name], |
| sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), |
| 0, 0, NULL); |
| if (!sc) |
| return -ENOMEM; |
| |
| /* Need to ensure auto-resizing doesn't interfere */ |
| mutex_lock(&conf->cache_size_mutex); |
| |
| for (i = conf->max_nr_stripes; i; i--) { |
| nsh = alloc_stripe(sc, GFP_KERNEL, newsize); |
| if (!nsh) |
| break; |
| |
| nsh->raid_conf = conf; |
| list_add(&nsh->lru, &newstripes); |
| } |
| if (i) { |
| /* didn't get enough, give up */ |
| while (!list_empty(&newstripes)) { |
| nsh = list_entry(newstripes.next, struct stripe_head, lru); |
| list_del(&nsh->lru); |
| kmem_cache_free(sc, nsh); |
| } |
| kmem_cache_destroy(sc); |
| mutex_unlock(&conf->cache_size_mutex); |
| return -ENOMEM; |
| } |
| /* Step 2 - Must use GFP_NOIO now. |
| * OK, we have enough stripes, start collecting inactive |
| * stripes and copying them over |
| */ |
| hash = 0; |
| cnt = 0; |
| list_for_each_entry(nsh, &newstripes, lru) { |
| lock_device_hash_lock(conf, hash); |
| wait_event_cmd(conf->wait_for_stripe, |
| !list_empty(conf->inactive_list + hash), |
| unlock_device_hash_lock(conf, hash), |
| lock_device_hash_lock(conf, hash)); |
| osh = get_free_stripe(conf, hash); |
| unlock_device_hash_lock(conf, hash); |
| |
| for(i=0; i<conf->pool_size; i++) { |
| nsh->dev[i].page = osh->dev[i].page; |
| nsh->dev[i].orig_page = osh->dev[i].page; |
| } |
| nsh->hash_lock_index = hash; |
| kmem_cache_free(conf->slab_cache, osh); |
| cnt++; |
| if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + |
| !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { |
| hash++; |
| cnt = 0; |
| } |
| } |
| kmem_cache_destroy(conf->slab_cache); |
| |
| /* Step 3. |
| * At this point, we are holding all the stripes so the array |
| * is completely stalled, so now is a good time to resize |
| * conf->disks and the scribble region |
| */ |
| ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); |
| if (ndisks) { |
| for (i = 0; i < conf->pool_size; i++) |
| ndisks[i] = conf->disks[i]; |
| |
| for (i = conf->pool_size; i < newsize; i++) { |
| ndisks[i].extra_page = alloc_page(GFP_NOIO); |
| if (!ndisks[i].extra_page) |
| err = -ENOMEM; |
| } |
| |
| if (err) { |
| for (i = conf->pool_size; i < newsize; i++) |
| if (ndisks[i].extra_page) |
| put_page(ndisks[i].extra_page); |
| kfree(ndisks); |
| } else { |
| kfree(conf->disks); |
| conf->disks = ndisks; |
| } |
| } else |
| err = -ENOMEM; |
| |
| mutex_unlock(&conf->cache_size_mutex); |
| /* Step 4, return new stripes to service */ |
| while(!list_empty(&newstripes)) { |
| nsh = list_entry(newstripes.next, struct stripe_head, lru); |
| list_del_init(&nsh->lru); |
| |
| for (i=conf->raid_disks; i < newsize; i++) |
| if (nsh->dev[i].page == NULL) { |
| struct page *p = alloc_page(GFP_NOIO); |
| nsh->dev[i].page = p; |
| nsh->dev[i].orig_page = p; |
| if (!p) |
| err = -ENOMEM; |
| } |
| raid5_release_stripe(nsh); |
| } |
| /* critical section pass, GFP_NOIO no longer needed */ |
| |
| conf->slab_cache = sc; |
| conf->active_name = 1-conf->active_name; |
| if (!err) |
| conf->pool_size = newsize; |
| return err; |
| } |
| |
| static int drop_one_stripe(struct r5conf *conf) |
| { |
| struct stripe_head *sh; |
| int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; |
| |
| spin_lock_irq(conf->hash_locks + hash); |
| sh = get_free_stripe(conf, hash); |
| spin_unlock_irq(conf->hash_locks + hash); |
| if (!sh) |
| return 0; |
| BUG_ON(atomic_read(&sh->count)); |
| shrink_buffers(sh); |
| kmem_cache_free(conf->slab_cache, sh); |
| atomic_dec(&conf->active_stripes); |
| conf->max_nr_stripes--; |
| return 1; |
| } |
| |
| static void shrink_stripes(struct r5conf *conf) |
| { |
| while (conf->max_nr_stripes && |
| drop_one_stripe(conf)) |
| ; |
| |
| kmem_cache_destroy(conf->slab_cache); |
| conf->slab_cache = NULL; |
| } |
| |
| static void raid5_end_read_request(struct bio * bi) |
| { |
| struct stripe_head *sh = bi->bi_private; |
| struct r5conf *conf = sh->raid_conf; |
| int disks = sh->disks, i; |
| char b[BDEVNAME_SIZE]; |
| struct md_rdev *rdev = NULL; |
| sector_t s; |
| |
| for (i=0 ; i<disks; i++) |
| if (bi == &sh->dev[i].req) |
| break; |
| |
| pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", |
| (unsigned long long)sh->sector, i, atomic_read(&sh->count), |
| bi->bi_error); |
| if (i == disks) { |
| bio_reset(bi); |
| BUG(); |
| return; |
| } |
| if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) |
| /* If replacement finished while this request was outstanding, |
| * 'replacement' might be NULL already. |
| * In that case it moved down to 'rdev'. |
| * rdev is not removed until all requests are finished. |
| */ |
| rdev = conf->disks[i].replacement; |
| if (!rdev) |
| rdev = conf->disks[i].rdev; |
| |
| if (use_new_offset(conf, sh)) |
| s = sh->sector + rdev->new_data_offset; |
| else |
| s = sh->sector + rdev->data_offset; |
| if (!bi->bi_error) { |
| set_bit(R5_UPTODATE, &sh->dev[i].flags); |
| if (test_bit(R5_ReadError, &sh->dev[i].flags)) { |
| /* Note that this cannot happen on a |
| * replacement device. We just fail those on |
| * any error |
| */ |
| pr_info_ratelimited( |
| "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n", |
| mdname(conf->mddev), STRIPE_SECTORS, |
| (unsigned long long)s, |
| bdevname(rdev->bdev, b)); |
| atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); |
| clear_bit(R5_ReadError, &sh->dev[i].flags); |
| clear_bit(R5_ReWrite, &sh->dev[i].flags); |
| } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) |
| clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); |
| |
| if (test_bit(R5_InJournal, &sh->dev[i].flags)) |
| /* |
| * end read for a page in journal, this |
| * must be preparing for prexor in rmw |
| */ |
| set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); |
| |
| if (atomic_read(&rdev->read_errors)) |
| atomic_set(&rdev->read_errors, 0); |
| } else { |
| const char *bdn = bdevname(rdev->bdev, b); |
| int retry = 0; |
| int set_bad = 0; |
| |
| clear_bit(R5_UPTODATE, &sh->dev[i].flags); |
| atomic_inc(&rdev->read_errors); |
| if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) |
| pr_warn_ratelimited( |
| "md/raid:%s: read error on replacement device (sector %llu on %s).\n", |
| mdname(conf->mddev), |
| (unsigned long long)s, |
| bdn); |
| else if (conf->mddev->degraded >= conf->max_degraded) { |
| set_bad = 1; |
| pr_warn_ratelimited( |
| "md/raid:%s: read error not correctable (sector %llu on %s).\n", |
| mdname(conf->mddev), |
| (unsigned long long)s, |
| bdn); |
| } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { |
| /* Oh, no!!! */ |
| set_bad = 1; |
| pr_warn_ratelimited( |
| "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n", |
| mdname(conf->mddev), |
| (unsigned long long)s, |
| bdn); |
| } else if (atomic_read(&rdev->read_errors) |
| > conf->max_nr_stripes) |
| pr_warn("md/raid:%s: Too many read errors, failing device %s.\n", |
| mdname(conf->mddev), bdn); |
| else |
| retry = 1; |
| if (set_bad && test_bit(In_sync, &rdev->flags) |
| && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) |
| retry = 1; |
| if (retry) |
| if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { |
| set_bit(R5_ReadError, &sh->dev[i].flags); |
| clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); |
| } else |
| set_bit(R5_ReadNoMerge, &sh->dev[i].flags); |
| else { |
| clear_bit(R5_ReadError, &sh->dev[i].flags); |
| clear_bit(R5_ReWrite, &sh->dev[i].flags); |
| if (!(set_bad |
| && test_bit(In_sync, &rdev->flags) |
| && rdev_set_badblocks( |
| rdev, sh->sector, STRIPE_SECTORS, 0))) |
| md_error(conf->mddev, rdev); |
| } |
| } |
| rdev_dec_pending(rdev, conf->mddev); |
| bio_reset(bi); |
| clear_bit(R5_LOCKED, &sh->dev[i].flags); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| raid5_release_stripe(sh); |
| } |
| |
| static void raid5_end_write_request(struct bio *bi) |
| { |
| struct stripe_head *sh = bi->bi_private; |
| struct r5conf *conf = sh->raid_conf; |
| int disks = sh->disks, i; |
| struct md_rdev *uninitialized_var(rdev); |
| sector_t first_bad; |
| int bad_sectors; |
| int replacement = 0; |
| |
| for (i = 0 ; i < disks; i++) { |
| if (bi == &sh->dev[i].req) { |
| rdev = conf->disks[i].rdev; |
| break; |
| } |
| if (bi == &sh->dev[i].rreq) { |
| rdev = conf->disks[i].replacement; |
| if (rdev) |
| replacement = 1; |
| else |
| /* rdev was removed and 'replacement' |
| * replaced it. rdev is not removed |
| * until all requests are finished. |
| */ |
| rdev = conf->disks[i].rdev; |
| break; |
| } |
| } |
| pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", |
| (unsigned long long)sh->sector, i, atomic_read(&sh->count), |
| bi->bi_error); |
| if (i == disks) { |
| bio_reset(bi); |
| BUG(); |
| return; |
| } |
| |
| if (replacement) { |
| if (bi->bi_error) |
| md_error(conf->mddev, rdev); |
| else if (is_badblock(rdev, sh->sector, |
| STRIPE_SECTORS, |
| &first_bad, &bad_sectors)) |
| set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); |
| } else { |
| if (bi->bi_error) { |
| set_bit(STRIPE_DEGRADED, &sh->state); |
| set_bit(WriteErrorSeen, &rdev->flags); |
| set_bit(R5_WriteError, &sh->dev[i].flags); |
| if (!test_and_set_bit(WantReplacement, &rdev->flags)) |
| set_bit(MD_RECOVERY_NEEDED, |
| &rdev->mddev->recovery); |
| } else if (is_badblock(rdev, sh->sector, |
| STRIPE_SECTORS, |
| &first_bad, &bad_sectors)) { |
| set_bit(R5_MadeGood, &sh->dev[i].flags); |
| if (test_bit(R5_ReadError, &sh->dev[i].flags)) |
| /* That was a successful write so make |
| * sure it looks like we already did |
| * a re-write. |
| */ |
| set_bit(R5_ReWrite, &sh->dev[i].flags); |
| } |
| } |
| rdev_dec_pending(rdev, conf->mddev); |
| |
| if (sh->batch_head && bi->bi_error && !replacement) |
| set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); |
| |
| bio_reset(bi); |
| if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) |
| clear_bit(R5_LOCKED, &sh->dev[i].flags); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| raid5_release_stripe(sh); |
| |
| if (sh->batch_head && sh != sh->batch_head) |
| raid5_release_stripe(sh->batch_head); |
| } |
| |
| static void raid5_build_block(struct stripe_head *sh, int i, int previous) |
| { |
| struct r5dev *dev = &sh->dev[i]; |
| |
| dev->flags = 0; |
| dev->sector = raid5_compute_blocknr(sh, i, previous); |
| } |
| |
| static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) |
| { |
| char b[BDEVNAME_SIZE]; |
| struct r5conf *conf = mddev->private; |
| unsigned long flags; |
| pr_debug("raid456: error called\n"); |
| |
| spin_lock_irqsave(&conf->device_lock, flags); |
| clear_bit(In_sync, &rdev->flags); |
| mddev->degraded = raid5_calc_degraded(conf); |
| spin_unlock_irqrestore(&conf->device_lock, flags); |
| set_bit(MD_RECOVERY_INTR, &mddev->recovery); |
| |
| set_bit(Blocked, &rdev->flags); |
| set_bit(Faulty, &rdev->flags); |
| set_mask_bits(&mddev->sb_flags, 0, |
| BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); |
| pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n" |
| "md/raid:%s: Operation continuing on %d devices.\n", |
| mdname(mddev), |
| bdevname(rdev->bdev, b), |
| mdname(mddev), |
| conf->raid_disks - mddev->degraded); |
| r5c_update_on_rdev_error(mddev); |
| } |
| |
| /* |
| * Input: a 'big' sector number, |
| * Output: index of the data and parity disk, and the sector # in them. |
| */ |
| sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, |
| int previous, int *dd_idx, |
| struct stripe_head *sh) |
| { |
| sector_t stripe, stripe2; |
| sector_t chunk_number; |
| unsigned int chunk_offset; |
| int pd_idx, qd_idx; |
| int ddf_layout = 0; |
| sector_t new_sector; |
| int algorithm = previous ? conf->prev_algo |
| : conf->algorithm; |
| int sectors_per_chunk = previous ? conf->prev_chunk_sectors |
| : conf->chunk_sectors; |
| int raid_disks = previous ? conf->previous_raid_disks |
| : conf->raid_disks; |
| int data_disks = raid_disks - conf->max_degraded; |
| |
| /* First compute the information on this sector */ |
| |
| /* |
| * Compute the chunk number and the sector offset inside the chunk |
| */ |
| chunk_offset = sector_div(r_sector, sectors_per_chunk); |
| chunk_number = r_sector; |
| |
| /* |
| * Compute the stripe number |
| */ |
| stripe = chunk_number; |
| *dd_idx = sector_div(stripe, data_disks); |
| stripe2 = stripe; |
| /* |
| * Select the parity disk based on the user selected algorithm. |
| */ |
| pd_idx = qd_idx = -1; |
| switch(conf->level) { |
| case 4: |
| pd_idx = data_disks; |
| break; |
| case 5: |
| switch (algorithm) { |
| case ALGORITHM_LEFT_ASYMMETRIC: |
| pd_idx = data_disks - sector_div(stripe2, raid_disks); |
| if (*dd_idx >= pd_idx) |
| (*dd_idx)++; |
| break; |
| case ALGORITHM_RIGHT_ASYMMETRIC: |
| pd_idx = sector_div(stripe2, raid_disks); |
| if (*dd_idx >= pd_idx) |
| (*dd_idx)++; |
| break; |
| case ALGORITHM_LEFT_SYMMETRIC: |
| pd_idx = data_disks - sector_div(stripe2, raid_disks); |
| *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; |
| break; |
| case ALGORITHM_RIGHT_SYMMETRIC: |
| pd_idx = sector_div(stripe2, raid_disks); |
| *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; |
| break; |
| case ALGORITHM_PARITY_0: |
| pd_idx = 0; |
| (*dd_idx)++; |
| break; |
| case ALGORITHM_PARITY_N: |
| pd_idx = data_disks; |
| break; |
| default: |
| BUG(); |
| } |
| break; |
| case 6: |
| |
| switch (algorithm) { |
| case ALGORITHM_LEFT_ASYMMETRIC: |
| pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); |
| qd_idx = pd_idx + 1; |
| if (pd_idx == raid_disks-1) { |
| (*dd_idx)++; /* Q D D D P */ |
| qd_idx = 0; |
| } else if (*dd_idx >= pd_idx) |
| (*dd_idx) += 2; /* D D P Q D */ |
| break; |
| case ALGORITHM_RIGHT_ASYMMETRIC: |
| pd_idx = sector_div(stripe2, raid_disks); |
| qd_idx = pd_idx + 1; |
| if (pd_idx == raid_disks-1) { |
| (*dd_idx)++; /* Q D D D P */ |
| qd_idx = 0; |
| } else if (*dd_idx >= pd_idx) |
| (*dd_idx) += 2; /* D D P Q D */ |
| break; |
| case ALGORITHM_LEFT_SYMMETRIC: |
| pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); |
| qd_idx = (pd_idx + 1) % raid_disks; |
| *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; |
| break; |
| case ALGORITHM_RIGHT_SYMMETRIC: |
| pd_idx = sector_div(stripe2, raid_disks); |
| qd_idx = (pd_idx + 1) % raid_disks; |
| *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; |
| break; |
| |
| case ALGORITHM_PARITY_0: |
| pd_idx = 0; |
| qd_idx = 1; |
| (*dd_idx) += 2; |
| break; |
| case ALGORITHM_PARITY_N: |
| pd_idx = data_disks; |
| qd_idx = data_disks + 1; |
| break; |
| |
| case ALGORITHM_ROTATING_ZERO_RESTART: |
| /* Exactly the same as RIGHT_ASYMMETRIC, but or |
| * of blocks for computing Q is different. |
| */ |
| pd_idx = sector_div(stripe2, raid_disks); |
| qd_idx = pd_idx + 1; |
| if (pd_idx == raid_disks-1) { |
| (*dd_idx)++; /* Q D D D P */ |
| qd_idx = 0; |
| } else if (*dd_idx >= pd_idx) |
| (*dd_idx) += 2; /* D D P Q D */ |
| ddf_layout = 1; |
| break; |
| |
| case ALGORITHM_ROTATING_N_RESTART: |
| /* Same a left_asymmetric, by first stripe is |
| * D D D P Q rather than |
| * Q D D D P |
| */ |
| stripe2 += 1; |
| pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); |
| qd_idx = pd_idx + 1; |
| if (pd_idx == raid_disks-1) { |
| (*dd_idx)++; /* Q D D D P */ |
| qd_idx = 0; |
| } else if (*dd_idx >= pd_idx) |
| (*dd_idx) += 2; /* D D P Q D */ |
| ddf_layout = 1; |
| break; |
| |
| case ALGORITHM_ROTATING_N_CONTINUE: |
| /* Same as left_symmetric but Q is before P */ |
| pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); |
| qd_idx = (pd_idx + raid_disks - 1) % raid_disks; |
| *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; |
| ddf_layout = 1; |
| break; |
| |
| case ALGORITHM_LEFT_ASYMMETRIC_6: |
| /* RAID5 left_asymmetric, with Q on last device */ |
| pd_idx = data_disks - sector_div(stripe2, raid_disks-1); |
| if (*dd_idx >= pd_idx) |
| (*dd_idx)++; |
| qd_idx = raid_disks - 1; |
| break; |
| |
| case ALGORITHM_RIGHT_ASYMMETRIC_6: |
| pd_idx = sector_div(stripe2, raid_disks-1); |
| if (*dd_idx >= pd_idx) |
| (*dd_idx)++; |
| qd_idx = raid_disks - 1; |
| break; |
| |
| case ALGORITHM_LEFT_SYMMETRIC_6: |
| pd_idx = data_disks - sector_div(stripe2, raid_disks-1); |
| *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); |
| qd_idx = raid_disks - 1; |
| break; |
| |
| case ALGORITHM_RIGHT_SYMMETRIC_6: |
| pd_idx = sector_div(stripe2, raid_disks-1); |
| *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); |
| qd_idx = raid_disks - 1; |
| break; |
| |
| case ALGORITHM_PARITY_0_6: |
| pd_idx = 0; |
| (*dd_idx)++; |
| qd_idx = raid_disks - 1; |
| break; |
| |
| default: |
| BUG(); |
| } |
| break; |
| } |
| |
| if (sh) { |
| sh->pd_idx = pd_idx; |
| sh->qd_idx = qd_idx; |
| sh->ddf_layout = ddf_layout; |
| } |
| /* |
| * Finally, compute the new sector number |
| */ |
| new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; |
| return new_sector; |
| } |
| |
| sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) |
| { |
| struct r5conf *conf = sh->raid_conf; |
| int raid_disks = sh->disks; |
| int data_disks = raid_disks - conf->max_degraded; |
| sector_t new_sector = sh->sector, check; |
| int sectors_per_chunk = previous ? conf->prev_chunk_sectors |
| : conf->chunk_sectors; |
| int algorithm = previous ? conf->prev_algo |
| : conf->algorithm; |
| sector_t stripe; |
| int chunk_offset; |
| sector_t chunk_number; |
| int dummy1, dd_idx = i; |
| sector_t r_sector; |
| struct stripe_head sh2; |
| |
| chunk_offset = sector_div(new_sector, sectors_per_chunk); |
| stripe = new_sector; |
| |
| if (i == sh->pd_idx) |
| return 0; |
| switch(conf->level) { |
| case 4: break; |
| case 5: |
| switch (algorithm) { |
| case ALGORITHM_LEFT_ASYMMETRIC: |
| case ALGORITHM_RIGHT_ASYMMETRIC: |
| if (i > sh->pd_idx) |
| i--; |
| break; |
| case ALGORITHM_LEFT_SYMMETRIC: |
| case ALGORITHM_RIGHT_SYMMETRIC: |
| if (i < sh->pd_idx) |
| i += raid_disks; |
| i -= (sh->pd_idx + 1); |
| break; |
| case ALGORITHM_PARITY_0: |
| i -= 1; |
| break; |
| case ALGORITHM_PARITY_N: |
| break; |
| default: |
| BUG(); |
| } |
| break; |
| case 6: |
| if (i == sh->qd_idx) |
| return 0; /* It is the Q disk */ |
| switch (algorithm) { |
| case ALGORITHM_LEFT_ASYMMETRIC: |
| case ALGORITHM_RIGHT_ASYMMETRIC: |
| case ALGORITHM_ROTATING_ZERO_RESTART: |
| case ALGORITHM_ROTATING_N_RESTART: |
| if (sh->pd_idx == raid_disks-1) |
| i--; /* Q D D D P */ |
| else if (i > sh->pd_idx) |
| i -= 2; /* D D P Q D */ |
| break; |
| case ALGORITHM_LEFT_SYMMETRIC: |
| case ALGORITHM_RIGHT_SYMMETRIC: |
| if (sh->pd_idx == raid_disks-1) |
| i--; /* Q D D D P */ |
| else { |
| /* D D P Q D */ |
| if (i < sh->pd_idx) |
| i += raid_disks; |
| i -= (sh->pd_idx + 2); |
| } |
| break; |
| case ALGORITHM_PARITY_0: |
| i -= 2; |
| break; |
| case ALGORITHM_PARITY_N: |
| break; |
| case ALGORITHM_ROTATING_N_CONTINUE: |
| /* Like left_symmetric, but P is before Q */ |
| if (sh->pd_idx == 0) |
| i--; /* P D D D Q */ |
| else { |
| /* D D Q P D */ |
| if (i < sh->pd_idx) |
| i += raid_disks; |
| i -= (sh->pd_idx + 1); |
| } |
| break; |
| case ALGORITHM_LEFT_ASYMMETRIC_6: |
| case ALGORITHM_RIGHT_ASYMMETRIC_6: |
| if (i > sh->pd_idx) |
| i--; |
| break; |
| case ALGORITHM_LEFT_SYMMETRIC_6: |
| case ALGORITHM_RIGHT_SYMMETRIC_6: |
| if (i < sh->pd_idx) |
| i += data_disks + 1; |
| i -= (sh->pd_idx + 1); |
| break; |
| case ALGORITHM_PARITY_0_6: |
| i -= 1; |
| break; |
| default: |
| BUG(); |
| } |
| break; |
| } |
| |
| chunk_number = stripe * data_disks + i; |
| r_sector = chunk_number * sectors_per_chunk + chunk_offset; |
| |
| check = raid5_compute_sector(conf, r_sector, |
| previous, &dummy1, &sh2); |
| if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx |
| || sh2.qd_idx != sh->qd_idx) { |
| pr_warn("md/raid:%s: compute_blocknr: map not correct\n", |
| mdname(conf->mddev)); |
| return 0; |
| } |
| return r_sector; |
| } |
| |
| /* |
| * There are cases where we want handle_stripe_dirtying() and |
| * schedule_reconstruction() to delay towrite to some dev of a stripe. |
| * |
| * This function checks whether we want to delay the towrite. Specifically, |
| * we delay the towrite when: |
| * |
| * 1. degraded stripe has a non-overwrite to the missing dev, AND this |
| * stripe has data in journal (for other devices). |
| * |
| * In this case, when reading data for the non-overwrite dev, it is |
| * necessary to handle complex rmw of write back cache (prexor with |
| * orig_page, and xor with page). To keep read path simple, we would |
| * like to flush data in journal to RAID disks first, so complex rmw |
| * is handled in the write patch (handle_stripe_dirtying). |
| * |
| */ |
| static inline bool delay_towrite(struct r5dev *dev, |
| struct stripe_head_state *s) |
| { |
| return !test_bit(R5_OVERWRITE, &dev->flags) && |
| !test_bit(R5_Insync, &dev->flags) && s->injournal; |
| } |
| |
| static void |
| schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, |
| int rcw, int expand) |
| { |
| int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; |
| struct r5conf *conf = sh->raid_conf; |
| int level = conf->level; |
| |
| if (rcw) { |
| /* |
| * In some cases, handle_stripe_dirtying initially decided to |
| * run rmw and allocates extra page for prexor. However, rcw is |
| * cheaper later on. We need to free the extra page now, |
| * because we won't be able to do that in ops_complete_prexor(). |
| */ |
| r5c_release_extra_page(sh); |
| |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| |
| if (dev->towrite && !delay_towrite(dev, s)) { |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantdrain, &dev->flags); |
| if (!expand) |
| clear_bit(R5_UPTODATE, &dev->flags); |
| s->locked++; |
| } else if (test_bit(R5_InJournal, &dev->flags)) { |
| set_bit(R5_LOCKED, &dev->flags); |
| s->locked++; |
| } |
| } |
| /* if we are not expanding this is a proper write request, and |
| * there will be bios with new data to be drained into the |
| * stripe cache |
| */ |
| if (!expand) { |
| if (!s->locked) |
| /* False alarm, nothing to do */ |
| return; |
| sh->reconstruct_state = reconstruct_state_drain_run; |
| set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); |
| } else |
| sh->reconstruct_state = reconstruct_state_run; |
| |
| set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); |
| |
| if (s->locked + conf->max_degraded == disks) |
| if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) |
| atomic_inc(&conf->pending_full_writes); |
| } else { |
| BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || |
| test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); |
| BUG_ON(level == 6 && |
| (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || |
| test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); |
| |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (i == pd_idx || i == qd_idx) |
| continue; |
| |
| if (dev->towrite && |
| (test_bit(R5_UPTODATE, &dev->flags) || |
| test_bit(R5_Wantcompute, &dev->flags))) { |
| set_bit(R5_Wantdrain, &dev->flags); |
| set_bit(R5_LOCKED, &dev->flags); |
| clear_bit(R5_UPTODATE, &dev->flags); |
| s->locked++; |
| } else if (test_bit(R5_InJournal, &dev->flags)) { |
| set_bit(R5_LOCKED, &dev->flags); |
| s->locked++; |
| } |
| } |
| if (!s->locked) |
| /* False alarm - nothing to do */ |
| return; |
| sh->reconstruct_state = reconstruct_state_prexor_drain_run; |
| set_bit(STRIPE_OP_PREXOR, &s->ops_request); |
| set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); |
| set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); |
| } |
| |
| /* keep the parity disk(s) locked while asynchronous operations |
| * are in flight |
| */ |
| set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); |
| clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); |
| s->locked++; |
| |
| if (level == 6) { |
| int qd_idx = sh->qd_idx; |
| struct r5dev *dev = &sh->dev[qd_idx]; |
| |
| set_bit(R5_LOCKED, &dev->flags); |
| clear_bit(R5_UPTODATE, &dev->flags); |
| s->locked++; |
| } |
| |
| pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", |
| __func__, (unsigned long long)sh->sector, |
| s->locked, s->ops_request); |
| } |
| |
| /* |
| * Each stripe/dev can have one or more bion attached. |
| * toread/towrite point to the first in a chain. |
| * The bi_next chain must be in order. |
| */ |
| static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, |
| int forwrite, int previous) |
| { |
| struct bio **bip; |
| struct r5conf *conf = sh->raid_conf; |
| int firstwrite=0; |
| |
| pr_debug("adding bi b#%llu to stripe s#%llu\n", |
| (unsigned long long)bi->bi_iter.bi_sector, |
| (unsigned long long)sh->sector); |
| |
| /* |
| * If several bio share a stripe. The bio bi_phys_segments acts as a |
| * reference count to avoid race. The reference count should already be |
| * increased before this function is called (for example, in |
| * raid5_make_request()), so other bio sharing this stripe will not free the |
| * stripe. If a stripe is owned by one stripe, the stripe lock will |
| * protect it. |
| */ |
| spin_lock_irq(&sh->stripe_lock); |
| /* Don't allow new IO added to stripes in batch list */ |
| if (sh->batch_head) |
| goto overlap; |
| if (forwrite) { |
| bip = &sh->dev[dd_idx].towrite; |
| if (*bip == NULL) |
| firstwrite = 1; |
| } else |
| bip = &sh->dev[dd_idx].toread; |
| while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { |
| if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) |
| goto overlap; |
| bip = & (*bip)->bi_next; |
| } |
| if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) |
| goto overlap; |
| |
| if (!forwrite || previous) |
| clear_bit(STRIPE_BATCH_READY, &sh->state); |
| |
| BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); |
| if (*bip) |
| bi->bi_next = *bip; |
| *bip = bi; |
| raid5_inc_bi_active_stripes(bi); |
| |
| if (forwrite) { |
| /* check if page is covered */ |
| sector_t sector = sh->dev[dd_idx].sector; |
| for (bi=sh->dev[dd_idx].towrite; |
| sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && |
| bi && bi->bi_iter.bi_sector <= sector; |
| bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { |
| if (bio_end_sector(bi) >= sector) |
| sector = bio_end_sector(bi); |
| } |
| if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) |
| if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) |
| sh->overwrite_disks++; |
| } |
| |
| pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", |
| (unsigned long long)(*bip)->bi_iter.bi_sector, |
| (unsigned long long)sh->sector, dd_idx); |
| |
| if (conf->mddev->bitmap && firstwrite) { |
| /* Cannot hold spinlock over bitmap_startwrite, |
| * but must ensure this isn't added to a batch until |
| * we have added to the bitmap and set bm_seq. |
| * So set STRIPE_BITMAP_PENDING to prevent |
| * batching. |
| * If multiple add_stripe_bio() calls race here they |
| * much all set STRIPE_BITMAP_PENDING. So only the first one |
| * to complete "bitmap_startwrite" gets to set |
| * STRIPE_BIT_DELAY. This is important as once a stripe |
| * is added to a batch, STRIPE_BIT_DELAY cannot be changed |
| * any more. |
| */ |
| set_bit(STRIPE_BITMAP_PENDING, &sh->state); |
| spin_unlock_irq(&sh->stripe_lock); |
| bitmap_startwrite(conf->mddev->bitmap, sh->sector, |
| STRIPE_SECTORS, 0); |
| spin_lock_irq(&sh->stripe_lock); |
| clear_bit(STRIPE_BITMAP_PENDING, &sh->state); |
| if (!sh->batch_head) { |
| sh->bm_seq = conf->seq_flush+1; |
| set_bit(STRIPE_BIT_DELAY, &sh->state); |
| } |
| } |
| spin_unlock_irq(&sh->stripe_lock); |
| |
| if (stripe_can_batch(sh)) |
| stripe_add_to_batch_list(conf, sh); |
| return 1; |
| |
| overlap: |
| set_bit(R5_Overlap, &sh->dev[dd_idx].flags); |
| spin_unlock_irq(&sh->stripe_lock); |
| return 0; |
| } |
| |
| static void end_reshape(struct r5conf *conf); |
| |
| static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, |
| struct stripe_head *sh) |
| { |
| int sectors_per_chunk = |
| previous ? conf->prev_chunk_sectors : conf->chunk_sectors; |
| int dd_idx; |
| int chunk_offset = sector_div(stripe, sectors_per_chunk); |
| int disks = previous ? conf->previous_raid_disks : conf->raid_disks; |
| |
| raid5_compute_sector(conf, |
| stripe * (disks - conf->max_degraded) |
| *sectors_per_chunk + chunk_offset, |
| previous, |
| &dd_idx, sh); |
| } |
| |
| static void |
| handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, |
| struct stripe_head_state *s, int disks, |
| struct bio_list *return_bi) |
| { |
| int i; |
| BUG_ON(sh->batch_head); |
| for (i = disks; i--; ) { |
| struct bio *bi; |
| int bitmap_end = 0; |
| |
| if (test_bit(R5_ReadError, &sh->dev[i].flags)) { |
| struct md_rdev *rdev; |
| rcu_read_lock(); |
| rdev = rcu_dereference(conf->disks[i].rdev); |
| if (rdev && test_bit(In_sync, &rdev->flags) && |
| !test_bit(Faulty, &rdev->flags)) |
| atomic_inc(&rdev->nr_pending); |
| else |
| rdev = NULL; |
| rcu_read_unlock(); |
| if (rdev) { |
| if (!rdev_set_badblocks( |
| rdev, |
| sh->sector, |
| STRIPE_SECTORS, 0)) |
| md_error(conf->mddev, rdev); |
| rdev_dec_pending(rdev, conf->mddev); |
| } |
| } |
| spin_lock_irq(&sh->stripe_lock); |
| /* fail all writes first */ |
| bi = sh->dev[i].towrite; |
| sh->dev[i].towrite = NULL; |
| sh->overwrite_disks = 0; |
| spin_unlock_irq(&sh->stripe_lock); |
| if (bi) |
| bitmap_end = 1; |
| |
| r5l_stripe_write_finished(sh); |
| |
| if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) |
| wake_up(&conf->wait_for_overlap); |
| |
| while (bi && bi->bi_iter.bi_sector < |
| sh->dev[i].sector + STRIPE_SECTORS) { |
| struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); |
| |
| bi->bi_error = -EIO; |
| if (!raid5_dec_bi_active_stripes(bi)) { |
| md_write_end(conf->mddev); |
| bio_list_add(return_bi, bi); |
| } |
| bi = nextbi; |
| } |
| if (bitmap_end) |
| bitmap_endwrite(conf->mddev->bitmap, sh->sector, |
| STRIPE_SECTORS, 0, 0); |
| bitmap_end = 0; |
| /* and fail all 'written' */ |
| bi = sh->dev[i].written; |
| sh->dev[i].written = NULL; |
| if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { |
| WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); |
| sh->dev[i].page = sh->dev[i].orig_page; |
| } |
| |
| if (bi) bitmap_end = 1; |
| while (bi && bi->bi_iter.bi_sector < |
| sh->dev[i].sector + STRIPE_SECTORS) { |
| struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); |
| |
| bi->bi_error = -EIO; |
| if (!raid5_dec_bi_active_stripes(bi)) { |
| md_write_end(conf->mddev); |
| bio_list_add(return_bi, bi); |
| } |
| bi = bi2; |
| } |
| |
| /* fail any reads if this device is non-operational and |
| * the data has not reached the cache yet. |
| */ |
| if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && |
| s->failed > conf->max_degraded && |
| (!test_bit(R5_Insync, &sh->dev[i].flags) || |
| test_bit(R5_ReadError, &sh->dev[i].flags))) { |
| spin_lock_irq(&sh->stripe_lock); |
| bi = sh->dev[i].toread; |
| sh->dev[i].toread = NULL; |
| spin_unlock_irq(&sh->stripe_lock); |
| if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) |
| wake_up(&conf->wait_for_overlap); |
| if (bi) |
| s->to_read--; |
| while (bi && bi->bi_iter.bi_sector < |
| sh->dev[i].sector + STRIPE_SECTORS) { |
| struct bio *nextbi = |
| r5_next_bio(bi, sh->dev[i].sector); |
| |
| bi->bi_error = -EIO; |
| if (!raid5_dec_bi_active_stripes(bi)) |
| bio_list_add(return_bi, bi); |
| bi = nextbi; |
| } |
| } |
| if (bitmap_end) |
| bitmap_endwrite(conf->mddev->bitmap, sh->sector, |
| STRIPE_SECTORS, 0, 0); |
| /* If we were in the middle of a write the parity block might |
| * still be locked - so just clear all R5_LOCKED flags |
| */ |
| clear_bit(R5_LOCKED, &sh->dev[i].flags); |
| } |
| s->to_write = 0; |
| s->written = 0; |
| |
| if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) |
| if (atomic_dec_and_test(&conf->pending_full_writes)) |
| md_wakeup_thread(conf->mddev->thread); |
| } |
| |
| static void |
| handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, |
| struct stripe_head_state *s) |
| { |
| int abort = 0; |
| int i; |
| |
| BUG_ON(sh->batch_head); |
| clear_bit(STRIPE_SYNCING, &sh->state); |
| if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) |
| wake_up(&conf->wait_for_overlap); |
| s->syncing = 0; |
| s->replacing = 0; |
| /* There is nothing more to do for sync/check/repair. |
| * Don't even need to abort as that is handled elsewhere |
| * if needed, and not always wanted e.g. if there is a known |
| * bad block here. |
| * For recover/replace we need to record a bad block on all |
| * non-sync devices, or abort the recovery |
| */ |
| if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { |
| /* During recovery devices cannot be removed, so |
| * locking and refcounting of rdevs is not needed |
| */ |
| rcu_read_lock(); |
| for (i = 0; i < conf->raid_disks; i++) { |
| struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); |
| if (rdev |
| && !test_bit(Faulty, &rdev->flags) |
| && !test_bit(In_sync, &rdev->flags) |
| && !rdev_set_badblocks(rdev, sh->sector, |
| STRIPE_SECTORS, 0)) |
| abort = 1; |
| rdev = rcu_dereference(conf->disks[i].replacement); |
| if (rdev |
| && !test_bit(Faulty, &rdev->flags) |
| && !test_bit(In_sync, &rdev->flags) |
| && !rdev_set_badblocks(rdev, sh->sector, |
| STRIPE_SECTORS, 0)) |
| abort = 1; |
| } |
| rcu_read_unlock(); |
| if (abort) |
| conf->recovery_disabled = |
| conf->mddev->recovery_disabled; |
| } |
| md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); |
| } |
| |
| static int want_replace(struct stripe_head *sh, int disk_idx) |
| { |
| struct md_rdev *rdev; |
| int rv = 0; |
| |
| rcu_read_lock(); |
| rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement); |
| if (rdev |
| && !test_bit(Faulty, &rdev->flags) |
| && !test_bit(In_sync, &rdev->flags) |
| && (rdev->recovery_offset <= sh->sector |
| || rdev->mddev->recovery_cp <= sh->sector)) |
| rv = 1; |
| rcu_read_unlock(); |
| return rv; |
| } |
| |
| static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, |
| int disk_idx, int disks) |
| { |
| struct r5dev *dev = &sh->dev[disk_idx]; |
| struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], |
| &sh->dev[s->failed_num[1]] }; |
| int i; |
| |
| |
| if (test_bit(R5_LOCKED, &dev->flags) || |
| test_bit(R5_UPTODATE, &dev->flags)) |
| /* No point reading this as we already have it or have |
| * decided to get it. |
| */ |
| return 0; |
| |
| if (dev->toread || |
| (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) |
| /* We need this block to directly satisfy a request */ |
| return 1; |
| |
| if (s->syncing || s->expanding || |
| (s->replacing && want_replace(sh, disk_idx))) |
| /* When syncing, or expanding we read everything. |
| * When replacing, we need the replaced block. |
| */ |
| return 1; |
| |
| if ((s->failed >= 1 && fdev[0]->toread) || |
| (s->failed >= 2 && fdev[1]->toread)) |
| /* If we want to read from a failed device, then |
| * we need to actually read every other device. |
| */ |
| return 1; |
| |
| /* Sometimes neither read-modify-write nor reconstruct-write |
| * cycles can work. In those cases we read every block we |
| * can. Then the parity-update is certain to have enough to |
| * work with. |
| * This can only be a problem when we need to write something, |
| * and some device has failed. If either of those tests |
| * fail we need look no further. |
| */ |
| if (!s->failed || !s->to_write) |
| return 0; |
| |
| if (test_bit(R5_Insync, &dev->flags) && |
| !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) |
| /* Pre-reads at not permitted until after short delay |
| * to gather multiple requests. However if this |
| * device is no Insync, the block could only be be computed |
| * and there is no need to delay that. |
| */ |
| return 0; |
| |
| for (i = 0; i < s->failed && i < 2; i++) { |
| if (fdev[i]->towrite && |
| !test_bit(R5_UPTODATE, &fdev[i]->flags) && |
| !test_bit(R5_OVERWRITE, &fdev[i]->flags)) |
| /* If we have a partial write to a failed |
| * device, then we will need to reconstruct |
| * the content of that device, so all other |
| * devices must be read. |
| */ |
| return 1; |
| } |
| |
| /* If we are forced to do a reconstruct-write, either because |
| * the current RAID6 implementation only supports that, or |
| * or because parity cannot be trusted and we are currently |
| * recovering it, there is extra need to be careful. |
| * If one of the devices that we would need to read, because |
| * it is not being overwritten (and maybe not written at all) |
| * is missing/faulty, then we need to read everything we can. |
| */ |
| if (sh->raid_conf->level != 6 && |
| sh->sector < sh->raid_conf->mddev->recovery_cp) |
| /* reconstruct-write isn't being forced */ |
| return 0; |
| for (i = 0; i < s->failed && i < 2; i++) { |
| if (s->failed_num[i] != sh->pd_idx && |
| s->failed_num[i] != sh->qd_idx && |
| !test_bit(R5_UPTODATE, &fdev[i]->flags) && |
| !test_bit(R5_OVERWRITE, &fdev[i]->flags)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* fetch_block - checks the given member device to see if its data needs |
| * to be read or computed to satisfy a request. |
| * |
| * Returns 1 when no more member devices need to be checked, otherwise returns |
| * 0 to tell the loop in handle_stripe_fill to continue |
| */ |
| static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, |
| int disk_idx, int disks) |
| { |
| struct r5dev *dev = &sh->dev[disk_idx]; |
| |
| /* is the data in this block needed, and can we get it? */ |
| if (need_this_block(sh, s, disk_idx, disks)) { |
| /* we would like to get this block, possibly by computing it, |
| * otherwise read it if the backing disk is insync |
| */ |
| BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); |
| BUG_ON(test_bit(R5_Wantread, &dev->flags)); |
| BUG_ON(sh->batch_head); |
| if ((s->uptodate == disks - 1) && |
| (s->failed && (disk_idx == s->failed_num[0] || |
| disk_idx == s->failed_num[1]))) { |
| /* have disk failed, and we're requested to fetch it; |
| * do compute it |
| */ |
| pr_debug("Computing stripe %llu block %d\n", |
| (unsigned long long)sh->sector, disk_idx); |
| set_bit(STRIPE_COMPUTE_RUN, &sh->state); |
| set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); |
| set_bit(R5_Wantcompute, &dev->flags); |
| sh->ops.target = disk_idx; |
| sh->ops.target2 = -1; /* no 2nd target */ |
| s->req_compute = 1; |
| /* Careful: from this point on 'uptodate' is in the eye |
| * of raid_run_ops which services 'compute' operations |
| * before writes. R5_Wantcompute flags a block that will |
| * be R5_UPTODATE by the time it is needed for a |
| * subsequent operation. |
| */ |
| s->uptodate++; |
| return 1; |
| } else if (s->uptodate == disks-2 && s->failed >= 2) { |
| /* Computing 2-failure is *very* expensive; only |
| * do it if failed >= 2 |
| */ |
| int other; |
| for (other = disks; other--; ) { |
| if (other == disk_idx) |
| continue; |
| if (!test_bit(R5_UPTODATE, |
| &sh->dev[other].flags)) |
| break; |
| } |
| BUG_ON(other < 0); |
| pr_debug("Computing stripe %llu blocks %d,%d\n", |
| (unsigned long long)sh->sector, |
| disk_idx, other); |
| set_bit(STRIPE_COMPUTE_RUN, &sh->state); |
| set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); |
| set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); |
| set_bit(R5_Wantcompute, &sh->dev[other].flags); |
| sh->ops.target = disk_idx; |
| sh->ops.target2 = other; |
| s->uptodate += 2; |
| s->req_compute = 1; |
| return 1; |
| } else if (test_bit(R5_Insync, &dev->flags)) { |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantread, &dev->flags); |
| s->locked++; |
| pr_debug("Reading block %d (sync=%d)\n", |
| disk_idx, s->syncing); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * handle_stripe_fill - read or compute data to satisfy pending requests. |
| */ |
| static void handle_stripe_fill(struct stripe_head *sh, |
| struct stripe_head_state *s, |
| int disks) |
| { |
| int i; |
| |
| /* look for blocks to read/compute, skip this if a compute |
| * is already in flight, or if the stripe contents are in the |
| * midst of changing due to a write |
| */ |
| if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && |
| !sh->reconstruct_state) { |
| |
| /* |
| * For degraded stripe with data in journal, do not handle |
| * read requests yet, instead, flush the stripe to raid |
| * disks first, this avoids handling complex rmw of write |
| * back cache (prexor with orig_page, and then xor with |
| * page) in the read path |
| */ |
| if (s->injournal && s->failed) { |
| if (test_bit(STRIPE_R5C_CACHING, &sh->state)) |
| r5c_make_stripe_write_out(sh); |
| goto out; |
| } |
| |
| for (i = disks; i--; ) |
| if (fetch_block(sh, s, i, disks)) |
| break; |
| } |
| out: |
| set_bit(STRIPE_HANDLE, &sh->state); |
| } |
| |
| static void break_stripe_batch_list(struct stripe_head *head_sh, |
| unsigned long handle_flags); |
| /* handle_stripe_clean_event |
| * any written block on an uptodate or failed drive can be returned. |
| * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but |
| * never LOCKED, so we don't need to test 'failed' directly. |
| */ |
| static void handle_stripe_clean_event(struct r5conf *conf, |
| struct stripe_head *sh, int disks, struct bio_list *return_bi) |
| { |
| int i; |
| struct r5dev *dev; |
| int discard_pending = 0; |
| struct stripe_head *head_sh = sh; |
| bool do_endio = false; |
| |
| for (i = disks; i--; ) |
| if (sh->dev[i].written) { |
| dev = &sh->dev[i]; |
| if (!test_bit(R5_LOCKED, &dev->flags) && |
| (test_bit(R5_UPTODATE, &dev->flags) || |
| test_bit(R5_Discard, &dev->flags) || |
| test_bit(R5_SkipCopy, &dev->flags))) { |
| /* We can return any write requests */ |
| struct bio *wbi, *wbi2; |
| pr_debug("Return write for disc %d\n", i); |
| if (test_and_clear_bit(R5_Discard, &dev->flags)) |
| clear_bit(R5_UPTODATE, &dev->flags); |
| if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { |
| WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); |
| } |
| do_endio = true; |
| |
| returnbi: |
| dev->page = dev->orig_page; |
| wbi = dev->written; |
| dev->written = NULL; |
| while (wbi && wbi->bi_iter.bi_sector < |
| dev->sector + STRIPE_SECTORS) { |
| wbi2 = r5_next_bio(wbi, dev->sector); |
| if (!raid5_dec_bi_active_stripes(wbi)) { |
| md_write_end(conf->mddev); |
| bio_list_add(return_bi, wbi); |
| } |
| wbi = wbi2; |
| } |
| bitmap_endwrite(conf->mddev->bitmap, sh->sector, |
| STRIPE_SECTORS, |
| !test_bit(STRIPE_DEGRADED, &sh->state), |
| 0); |
| if (head_sh->batch_head) { |
| sh = list_first_entry(&sh->batch_list, |
| struct stripe_head, |
| batch_list); |
| if (sh != head_sh) { |
| dev = &sh->dev[i]; |
| goto returnbi; |
| } |
| } |
| sh = head_sh; |
| dev = &sh->dev[i]; |
| } else if (test_bit(R5_Discard, &dev->flags)) |
| discard_pending = 1; |
| } |
| |
| r5l_stripe_write_finished(sh); |
| |
| if (!discard_pending && |
| test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { |
| int hash; |
| clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); |
| clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); |
| if (sh->qd_idx >= 0) { |
| clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); |
| clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); |
| } |
| /* now that discard is done we can proceed with any sync */ |
| clear_bit(STRIPE_DISCARD, &sh->state); |
| /* |
| * SCSI discard will change some bio fields and the stripe has |
| * no updated data, so remove it from hash list and the stripe |
| * will be reinitialized |
| */ |
| unhash: |
| hash = sh->hash_lock_index; |
| spin_lock_irq(conf->hash_locks + hash); |
| remove_hash(sh); |
| spin_unlock_irq(conf->hash_locks + hash); |
| if (head_sh->batch_head) { |
| sh = list_first_entry(&sh->batch_list, |
| struct stripe_head, batch_list); |
| if (sh != head_sh) |
| goto unhash; |
| } |
| sh = head_sh; |
| |
| if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) |
| set_bit(STRIPE_HANDLE, &sh->state); |
| |
| } |
| |
| if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) |
| if (atomic_dec_and_test(&conf->pending_full_writes)) |
| md_wakeup_thread(conf->mddev->thread); |
| |
| if (head_sh->batch_head && do_endio) |
| break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); |
| } |
| |
| /* |
| * For RMW in write back cache, we need extra page in prexor to store the |
| * old data. This page is stored in dev->orig_page. |
| * |
| * This function checks whether we have data for prexor. The exact logic |
| * is: |
| * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) |
| */ |
| static inline bool uptodate_for_rmw(struct r5dev *dev) |
| { |
| return (test_bit(R5_UPTODATE, &dev->flags)) && |
| (!test_bit(R5_InJournal, &dev->flags) || |
| test_bit(R5_OrigPageUPTDODATE, &dev->flags)); |
| } |
| |
| static int handle_stripe_dirtying(struct r5conf *conf, |
| struct stripe_head *sh, |
| struct stripe_head_state *s, |
| int disks) |
| { |
| int rmw = 0, rcw = 0, i; |
| sector_t recovery_cp = conf->mddev->recovery_cp; |
| |
| /* Check whether resync is now happening or should start. |
| * If yes, then the array is dirty (after unclean shutdown or |
| * initial creation), so parity in some stripes might be inconsistent. |
| * In this case, we need to always do reconstruct-write, to ensure |
| * that in case of drive failure or read-error correction, we |
| * generate correct data from the parity. |
| */ |
| if (conf->rmw_level == PARITY_DISABLE_RMW || |
| (recovery_cp < MaxSector && sh->sector >= recovery_cp && |
| s->failed == 0)) { |
| /* Calculate the real rcw later - for now make it |
| * look like rcw is cheaper |
| */ |
| rcw = 1; rmw = 2; |
| pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", |
| conf->rmw_level, (unsigned long long)recovery_cp, |
| (unsigned long long)sh->sector); |
| } else for (i = disks; i--; ) { |
| /* would I have to read this buffer for read_modify_write */ |
| struct r5dev *dev = &sh->dev[i]; |
| if (((dev->towrite && !delay_towrite(dev, s)) || |
| i == sh->pd_idx || i == sh->qd_idx || |
| test_bit(R5_InJournal, &dev->flags)) && |
| !test_bit(R5_LOCKED, &dev->flags) && |
| !(uptodate_for_rmw(dev) || |
| test_bit(R5_Wantcompute, &dev->flags))) { |
| if (test_bit(R5_Insync, &dev->flags)) |
| rmw++; |
| else |
| rmw += 2*disks; /* cannot read it */ |
| } |
| /* Would I have to read this buffer for reconstruct_write */ |
| if (!test_bit(R5_OVERWRITE, &dev->flags) && |
| i != sh->pd_idx && i != sh->qd_idx && |
| !test_bit(R5_LOCKED, &dev->flags) && |
| !(test_bit(R5_UPTODATE, &dev->flags) || |
| test_bit(R5_Wantcompute, &dev->flags))) { |
| if (test_bit(R5_Insync, &dev->flags)) |
| rcw++; |
| else |
| rcw += 2*disks; |
| } |
| } |
| |
| pr_debug("for sector %llu, rmw=%d rcw=%d\n", |
| (unsigned long long)sh->sector, rmw, rcw); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { |
| /* prefer read-modify-write, but need to get some data */ |
| if (conf->mddev->queue) |
| blk_add_trace_msg(conf->mddev->queue, |
| "raid5 rmw %llu %d", |
| (unsigned long long)sh->sector, rmw); |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (test_bit(R5_InJournal, &dev->flags) && |
| dev->page == dev->orig_page && |
| !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { |
| /* alloc page for prexor */ |
| struct page *p = alloc_page(GFP_NOIO); |
| |
| if (p) { |
| dev->orig_page = p; |
| continue; |
| } |
| |
| /* |
| * alloc_page() failed, try use |
| * disk_info->extra_page |
| */ |
| if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, |
| &conf->cache_state)) { |
| r5c_use_extra_page(sh); |
| break; |
| } |
| |
| /* extra_page in use, add to delayed_list */ |
| set_bit(STRIPE_DELAYED, &sh->state); |
| s->waiting_extra_page = 1; |
| return -EAGAIN; |
| } |
| } |
| |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (((dev->towrite && !delay_towrite(dev, s)) || |
| i == sh->pd_idx || i == sh->qd_idx || |
| test_bit(R5_InJournal, &dev->flags)) && |
| !test_bit(R5_LOCKED, &dev->flags) && |
| !(uptodate_for_rmw(dev) || |
| test_bit(R5_Wantcompute, &dev->flags)) && |
| test_bit(R5_Insync, &dev->flags)) { |
| if (test_bit(STRIPE_PREREAD_ACTIVE, |
| &sh->state)) { |
| pr_debug("Read_old block %d for r-m-w\n", |
| i); |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantread, &dev->flags); |
| s->locked++; |
| } else { |
| set_bit(STRIPE_DELAYED, &sh->state); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| } |
| } |
| } |
| } |
| if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { |
| /* want reconstruct write, but need to get some data */ |
| int qread =0; |
| rcw = 0; |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (!test_bit(R5_OVERWRITE, &dev->flags) && |
| i != sh->pd_idx && i != sh->qd_idx && |
| !test_bit(R5_LOCKED, &dev->flags) && |
| !(test_bit(R5_UPTODATE, &dev->flags) || |
| test_bit(R5_Wantcompute, &dev->flags))) { |
| rcw++; |
| if (test_bit(R5_Insync, &dev->flags) && |
| test_bit(STRIPE_PREREAD_ACTIVE, |
| &sh->state)) { |
| pr_debug("Read_old block " |
| "%d for Reconstruct\n", i); |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantread, &dev->flags); |
| s->locked++; |
| qread++; |
| } else { |
| set_bit(STRIPE_DELAYED, &sh->state); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| } |
| } |
| } |
| if (rcw && conf->mddev->queue) |
| blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", |
| (unsigned long long)sh->sector, |
| rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); |
| } |
| |
| if (rcw > disks && rmw > disks && |
| !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) |
| set_bit(STRIPE_DELAYED, &sh->state); |
| |
| /* now if nothing is locked, and if we have enough data, |
| * we can start a write request |
| */ |
| /* since handle_stripe can be called at any time we need to handle the |
| * case where a compute block operation has been submitted and then a |
| * subsequent call wants to start a write request. raid_run_ops only |
| * handles the case where compute block and reconstruct are requested |
| * simultaneously. If this is not the case then new writes need to be |
| * held off until the compute completes. |
| */ |
| if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && |
| (s->locked == 0 && (rcw == 0 || rmw == 0) && |
| !test_bit(STRIPE_BIT_DELAY, &sh->state))) |
| schedule_reconstruction(sh, s, rcw == 0, 0); |
| return 0; |
| } |
| |
| static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, |
| struct stripe_head_state *s, int disks) |
| { |
| struct r5dev *dev = NULL; |
| |
| BUG_ON(sh->batch_head); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| |
| switch (sh->check_state) { |
| case check_state_idle: |
| /* start a new check operation if there are no failures */ |
| if (s->failed == 0) { |
| BUG_ON(s->uptodate != disks); |
| sh->check_state = check_state_run; |
| set_bit(STRIPE_OP_CHECK, &s->ops_request); |
| clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); |
| s->uptodate--; |
| break; |
| } |
| dev = &sh->dev[s->failed_num[0]]; |
| /* fall through */ |
| case check_state_compute_result: |
| sh->check_state = check_state_idle; |
| if (!dev) |
| dev = &sh->dev[sh->pd_idx]; |
| |
| /* check that a write has not made the stripe insync */ |
| if (test_bit(STRIPE_INSYNC, &sh->state)) |
| break; |
| |
| /* either failed parity check, or recovery is happening */ |
| BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); |
| BUG_ON(s->uptodate != disks); |
| |
| set_bit(R5_LOCKED, &dev->flags); |
| s->locked++; |
| set_bit(R5_Wantwrite, &dev->flags); |
| |
| clear_bit(STRIPE_DEGRADED, &sh->state); |
| set_bit(STRIPE_INSYNC, &sh->state); |
| break; |
| case check_state_run: |
| break; /* we will be called again upon completion */ |
| case check_state_check_result: |
| sh->check_state = check_state_idle; |
| |
| /* if a failure occurred during the check operation, leave |
| * STRIPE_INSYNC not set and let the stripe be handled again |
| */ |
| if (s->failed) |
| break; |
| |
| /* handle a successful check operation, if parity is correct |
| * we are done. Otherwise update the mismatch count and repair |
| * parity if !MD_RECOVERY_CHECK |
| */ |
| if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) |
| /* parity is correct (on disc, |
| * not in buffer any more) |
| */ |
| set_bit(STRIPE_INSYNC, &sh->state); |
| else { |
| atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); |
| if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) |
| /* don't try to repair!! */ |
| set_bit(STRIPE_INSYNC, &sh->state); |
| else { |
| sh->check_state = check_state_compute_run; |
| set_bit(STRIPE_COMPUTE_RUN, &sh->state); |
| set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); |
| set_bit(R5_Wantcompute, |
| &sh->dev[sh->pd_idx].flags); |
| sh->ops.target = sh->pd_idx; |
| sh->ops.target2 = -1; |
| s->uptodate++; |
| } |
| } |
| break; |
| case check_state_compute_run: |
| break; |
| default: |
| pr_err("%s: unknown check_state: %d sector: %llu\n", |
| __func__, sh->check_state, |
| (unsigned long long) sh->sector); |
| BUG(); |
| } |
| } |
| |
| static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, |
| struct stripe_head_state *s, |
| int disks) |
| { |
| int pd_idx = sh->pd_idx; |
| int qd_idx = sh->qd_idx; |
| struct r5dev *dev; |
| |
| BUG_ON(sh->batch_head); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| |
| BUG_ON(s->failed > 2); |
| |
| /* Want to check and possibly repair P and Q. |
| * However there could be one 'failed' device, in which |
| * case we can only check one of them, possibly using the |
| * other to generate missing data |
| */ |
| |
| switch (sh->check_state) { |
| case check_state_idle: |
| /* start a new check operation if there are < 2 failures */ |
| if (s->failed == s->q_failed) { |
| /* The only possible failed device holds Q, so it |
| * makes sense to check P (If anything else were failed, |
| * we would have used P to recreate it). |
| */ |
| sh->check_state = check_state_run; |
| } |
| if (!s->q_failed && s->failed < 2) { |
| /* Q is not failed, and we didn't use it to generate |
| * anything, so it makes sense to check it |
| */ |
| if (sh->check_state == check_state_run) |
| sh->check_state = check_state_run_pq; |
| else |
| sh->check_state = check_state_run_q; |
| } |
| |
| /* discard potentially stale zero_sum_result */ |
| sh->ops.zero_sum_result = 0; |
| |
| if (sh->check_state == check_state_run) { |
| /* async_xor_zero_sum destroys the contents of P */ |
| clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); |
| s->uptodate--; |
| } |
| if (sh->check_state >= check_state_run && |
| sh->check_state <= check_state_run_pq) { |
| /* async_syndrome_zero_sum preserves P and Q, so |
| * no need to mark them !uptodate here |
| */ |
| set_bit(STRIPE_OP_CHECK, &s->ops_request); |
| break; |
| } |
| |
| /* we have 2-disk failure */ |
| BUG_ON(s->failed != 2); |
| /* fall through */ |
| case check_state_compute_result: |
| sh->check_state = check_state_idle; |
| |
| /* check that a write has not made the stripe insync */ |
| if (test_bit(STRIPE_INSYNC, &sh->state)) |
| break; |
| |
| /* now write out any block on a failed drive, |
| * or P or Q if they were recomputed |
| */ |
| BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ |
| if (s->failed == 2) { |
| dev = &sh->dev[s->failed_num[1]]; |
| s->locked++; |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantwrite, &dev->flags); |
| } |
| if (s->failed >= 1) { |
| dev = &sh->dev[s->failed_num[0]]; |
| s->locked++; |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantwrite, &dev->flags); |
| } |
| if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { |
| dev = &sh->dev[pd_idx]; |
| s->locked++; |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantwrite, &dev->flags); |
| } |
| if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { |
| dev = &sh->dev[qd_idx]; |
| s->locked++; |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantwrite, &dev->flags); |
| } |
| clear_bit(STRIPE_DEGRADED, &sh->state); |
| |
| set_bit(STRIPE_INSYNC, &sh->state); |
| break; |
| case check_state_run: |
| case check_state_run_q: |
| case check_state_run_pq: |
| break; /* we will be called again upon completion */ |
| case check_state_check_result: |
| sh->check_state = check_state_idle; |
| |
| /* handle a successful check operation, if parity is correct |
| * we are done. Otherwise update the mismatch count and repair |
| * parity if !MD_RECOVERY_CHECK |
| */ |
| if (sh->ops.zero_sum_result == 0) { |
| /* both parities are correct */ |
| if (!s->failed) |
| set_bit(STRIPE_INSYNC, &sh->state); |
| else { |
| /* in contrast to the raid5 case we can validate |
| * parity, but still have a failure to write |
| * back |
| */ |
| sh->check_state = check_state_compute_result; |
| /* Returning at this point means that we may go |
| * off and bring p and/or q uptodate again so |
| * we make sure to check zero_sum_result again |
| * to verify if p or q need writeback |
| */ |
| } |
| } else { |
| atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); |
| if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) |
| /* don't try to repair!! */ |
| set_bit(STRIPE_INSYNC, &sh->state); |
| else { |
| int *target = &sh->ops.target; |
| |
| sh->ops.target = -1; |
| sh->ops.target2 = -1; |
| sh->check_state = check_state_compute_run; |
| set_bit(STRIPE_COMPUTE_RUN, &sh->state); |
| set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); |
| if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { |
| set_bit(R5_Wantcompute, |
| &sh->dev[pd_idx].flags); |
| *target = pd_idx; |
| target = &sh->ops.target2; |
| s->uptodate++; |
| } |
| if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { |
| set_bit(R5_Wantcompute, |
| &sh->dev[qd_idx].flags); |
| *target = qd_idx; |
| s->uptodate++; |
| } |
| } |
| } |
| break; |
| case check_state_compute_run: |
| break; |
| default: |
| pr_warn("%s: unknown check_state: %d sector: %llu\n", |
| __func__, sh->check_state, |
| (unsigned long long) sh->sector); |
| BUG(); |
| } |
| } |
| |
| static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) |
| { |
| int i; |
| |
| /* We have read all the blocks in this stripe and now we need to |
| * copy some of them into a target stripe for expand. |
| */ |
| struct dma_async_tx_descriptor *tx = NULL; |
| BUG_ON(sh->batch_head); |
| clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); |
| for (i = 0; i < sh->disks; i++) |
| if (i != sh->pd_idx && i != sh->qd_idx) { |
| int dd_idx, j; |
| struct stripe_head *sh2; |
| struct async_submit_ctl submit; |
| |
| sector_t bn = raid5_compute_blocknr(sh, i, 1); |
| sector_t s = raid5_compute_sector(conf, bn, 0, |
| &dd_idx, NULL); |
| sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1); |
| if (sh2 == NULL) |
| /* so far only the early blocks of this stripe |
| * have been requested. When later blocks |
| * get requested, we will try again |
| */ |
| continue; |
| if (!test_bit(STRIPE_EXPANDING, &sh2->state) || |
| test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { |
| /* must have already done this block */ |
| raid5_release_stripe(sh2); |
| continue; |
| } |
| |
| /* place all the copies on one channel */ |
| init_async_submit(&submit, 0, tx, NULL, NULL, NULL); |
| tx = async_memcpy(sh2->dev[dd_idx].page, |
| sh->dev[i].page, 0, 0, STRIPE_SIZE, |
| &submit); |
| |
| set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); |
| set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); |
| for (j = 0; j < conf->raid_disks; j++) |
| if (j != sh2->pd_idx && |
| j != sh2->qd_idx && |
| !test_bit(R5_Expanded, &sh2->dev[j].flags)) |
| break; |
| if (j == conf->raid_disks) { |
| set_bit(STRIPE_EXPAND_READY, &sh2->state); |
| set_bit(STRIPE_HANDLE, &sh2->state); |
| } |
| raid5_release_stripe(sh2); |
| |
| } |
| /* done submitting copies, wait for them to complete */ |
| async_tx_quiesce(&tx); |
| } |
| |
| /* |
| * handle_stripe - do things to a stripe. |
| * |
| * We lock the stripe by setting STRIPE_ACTIVE and then examine the |
| * state of various bits to see what needs to be done. |
| * Possible results: |
| * return some read requests which now have data |
| * return some write requests which are safely on storage |
| * schedule a read on some buffers |
| * schedule a write of some buffers |
| * return confirmation of parity correctness |
| * |
| */ |
| |
| static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) |
| { |
| struct r5conf *conf = sh->raid_conf; |
| int disks = sh->disks; |
| struct r5dev *dev; |
| int i; |
| int do_recovery = 0; |
| |
| memset(s, 0, sizeof(*s)); |
| |
| s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; |
| s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; |
| s->failed_num[0] = -1; |
| s->failed_num[1] = -1; |
| s->log_failed = r5l_log_disk_error(conf); |
| |
| /* Now to look around and see what can be done */ |
| rcu_read_lock(); |
| for (i=disks; i--; ) { |
| struct md_rdev *rdev; |
| sector_t first_bad; |
| int bad_sectors; |
| int is_bad = 0; |
| |
| dev = &sh->dev[i]; |
| |
| pr_debug("check %d: state 0x%lx read %p write %p written %p\n", |
| i, dev->flags, |
| dev->toread, dev->towrite, dev->written); |
| /* maybe we can reply to a read |
| * |
| * new wantfill requests are only permitted while |
| * ops_complete_biofill is guaranteed to be inactive |
| */ |
| if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && |
| !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) |
| set_bit(R5_Wantfill, &dev->flags); |
| |
| /* now count some things */ |
| if (test_bit(R5_LOCKED, &dev->flags)) |
| s->locked++; |
| if (test_bit(R5_UPTODATE, &dev->flags)) |
| s->uptodate++; |
| if (test_bit(R5_Wantcompute, &dev->flags)) { |
| s->compute++; |
| BUG_ON(s->compute > 2); |
| } |
| |
| if (test_bit(R5_Wantfill, &dev->flags)) |
| s->to_fill++; |
| else if (dev->toread) |
| s->to_read++; |
| if (dev->towrite) { |
| s->to_write++; |
| if (!test_bit(R5_OVERWRITE, &dev->flags)) |
| s->non_overwrite++; |
| } |
| if (dev->written) |
| s->written++; |
| /* Prefer to use the replacement for reads, but only |
| * if it is recovered enough and has no bad blocks. |
| */ |
| rdev = rcu_dereference(conf->disks[i].replacement); |
| if (rdev && !test_bit(Faulty, &rdev->flags) && |
| rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && |
| !is_badblock(rdev, sh->sector, STRIPE_SECTORS, |
| &first_bad, &bad_sectors)) |
| set_bit(R5_ReadRepl, &dev->flags); |
| else { |
| if (rdev && !test_bit(Faulty, &rdev->flags)) |
| set_bit(R5_NeedReplace, &dev->flags); |
| else |
| clear_bit(R5_NeedReplace, &dev->flags); |
| rdev = rcu_dereference(conf->disks[i].rdev); |
| clear_bit(R5_ReadRepl, &dev->flags); |
| } |
| if (rdev && test_bit(Faulty, &rdev->flags)) |
| rdev = NULL; |
| if (rdev) { |
| is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, |
| &first_bad, &bad_sectors); |
| if (s->blocked_rdev == NULL |
| && (test_bit(Blocked, &rdev->flags) |
| || is_bad < 0)) { |
| if (is_bad < 0) |
| set_bit(BlockedBadBlocks, |
| &rdev->flags); |
| s->blocked_rdev = rdev; |
| atomic_inc(&rdev->nr_pending); |
| } |
| } |
| clear_bit(R5_Insync, &dev->flags); |
| if (!rdev) |
| /* Not in-sync */; |
| else if (is_bad) { |
| /* also not in-sync */ |
| if (!test_bit(WriteErrorSeen, &rdev->flags) && |
| test_bit(R5_UPTODATE, &dev->flags)) { |
| /* treat as in-sync, but with a read error |
| * which we can now try to correct |
| */ |
| set_bit(R5_Insync, &dev->flags); |
| set_bit(R5_ReadError, &dev->flags); |
| } |
| } else if (test_bit(In_sync, &rdev->flags)) |
| set_bit(R5_Insync, &dev->flags); |
| else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) |
| /* in sync if before recovery_offset */ |
| set_bit(R5_Insync, &dev->flags); |
| else if (test_bit(R5_UPTODATE, &dev->flags) && |
| test_bit(R5_Expanded, &dev->flags)) |
| /* If we've reshaped into here, we assume it is Insync. |
| * We will shortly update recovery_offset to make |
| * it official. |
| */ |
| set_bit(R5_Insync, &dev->flags); |
| |
| if (test_bit(R5_WriteError, &dev->flags)) { |
| /* This flag does not apply to '.replacement' |
| * only to .rdev, so make sure to check that*/ |
| struct md_rdev *rdev2 = rcu_dereference( |
| conf->disks[i].rdev); |
| if (rdev2 == rdev) |
| clear_bit(R5_Insync, &dev->flags); |
| if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { |
| s->handle_bad_blocks = 1; |
| atomic_inc(&rdev2->nr_pending); |
| } else |
| clear_bit(R5_WriteError, &dev->flags); |
| } |
| if (test_bit(R5_MadeGood, &dev->flags)) { |
| /* This flag does not apply to '.replacement' |
| * only to .rdev, so make sure to check that*/ |
| struct md_rdev *rdev2 = rcu_dereference( |
| conf->disks[i].rdev); |
| if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { |
| s->handle_bad_blocks = 1; |
| atomic_inc(&rdev2->nr_pending); |
| } else |
| clear_bit(R5_MadeGood, &dev->flags); |
| } |
| if (test_bit(R5_MadeGoodRepl, &dev->flags)) { |
| struct md_rdev *rdev2 = rcu_dereference( |
| conf->disks[i].replacement); |
| if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { |
| s->handle_bad_blocks = 1; |
| atomic_inc(&rdev2->nr_pending); |
| } else |
| clear_bit(R5_MadeGoodRepl, &dev->flags); |
| } |
| if (!test_bit(R5_Insync, &dev->flags)) { |
| /* The ReadError flag will just be confusing now */ |
| clear_bit(R5_ReadError, &dev->flags); |
| clear_bit(R5_ReWrite, &dev->flags); |
| } |
| if (test_bit(R5_ReadError, &dev->flags)) |
| clear_bit(R5_Insync, &dev->flags); |
| if (!test_bit(R5_Insync, &dev->flags)) { |
| if (s->failed < 2) |
| s->failed_num[s->failed] = i; |
| s->failed++; |
| if (rdev && !test_bit(Faulty, &rdev->flags)) |
| do_recovery = 1; |
| } |
| |
| if (test_bit(R5_InJournal, &dev->flags)) |
| s->injournal++; |
| if (test_bit(R5_InJournal, &dev->flags) && dev->written) |
| s->just_cached++; |
| } |
| if (test_bit(STRIPE_SYNCING, &sh->state)) { |
| /* If there is a failed device being replaced, |
| * we must be recovering. |
| * else if we are after recovery_cp, we must be syncing |
| * else if MD_RECOVERY_REQUESTED is set, we also are syncing. |
| * else we can only be replacing |
| * sync and recovery both need to read all devices, and so |
| * use the same flag. |
| */ |
| if (do_recovery || |
| sh->sector >= conf->mddev->recovery_cp || |
| test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) |
| s->syncing = 1; |
| else |
| s->replacing = 1; |
| } |
| rcu_read_unlock(); |
| } |
| |
| static int clear_batch_ready(struct stripe_head *sh) |
| { |
| /* Return '1' if this is a member of batch, or |
| * '0' if it is a lone stripe or a head which can now be |
| * handled. |
| */ |
| struct stripe_head *tmp; |
| if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) |
| return (sh->batch_head && sh->batch_head != sh); |
| spin_lock(&sh->stripe_lock); |
| if (!sh->batch_head) { |
| spin_unlock(&sh->stripe_lock); |
| return 0; |
| } |
| |
| /* |
| * this stripe could be added to a batch list before we check |
| * BATCH_READY, skips it |
| */ |
| if (sh->batch_head != sh) { |
| spin_unlock(&sh->stripe_lock); |
| return 1; |
| } |
| spin_lock(&sh->batch_lock); |
| list_for_each_entry(tmp, &sh->batch_list, batch_list) |
| clear_bit(STRIPE_BATCH_READY, &tmp->state); |
| spin_unlock(&sh->batch_lock); |
| spin_unlock(&sh->stripe_lock); |
| |
| /* |
| * BATCH_READY is cleared, no new stripes can be added. |
| * batch_list can be accessed without lock |
| */ |
| return 0; |
| } |
| |
| static void break_stripe_batch_list(struct stripe_head *head_sh, |
| unsigned long handle_flags) |
| { |
| struct stripe_head *sh, *next; |
| int i; |
| int do_wakeup = 0; |
| |
| list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { |
| |
| list_del_init(&sh->batch_list); |
| |
| WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | |
| (1 << STRIPE_SYNCING) | |
| (1 << STRIPE_REPLACED) | |
| (1 << STRIPE_DELAYED) | |
| (1 << STRIPE_BIT_DELAY) | |
| (1 << STRIPE_FULL_WRITE) | |
| (1 << STRIPE_BIOFILL_RUN) | |
| (1 << STRIPE_COMPUTE_RUN) | |
| (1 << STRIPE_OPS_REQ_PENDING) | |
| (1 << STRIPE_DISCARD) | |
| (1 << STRIPE_BATCH_READY) | |
| (1 << STRIPE_BATCH_ERR) | |
| (1 << STRIPE_BITMAP_PENDING)), |
| "stripe state: %lx\n", sh->state); |
| WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | |
| (1 << STRIPE_REPLACED)), |
| "head stripe state: %lx\n", head_sh->state); |
| |
| set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | |
| (1 << STRIPE_PREREAD_ACTIVE) | |
| (1 << STRIPE_DEGRADED)), |
| head_sh->state & (1 << STRIPE_INSYNC)); |
| |
| sh->check_state = head_sh->check_state; |
| sh->reconstruct_state = head_sh->reconstruct_state; |
| for (i = 0; i < sh->disks; i++) { |
| if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) |
| do_wakeup = 1; |
| sh->dev[i].flags = head_sh->dev[i].flags & |
| (~((1 << R5_WriteError) | (1 << R5_Overlap))); |
| } |
| spin_lock_irq(&sh->stripe_lock); |
| sh->batch_head = NULL; |
| spin_unlock_irq(&sh->stripe_lock); |
| if (handle_flags == 0 || |
| sh->state & handle_flags) |
| set_bit(STRIPE_HANDLE, &sh->state); |
| raid5_release_stripe(sh); |
| } |
| spin_lock_irq(&head_sh->stripe_lock); |
| head_sh->batch_head = NULL; |
| spin_unlock_irq(&head_sh->stripe_lock); |
| for (i = 0; i < head_sh->disks; i++) |
| if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) |
| do_wakeup = 1; |
| if (head_sh->state & handle_flags) |
| set_bit(STRIPE_HANDLE, &head_sh->state); |
| |
| if (do_wakeup) |
| wake_up(&head_sh->raid_conf->wait_for_overlap); |
| } |
| |
| static void handle_stripe(struct stripe_head *sh) |
| { |
| struct stripe_head_state s; |
| struct r5conf *conf = sh->raid_conf; |
| int i; |
| int prexor; |
| int disks = sh->disks; |
| struct r5dev *pdev, *qdev; |
| |
| clear_bit(STRIPE_HANDLE, &sh->state); |
| if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { |
| /* already being handled, ensure it gets handled |
| * again when current action finishes */ |
| set_bit(STRIPE_HANDLE, &sh->state); |
| return; |
| } |
| |
| if (clear_batch_ready(sh) ) { |
| clear_bit_unlock(STRIPE_ACTIVE, &sh->state); |
| return; |
| } |
| |
| if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) |
| break_stripe_batch_list(sh, 0); |
| |
| if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { |
| spin_lock(&sh->stripe_lock); |
| /* Cannot process 'sync' concurrently with 'discard' */ |
| if (!test_bit(STRIPE_DISCARD, &sh->state) && |
| test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { |
| set_bit(STRIPE_SYNCING, &sh->state); |
| clear_bit(STRIPE_INSYNC, &sh->state); |
| clear_bit(STRIPE_REPLACED, &sh->state); |
| } |
| spin_unlock(&sh->stripe_lock); |
| } |
| clear_bit(STRIPE_DELAYED, &sh->state); |
| |
| pr_debug("handling stripe %llu, state=%#lx cnt=%d, " |
| "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", |
| (unsigned long long)sh->sector, sh->state, |
| atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, |
| sh->check_state, sh->reconstruct_state); |
| |
| analyse_stripe(sh, &s); |
| |
| if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) |
| goto finish; |
| |
| if (s.handle_bad_blocks) { |
| set_bit(STRIPE_HANDLE, &sh->state); |
| goto finish; |
| } |
| |
| if (unlikely(s.blocked_rdev)) { |
| if (s.syncing || s.expanding || s.expanded || |
| s.replacing || s.to_write || s.written) { |
| set_bit(STRIPE_HANDLE, &sh->state); |
| goto finish; |
| } |
| /* There is nothing for the blocked_rdev to block */ |
| rdev_dec_pending(s.blocked_rdev, conf->mddev); |
| s.blocked_rdev = NULL; |
| } |
| |
| if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { |
| set_bit(STRIPE_OP_BIOFILL, &s.ops_request); |
| set_bit(STRIPE_BIOFILL_RUN, &sh->state); |
| } |
| |
| pr_debug("locked=%d uptodate=%d to_read=%d" |
| " to_write=%d failed=%d failed_num=%d,%d\n", |
| s.locked, s.uptodate, s.to_read, s.to_write, s.failed, |
| s.failed_num[0], s.failed_num[1]); |
| /* check if the array has lost more than max_degraded devices and, |
| * if so, some requests might need to be failed. |
| */ |
| if (s.failed > conf->max_degraded || s.log_failed) { |
| sh->check_state = 0; |
| sh->reconstruct_state = 0; |
| break_stripe_batch_list(sh, 0); |
| if (s.to_read+s.to_write+s.written) |
| handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); |
| if (s.syncing + s.replacing) |
| handle_failed_sync(conf, sh, &s); |
| } |
| |
| /* Now we check to see if any write operations have recently |
| * completed |
| */ |
| prexor = 0; |
| if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) |
| prexor = 1; |
| if (sh->reconstruct_state == reconstruct_state_drain_result || |
| sh->reconstruct_state == reconstruct_state_prexor_drain_result) { |
| sh->reconstruct_state = reconstruct_state_idle; |
| |
| /* All the 'written' buffers and the parity block are ready to |
| * be written back to disk |
| */ |
| BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && |
| !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); |
| BUG_ON(sh->qd_idx >= 0 && |
| !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && |
| !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (test_bit(R5_LOCKED, &dev->flags) && |
| (i == sh->pd_idx || i == sh->qd_idx || |
| dev->written || test_bit(R5_InJournal, |
| &dev->flags))) { |
| pr_debug("Writing block %d\n", i); |
| set_bit(R5_Wantwrite, &dev->flags); |
| if (prexor) |
| continue; |
| if (s.failed > 1) |
| continue; |
| if (!test_bit(R5_Insync, &dev->flags) || |
| ((i == sh->pd_idx || i == sh->qd_idx) && |
| s.failed == 0)) |
| set_bit(STRIPE_INSYNC, &sh->state); |
| } |
| } |
| if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) |
| s.dec_preread_active = 1; |
| } |
| |
| /* |
| * might be able to return some write requests if the parity blocks |
| * are safe, or on a failed drive |
| */ |
| pdev = &sh->dev[sh->pd_idx]; |
| s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) |
| || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); |
| qdev = &sh->dev[sh->qd_idx]; |
| s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) |
| || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) |
| || conf->level < 6; |
| |
| if (s.written && |
| (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) |
| && !test_bit(R5_LOCKED, &pdev->flags) |
| && (test_bit(R5_UPTODATE, &pdev->flags) || |
| test_bit(R5_Discard, &pdev->flags))))) && |
| (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) |
| && !test_bit(R5_LOCKED, &qdev->flags) |
| && (test_bit(R5_UPTODATE, &qdev->flags) || |
| test_bit(R5_Discard, &qdev->flags)))))) |
| handle_stripe_clean_event(conf, sh, disks, &s.return_bi); |
| |
| if (s.just_cached) |
| r5c_handle_cached_data_endio(conf, sh, disks, &s.return_bi); |
| r5l_stripe_write_finished(sh); |
| |
| /* Now we might consider reading some blocks, either to check/generate |
| * parity, or to satisfy requests |
| * or to load a block that is being partially written. |
| */ |
| if (s.to_read || s.non_overwrite |
| || (conf->level == 6 && s.to_write && s.failed) |
| || (s.syncing && (s.uptodate + s.compute < disks)) |
| || s.replacing |
| || s.expanding) |
| handle_stripe_fill(sh, &s, disks); |
| |
| /* |
| * When the stripe finishes full journal write cycle (write to journal |
| * and raid disk), this is the clean up procedure so it is ready for |
| * next operation. |
| */ |
| r5c_finish_stripe_write_out(conf, sh, &s); |
| |
| /* |
| * Now to consider new write requests, cache write back and what else, |
| * if anything should be read. We do not handle new writes when: |
| * 1/ A 'write' operation (copy+xor) is already in flight. |
| * 2/ A 'check' operation is in flight, as it may clobber the parity |
| * block. |
| * 3/ A r5c cache log write is in flight. |
| */ |
| |
| if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { |
| if (!r5c_is_writeback(conf->log)) { |
| if (s.to_write) |
| handle_stripe_dirtying(conf, sh, &s, disks); |
| } else { /* write back cache */ |
| int ret = 0; |
| |
| /* First, try handle writes in caching phase */ |
| if (s.to_write) |
| ret = r5c_try_caching_write(conf, sh, &s, |
| disks); |
| /* |
| * If caching phase failed: ret == -EAGAIN |
| * OR |
| * stripe under reclaim: !caching && injournal |
| * |
| * fall back to handle_stripe_dirtying() |
| */ |
| if (ret == -EAGAIN || |
| /* stripe under reclaim: !caching && injournal */ |
| (!test_bit(STRIPE_R5C_CACHING, &sh->state) && |
| s.injournal > 0)) { |
| ret = handle_stripe_dirtying(conf, sh, &s, |
| disks); |
| if (ret == -EAGAIN) |
| goto finish; |
| } |
| } |
| } |
| |
| /* maybe we need to check and possibly fix the parity for this stripe |
| * Any reads will already have been scheduled, so we just see if enough |
| * data is available. The parity check is held off while parity |
| * dependent operations are in flight. |
| */ |
| if (sh->check_state || |
| (s.syncing && s.locked == 0 && |
| !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && |
| !test_bit(STRIPE_INSYNC, &sh->state))) { |
| if (conf->level == 6) |
| handle_parity_checks6(conf, sh, &s, disks); |
| else |
| handle_parity_checks5(conf, sh, &s, disks); |
| } |
| |
| if ((s.replacing || s.syncing) && s.locked == 0 |
| && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) |
| && !test_bit(STRIPE_REPLACED, &sh->state)) { |
| /* Write out to replacement devices where possible */ |
| for (i = 0; i < conf->raid_disks; i++) |
| if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { |
| WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); |
| set_bit(R5_WantReplace, &sh->dev[i].flags); |
| set_bit(R5_LOCKED, &sh->dev[i].flags); |
| s.locked++; |
| } |
| if (s.replacing) |
| set_bit(STRIPE_INSYNC, &sh->state); |
| set_bit(STRIPE_REPLACED, &sh->state); |
| } |
| if ((s.syncing || s.replacing) && s.locked == 0 && |
| !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && |
| test_bit(STRIPE_INSYNC, &sh->state)) { |
| md_done_sync(conf->mddev, STRIPE_SECTORS, 1); |
| clear_bit(STRIPE_SYNCING, &sh->state); |
| if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) |
| wake_up(&conf->wait_for_overlap); |
| } |
| |
| /* If the failed drives are just a ReadError, then we might need |
| * to progress the repair/check process |
| */ |
| if (s.failed <= conf->max_degraded && !conf->mddev->ro) |
| for (i = 0; i < s.failed; i++) { |
| struct r5dev *dev = &sh->dev[s.failed_num[i]]; |
| if (test_bit(R5_ReadError, &dev->flags) |
| && !test_bit(R5_LOCKED, &dev->flags) |
| && test_bit(R5_UPTODATE, &dev->flags) |
| ) { |
| if (!test_bit(R5_ReWrite, &dev->flags)) { |
| set_bit(R5_Wantwrite, &dev->flags); |
| set_bit(R5_ReWrite, &dev->flags); |
| set_bit(R5_LOCKED, &dev->flags); |
| s.locked++; |
| } else { |
| /* let's read it back */ |
| set_bit(R5_Wantread, &dev->flags); |
| set_bit(R5_LOCKED, &dev->flags); |
| s.locked++; |
| } |
| } |
| } |
| |
| /* Finish reconstruct operations initiated by the expansion process */ |
| if (sh->reconstruct_state == reconstruct_state_result) { |
| struct stripe_head *sh_src |
| = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1); |
| if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { |
| /* sh cannot be written until sh_src has been read. |
| * so arrange for sh to be delayed a little |
| */ |
| set_bit(STRIPE_DELAYED, &sh->state); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, |
| &sh_src->state)) |
| atomic_inc(&conf->preread_active_stripes); |
| raid5_release_stripe(sh_src); |
| goto finish; |
| } |
| if (sh_src) |
| raid5_release_stripe(sh_src); |
| |
| sh->reconstruct_state = reconstruct_state_idle; |
| clear_bit(STRIPE_EXPANDING, &sh->state); |
| for (i = conf->raid_disks; i--; ) { |
| set_bit(R5_Wantwrite, &sh->dev[i].flags); |
| set_bit(R5_LOCKED, &sh->dev[i].flags); |
| s.locked++; |
| } |
| } |
| |
| if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && |
| !sh->reconstruct_state) { |
| /* Need to write out all blocks after computing parity */ |
| sh->disks = conf->raid_disks; |
| stripe_set_idx(sh->sector, conf, 0, sh); |
| schedule_reconstruction(sh, &s, 1, 1); |
| } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { |
| clear_bit(STRIPE_EXPAND_READY, &sh->state); |
| atomic_dec(&conf->reshape_stripes); |
| wake_up(&conf->wait_for_overlap); |
| md_done_sync(conf->mddev, STRIPE_SECTORS, 1); |
| } |
| |
| if (s.expanding && s.locked == 0 && |
| !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) |
| handle_stripe_expansion(conf, sh); |
| |
| finish: |
| /* wait for this device to become unblocked */ |
| if (unlikely(s.blocked_rdev)) { |
| if (conf->mddev->external) |
| md_wait_for_blocked_rdev(s.blocked_rdev, |
| conf->mddev); |
| else |
| /* Internal metadata will immediately |
| * be written by raid5d, so we don't |
| * need to wait here. |
| */ |
| rdev_dec_pending(s.blocked_rdev, |
| conf->mddev); |
| } |
| |
| if (s.handle_bad_blocks) |
| for (i = disks; i--; ) { |
| struct md_rdev *rdev; |
| struct r5dev *dev = &sh->dev[i]; |
| if (test_and_clear_bit(R5_WriteError, &dev->flags)) { |
| /* We own a safe reference to the rdev */ |
| rdev = conf->disks[i].rdev; |
| if (!rdev_set_badblocks(rdev, sh->sector, |
| STRIPE_SECTORS, 0)) |
| md_error(conf->mddev, rdev); |
| rdev_dec_pending(rdev, conf->mddev); |
| } |
| if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { |
| rdev = conf->disks[i].rdev; |
| rdev_clear_badblocks(rdev, sh->sector, |
| STRIPE_SECTORS, 0); |
| rdev_dec_pending(rdev, conf->mddev); |
| } |
| if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { |
| rdev = conf->disks[i].replacement; |
| if (!rdev) |
| /* rdev have been moved down */ |
| rdev = conf->disks[i].rdev; |
| rdev_clear_badblocks(rdev, sh->sector, |
| STRIPE_SECTORS, 0); |
| rdev_dec_pending(rdev, conf->mddev); |
| } |
| } |
| |
| if (s.ops_request) |
| raid_run_ops(sh, s.ops_request); |
| |
| ops_run_io(sh, &s); |
| |
| if (s.dec_preread_active) { |
| /* We delay this until after ops_run_io so that if make_request |
| * is waiting on a flush, it won't continue until the writes |
| * have actually been submitted. |
| */ |
| atomic_dec(&conf->preread_active_stripes); |
| if (atomic_read(&conf->preread_active_stripes) < |
| IO_THRESHOLD) |
| md_wakeup_thread(conf->mddev->thread); |
| } |
| |
| if (!bio_list_empty(&s.return_bi)) { |
| if (test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { |
| spin_lock_irq(&conf->device_lock); |
| bio_list_merge(&conf->return_bi, &s.return_bi); |
| spin_unlock_irq(&conf->device_lock); |
| md_wakeup_thread(conf->mddev->thread); |
| } else |
| return_io(&s.return_bi); |
| } |
| |
| clear_bit_unlock(STRIPE_ACTIVE, &sh->state); |
| } |
| |
| static void raid5_activate_delayed(struct r5conf *conf) |
| { |
| if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { |
| while (!list_empty(&conf->delayed_list)) { |
| struct list_head *l = conf->delayed_list.next; |
| struct stripe_head *sh; |
| sh = list_entry(l, struct stripe_head, lru); |
| list_del_init(l); |
| clear_bit(STRIPE_DELAYED, &sh->state); |
| if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) |
| atomic_inc(&conf->preread_active_stripes); |
| list_add_tail(&sh->lru, &conf->hold_list); |
| raid5_wakeup_stripe_thread(sh); |
| } |
| } |
| } |
| |
| static void activate_bit_delay(struct r5conf *conf, |
| struct list_head *temp_inactive_list) |
| { |
| /* device_lock is held */ |
| struct list_head head; |
| list_add(&head, &conf->bitmap_list); |
| list_del_init(&conf->bitmap_list); |
| while (!list_empty(&head)) { |
| struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); |
| int hash; |
| list_del_init(&sh->lru); |
| atomic_inc(&sh->count); |
| hash = sh->hash_lock_index; |
| __release_stripe(conf, sh, &temp_inactive_list[hash]); |
| } |
| } |
| |
| static int raid5_congested(struct mddev *mddev, int bits) |
| { |
| struct r5conf *conf = mddev->private; |
| |
| /* No difference between reads and writes. Just check |
| * how busy the stripe_cache is |
| */ |
| |
| if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) |
| return 1; |
| |
| /* Also checks whether there is pressure on r5cache log space */ |
| if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) |
| return 1; |
| if (conf->quiesce) |
| return 1; |
| if (atomic_read(&conf->empty_inactive_list_nr)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) |
| { |
| struct r5conf *conf = mddev->private; |
| sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev); |
| unsigned int chunk_sectors; |
| unsigned int bio_sectors = bio_sectors(bio); |
| |
| chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); |
| return chunk_sectors >= |
| ((sector & (chunk_sectors - 1)) + bio_sectors); |
| } |
| |
| /* |
| * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) |
| * later sampled by raid5d. |
| */ |
| static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&conf->device_lock, flags); |
| |
| bi->bi_next = conf->retry_read_aligned_list; |
| conf->retry_read_aligned_list = bi; |
| |
| spin_unlock_irqrestore(&conf->device_lock, flags); |
| md_wakeup_thread(conf->mddev->thread); |
| } |
| |
| static struct bio *remove_bio_from_retry(struct r5conf *conf) |
| { |
| struct bio *bi; |
| |
| bi = conf->retry_read_aligned; |
| if (bi) { |
| conf->retry_read_aligned = NULL; |
| return bi; |
| } |
| bi = conf->retry_read_aligned_list; |
| if(bi) { |
| conf->retry_read_aligned_list = bi->bi_next; |
| bi->bi_next = NULL; |
| /* |
| * this sets the active strip count to 1 and the processed |
| * strip count to zero (upper 8 bits) |
| */ |
| raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */ |
| } |
| |
| return bi; |
| } |
| |
| /* |
| * The "raid5_align_endio" should check if the read succeeded and if it |
| * did, call bio_endio on the original bio (having bio_put the new bio |
| * first). |
| * If the read failed.. |
| */ |
| static void raid5_align_endio(struct bio *bi) |
| { |
| struct bio* raid_bi = bi->bi_private; |
| struct mddev *mddev; |
| struct r5conf *conf; |
| struct md_rdev *rdev; |
| int error = bi->bi_error; |
| |
| bio_put(bi); |
| |
| rdev = (void*)raid_bi->bi_next; |
| raid_bi->bi_next = NULL; |
| mddev = rdev->mddev; |
| conf = mddev->private; |
| |
| rdev_dec_pending(rdev, conf->mddev); |
| |
| if (!error) { |
| trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev), |
| raid_bi, 0); |
| bio_endio(raid_bi); |
| if (atomic_dec_and_test(&conf->active_aligned_reads)) |
| wake_up(&conf->wait_for_quiescent); |
| return; |
| } |
| |
| pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); |
| |
| add_bio_to_retry(raid_bi, conf); |
| } |
| |
| static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) |
| { |
| struct r5conf *conf = mddev->private; |
| int dd_idx; |
| struct bio* align_bi; |
| struct md_rdev *rdev; |
| sector_t end_sector; |
| |
| if (!in_chunk_boundary(mddev, raid_bio)) { |
| pr_debug("%s: non aligned\n", __func__); |
| return 0; |
| } |
| /* |
| * use bio_clone_mddev to make a copy of the bio |
| */ |
| align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); |
| if (!align_bi) |
| return 0; |
| /* |
| * set bi_end_io to a new function, and set bi_private to the |
| * original bio. |
| */ |
| align_bi->bi_end_io = raid5_align_endio; |
| align_bi->bi_private = raid_bio; |
| /* |
| * compute position |
| */ |
| align_bi->bi_iter.bi_sector = |
| raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, |
| 0, &dd_idx, NULL); |
| |
| end_sector = bio_end_sector(align_bi); |
| rcu_read_lock(); |
| rdev = rcu_dereference(conf->disks[dd_idx].replacement); |
| if (!rdev || test_bit(Faulty, &rdev->flags) || |
| rdev->recovery_offset < end_sector) { |
| rdev = rcu_dereference(conf->disks[dd_idx].rdev); |
| if (rdev && |
| (test_bit(Faulty, &rdev->flags) || |
| !(test_bit(In_sync, &rdev->flags) || |
| rdev->recovery_offset >= end_sector))) |
| rdev = NULL; |
| } |
| if (rdev) { |
| sector_t first_bad; |
| int bad_sectors; |
| |
| atomic_inc(&rdev->nr_pending); |
| rcu_read_unlock(); |
| raid_bio->bi_next = (void*)rdev; |
| align_bi->bi_bdev = rdev->bdev; |
| bio_clear_flag(align_bi, BIO_SEG_VALID); |
| |
| if (is_badblock(rdev, align_bi->bi_iter.bi_sector, |
| bio_sectors(align_bi), |
| &first_bad, &bad_sectors)) { |
| bio_put(align_bi); |
| rdev_dec_pending(rdev, mddev); |
| return 0; |
| } |
| |
| /* No reshape active, so we can trust rdev->data_offset */ |
| align_bi->bi_iter.bi_sector += rdev->data_offset; |
| |
| spin_lock_irq(&conf->device_lock); |
| wait_event_lock_irq(conf->wait_for_quiescent, |
| conf->quiesce == 0, |
| conf->device_lock); |
| atomic_inc(&conf->active_aligned_reads); |
| spin_unlock_irq(&conf->device_lock); |
| |
| if (mddev->gendisk) |
| trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev), |
| align_bi, disk_devt(mddev->gendisk), |
| raid_bio->bi_iter.bi_sector); |
| generic_make_request(align_bi); |
| return 1; |
| } else { |
| rcu_read_unlock(); |
| bio_put(align_bi); |
| return 0; |
| } |
| } |
| |
| static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) |
| { |
| struct bio *split; |
| |
| do { |
| sector_t sector = raid_bio->bi_iter.bi_sector; |
| unsigned chunk_sects = mddev->chunk_sectors; |
| unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); |
| |
| if (sectors < bio_sectors(raid_bio)) { |
| split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set); |
| bio_chain(split, raid_bio); |
| } else |
| split = raid_bio; |
| |
| if (!raid5_read_one_chunk(mddev, split)) { |
| if (split != raid_bio) |
| generic_make_request(raid_bio); |
| return split; |
| } |
| } while (split != raid_bio); |
| |
| return NULL; |
| } |
| |
| /* __get_priority_stripe - get the next stripe to process |
| * |
| * Full stripe writes are allowed to pass preread active stripes up until |
| * the bypass_threshold is exceeded. In general the bypass_count |
| * increments when the handle_list is handled before the hold_list; however, it |
| * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a |
| * stripe with in flight i/o. The bypass_count will be reset when the |
| * head of the hold_list has changed, i.e. the head was promoted to the |
| * handle_list. |
| */ |
| static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) |
| { |
| struct stripe_head *sh = NULL, *tmp; |
| struct list_head *handle_list = NULL; |
| struct r5worker_group *wg = NULL; |
| |
| if (conf->worker_cnt_per_group == 0) { |
| handle_list = &conf->handle_list; |
| } else if (group != ANY_GROUP) { |
| handle_list = &conf->worker_groups[group].handle_list; |
| wg = &conf->worker_groups[group]; |
| } else { |
| int i; |
| for (i = 0; i < conf->group_cnt; i++) { |
| handle_list = &conf->worker_groups[i].handle_list; |
| wg = &conf->worker_groups[i]; |
| if (!list_empty(handle_list)) |
| break; |
| } |
| } |
| |
| pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", |
| __func__, |
| list_empty(handle_list) ? "empty" : "busy", |
| list_empty(&conf->hold_list) ? "empty" : "busy", |
| atomic_read(&conf->pending_full_writes), conf->bypass_count); |
| |
| if (!list_empty(handle_list)) { |
| sh = list_entry(handle_list->next, typeof(*sh), lru); |
| |
| if (list_empty(&conf->hold_list)) |
| conf->bypass_count = 0; |
| else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { |
| if (conf->hold_list.next == conf->last_hold) |
| conf->bypass_count++; |
| else { |
| conf->last_hold = conf->hold_list.next; |
| conf->bypass_count -= conf->bypass_threshold; |
| if (conf->bypass_count < 0) |
| conf->bypass_count = 0; |
| } |
| } |
| } else if (!list_empty(&conf->hold_list) && |
| ((conf->bypass_threshold && |
| conf->bypass_count > conf->bypass_threshold) || |
| atomic_read(&conf->pending_full_writes) == 0)) { |
| |
| list_for_each_entry(tmp, &conf->hold_list, lru) { |
| if (conf->worker_cnt_per_group == 0 || |
| group == ANY_GROUP || |
| !cpu_online(tmp->cpu) || |
| cpu_to_group(tmp->cpu) == group) { |
| sh = tmp; |
| break; |
| } |
| } |
| |
| if (sh) { |
| conf->bypass_count -= conf->bypass_threshold; |
| if (conf->bypass_count < 0) |
| conf->bypass_count = 0; |
| } |
| wg = NULL; |
| } |
| |
| if (!sh) |
| return NULL; |
| |
| if (wg) { |
| wg->stripes_cnt--; |
| sh->group = NULL; |
| } |
| list_del_init(&sh->lru); |
| BUG_ON(atomic_inc_return(&sh->count) != 1); |
| return sh; |
| } |
| |
| struct raid5_plug_cb { |
| struct blk_plug_cb cb; |
| struct list_head list; |
| struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; |
| }; |
| |
| static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) |
| { |
| struct raid5_plug_cb *cb = container_of( |
| blk_cb, struct raid5_plug_cb, cb); |
| struct stripe_head *sh; |
| struct mddev *mddev = cb->cb.data; |
| struct r5conf *conf = mddev->private; |
| int cnt = 0; |
| int hash; |
| |
| if (cb->list.next && !list_empty(&cb->list)) { |
| spin_lock_irq(&conf->device_lock); |
| while (!list_empty(&cb->list)) { |
| sh = list_first_entry(&cb->list, struct stripe_head, lru); |
| list_del_init(&sh->lru); |
| /* |
| * avoid race release_stripe_plug() sees |
| * STRIPE_ON_UNPLUG_LIST clear but the stripe |
| * is still in our list |
| */ |
| smp_mb__before_atomic(); |
| clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); |
| /* |
| * STRIPE_ON_RELEASE_LIST could be set here. In that |
| * case, the count is always > 1 here |
| */ |
| hash = sh->hash_lock_index; |
| __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); |
| cnt++; |
| } |
| spin_unlock_irq(&conf->device_lock); |
| } |
| release_inactive_stripe_list(conf, cb->temp_inactive_list, |
| NR_STRIPE_HASH_LOCKS); |
| if (mddev->queue) |
| trace_block_unplug(mddev->queue, cnt, !from_schedule); |
| kfree(cb); |
| } |
| |
| static void release_stripe_plug(struct mddev *mddev, |
| struct stripe_head *sh) |
| { |
| struct blk_plug_cb *blk_cb = blk_check_plugged( |
| raid5_unplug, mddev, |
| sizeof(struct raid5_plug_cb)); |
| struct raid5_plug_cb *cb; |
| |
| if (!blk_cb) { |
| raid5_release_stripe(sh); |
| return; |
| } |
| |
| cb = container_of(blk_cb, struct raid5_plug_cb, cb); |
| |
| if (cb->list.next == NULL) { |
| int i; |
| INIT_LIST_HEAD(&cb->list); |
| for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) |
| INIT_LIST_HEAD(cb->temp_inactive_list + i); |
| } |
| |
| if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) |
| list_add_tail(&sh->lru, &cb->list); |
| else |
| raid5_release_stripe(sh); |
| } |
| |
| static void make_discard_request(struct mddev *mddev, struct bio *bi) |
| { |
| struct r5conf *conf = mddev->private; |
| sector_t logical_sector, last_sector; |
| struct stripe_head *sh; |
| int remaining; |
| int stripe_sectors; |
| |
| if (mddev->reshape_position != MaxSector) |
| /* Skip discard while reshape is happening */ |
| return; |
| |
| logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); |
| last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9); |
| |
| bi->bi_next = NULL; |
| bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ |
| |
| stripe_sectors = conf->chunk_sectors * |
| (conf->raid_disks - conf->max_degraded); |
| logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, |
| stripe_sectors); |
| sector_div(last_sector, stripe_sectors); |
| |
| logical_sector *= conf->chunk_sectors; |
| last_sector *= conf->chunk_sectors; |
| |
| for (; logical_sector < last_sector; |
| logical_sector += STRIPE_SECTORS) { |
| DEFINE_WAIT(w); |
| int d; |
| again: |
| sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0); |
| prepare_to_wait(&conf->wait_for_overlap, &w, |
| TASK_UNINTERRUPTIBLE); |
| set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); |
| if (test_bit(STRIPE_SYNCING, &sh->state)) { |
| raid5_release_stripe(sh); |
| schedule(); |
| goto again; |
| } |
| clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); |
| spin_lock_irq(&sh->stripe_lock); |
| for (d = 0; d < conf->raid_disks; d++) { |
| if (d == sh->pd_idx || d == sh->qd_idx) |
| continue; |
| if (sh->dev[d].towrite || sh->dev[d].toread) { |
| set_bit(R5_Overlap, &sh->dev[d].flags); |
| spin_unlock_irq(&sh->stripe_lock); |
| raid5_release_stripe(sh); |
| schedule(); |
| goto again; |
| } |
| } |
| set_bit(STRIPE_DISCARD, &sh->state); |
| finish_wait(&conf->wait_for_overlap, &w); |
| sh->overwrite_disks = 0; |
| for (d = 0; d < conf->raid_disks; d++) { |
| if (d == sh->pd_idx || d == sh->qd_idx) |
| continue; |
| sh->dev[d].towrite = bi; |
| set_bit(R5_OVERWRITE, &sh->dev[d].flags); |
| raid5_inc_bi_active_stripes(bi); |
| sh->overwrite_disks++; |
| } |
| spin_unlock_irq(&sh->stripe_lock); |
| if (conf->mddev->bitmap) { |
| for (d = 0; |
| d < conf->raid_disks - conf->max_degraded; |
| d++) |
| bitmap_startwrite(mddev->bitmap, |
| sh->sector, |
| STRIPE_SECTORS, |
| 0); |
| sh->bm_seq = conf->seq_flush + 1; |
| set_bit(STRIPE_BIT_DELAY, &sh->state); |
| } |
| |
| set_bit(STRIPE_HANDLE, &sh->state); |
| clear_bit(STRIPE_DELAYED, &sh->state); |
| if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) |
| atomic_inc(&conf->preread_active_stripes); |
| release_stripe_plug(mddev, sh); |
| } |
| |
| remaining = raid5_dec_bi_active_stripes(bi); |
| if (remaining == 0) { |
| md_write_end(mddev); |
| bio_endio(bi); |
| } |
| } |
| |
| static void raid5_make_request(struct mddev *mddev, struct bio * bi) |
| { |
| struct r5conf *conf = mddev->private; |
| int dd_idx; |
| sector_t new_sector; |
| sector_t logical_sector, last_sector; |
| struct stripe_head *sh; |
| const int rw = bio_data_dir(bi); |
| int remaining; |
| DEFINE_WAIT(w); |
| bool do_prepare; |
| bool do_flush = false; |
| |
| if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { |
| int ret = r5l_handle_flush_request(conf->log, bi); |
| |
| if (ret == 0) |
| return; |
| if (ret == -ENODEV) { |
| md_flush_request(mddev, bi); |
| return; |
| } |
| /* ret == -EAGAIN, fallback */ |
| /* |
| * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, |
| * we need to flush journal device |
| */ |
| do_flush = bi->bi_opf & REQ_PREFLUSH; |
| } |
| |
| md_write_start(mddev, bi); |
| |
| /* |
| * If array is degraded, better not do chunk aligned read because |
| * later we might have to read it again in order to reconstruct |
| * data on failed drives. |
| */ |
| if (rw == READ && mddev->degraded == 0 && |
| !r5c_is_writeback(conf->log) && |
| mddev->reshape_position == MaxSector) { |
| bi = chunk_aligned_read(mddev, bi); |
| if (!bi) |
| return; |
| } |
| |
| if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { |
| make_discard_request(mddev, bi); |
| return; |
| } |
| |
| logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); |
| last_sector = bio_end_sector(bi); |
| bi->bi_next = NULL; |
| bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ |
| |
| prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); |
| for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { |
| int previous; |
| int seq; |
| |
| do_prepare = false; |
| retry: |
| seq = read_seqcount_begin(&conf->gen_lock); |
| previous = 0; |
| if (do_prepare) |
| prepare_to_wait(&conf->wait_for_overlap, &w, |
| TASK_UNINTERRUPTIBLE); |
| if (unlikely(conf->reshape_progress != MaxSector)) { |
| /* spinlock is needed as reshape_progress may be |
| * 64bit on a 32bit platform, and so it might be |
| * possible to see a half-updated value |
| * Of course reshape_progress could change after |
| * the lock is dropped, so once we get a reference |
| * to the stripe that we think it is, we will have |
| * to check again. |
| */ |
| spin_lock_irq(&conf->device_lock); |
| if (mddev->reshape_backwards |
| ? logical_sector < conf->reshape_progress |
| : logical_sector >= conf->reshape_progress) { |
| previous = 1; |
| } else { |
| if (mddev->reshape_backwards |
| ? logical_sector < conf->reshape_safe |
| : logical_sector >= conf->reshape_safe) { |
| spin_unlock_irq(&conf->device_lock); |
| schedule(); |
| do_prepare = true; |
| goto retry; |
| } |
| } |
| spin_unlock_irq(&conf->device_lock); |
| } |
| |
| new_sector = raid5_compute_sector(conf, logical_sector, |
| previous, |
| &dd_idx, NULL); |
| pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n", |
| (unsigned long long)new_sector, |
| (unsigned long long)logical_sector); |
| |
| sh = raid5_get_active_stripe(conf, new_sector, previous, |
| (bi->bi_opf & REQ_RAHEAD), 0); |
| if (sh) { |
| if (unlikely(previous)) { |
| /* expansion might have moved on while waiting for a |
| * stripe, so we must do the range check again. |
| * Expansion could still move past after this |
| * test, but as we are holding a reference to |
| * 'sh', we know that if that happens, |
| * STRIPE_EXPANDING will get set and the expansion |
| * won't proceed until we finish with the stripe. |
| */ |
| int must_retry = 0; |
| spin_lock_irq(&conf->device_lock); |
| if (mddev->reshape_backwards |
| ? logical_sector >= conf->reshape_progress |
| : logical_sector < conf->reshape_progress) |
| /* mismatch, need to try again */ |
| must_retry = 1; |
| spin_unlock_irq(&conf->device_lock); |
| if (must_retry) { |
| raid5_release_stripe(sh); |
| schedule(); |
| do_prepare = true; |
| goto retry; |
| } |
| } |
| if (read_seqcount_retry(&conf->gen_lock, seq)) { |
| /* Might have got the wrong stripe_head |
| * by accident |
| */ |
| raid5_release_stripe(sh); |
| goto retry; |
| } |
| |
| if (rw == WRITE && |
| logical_sector >= mddev->suspend_lo && |
| logical_sector < mddev->suspend_hi) { |
| raid5_release_stripe(sh); |
| /* As the suspend_* range is controlled by |
| * userspace, we want an interruptible |
| * wait. |
| */ |
| flush_signals(current); |
| prepare_to_wait(&conf->wait_for_overlap, |
| &w, TASK_INTERRUPTIBLE); |
| if (logical_sector >= mddev->suspend_lo && |
| logical_sector < mddev->suspend_hi) { |
| schedule(); |
| do_prepare = true; |
| } |
| goto retry; |
| } |
| |
| if (test_bit(STRIPE_EXPANDING, &sh->state) || |
| !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { |
| /* Stripe is busy expanding or |
| * add failed due to overlap. Flush everything |
| * and wait a while |
| */ |
| md_wakeup_thread(mddev->thread); |
| raid5_release_stripe(sh); |
| schedule(); |
| do_prepare = true; |
| goto retry; |
| } |
| if (do_flush) { |
| set_bit(STRIPE_R5C_PREFLUSH, &sh->state); |
| /* we only need flush for one stripe */ |
| do_flush = false; |
| } |
| |
| set_bit(STRIPE_HANDLE, &sh->state); |
| clear_bit(STRIPE_DELAYED, &sh->state); |
| if ((!sh->batch_head || sh == sh->batch_head) && |
| (bi->bi_opf & REQ_SYNC) && |
| !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) |
| atomic_inc(&conf->preread_active_stripes); |
| release_stripe_plug(mddev, sh); |
| } else { |
| /* cannot get stripe for read-ahead, just give-up */ |
| bi->bi_error = -EIO; |
| break; |
| } |
| } |
| finish_wait(&conf->wait_for_overlap, &w); |
| |
| remaining = raid5_dec_bi_active_stripes(bi); |
| if (remaining == 0) { |
| |
| if ( rw == WRITE ) |
| md_write_end(mddev); |
| |
| trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), |
| bi, 0); |
| bio_endio(bi); |
| } |
| } |
| |
| static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); |
| |
| static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) |
| { |
| /* reshaping is quite different to recovery/resync so it is |
| * handled quite separately ... here. |
| * |
| * On each call to sync_request, we gather one chunk worth of |
| * destination stripes and flag them as expanding. |
| * Then we find all the source stripes and request reads. |
| * As the reads complete, handle_stripe will copy the data |
| * into the destination stripe and release that stripe. |
| */ |
| struct r5conf *conf = mddev->private; |
| struct stripe_head *sh; |
| sector_t first_sector, last_sector; |
| int raid_disks = conf->previous_raid_disks; |
| int data_disks = raid_disks - conf->max_degraded; |
| int new_data_disks = conf->raid_disks - conf->max_degraded; |
| int i; |
| int dd_idx; |
| sector_t writepos, readpos, safepos; |
| sector_t stripe_addr; |
| int reshape_sectors; |
| struct list_head stripes; |
| sector_t retn; |
| |
| if (sector_nr == 0) { |
| /* If restarting in the middle, skip the initial sectors */ |
| if (mddev->reshape_backwards && |
| conf->reshape_progress < raid5_size(mddev, 0, 0)) { |
| sector_nr = raid5_size(mddev, 0, 0) |
| - conf->reshape_progress; |
| } else if (mddev->reshape_backwards && |
| conf->reshape_progress == MaxSector) { |
| /* shouldn't happen, but just in case, finish up.*/ |
| sector_nr = MaxSector; |
| } else if (!mddev->reshape_backwards && |
| conf->reshape_progress > 0) |
| sector_nr = conf->reshape_progress; |
| sector_div(sector_nr, new_data_disks); |
| if (sector_nr) { |
| mddev->curr_resync_completed = sector_nr; |
| sysfs_notify(&mddev->kobj, NULL, "sync_completed"); |
| *skipped = 1; |
| retn = sector_nr; |
| goto finish; |
| } |
| } |
| |
| /* We need to process a full chunk at a time. |
| * If old and new chunk sizes differ, we need to process the |
| * largest of these |
| */ |
| |
| reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); |
| |
| /* We update the metadata at least every 10 seconds, or when |
| * the data about to be copied would over-write the source of |
| * the data at the front of the range. i.e. one new_stripe |
| * along from reshape_progress new_maps to after where |
| * reshape_safe old_maps to |
| */ |
| writepos = conf->reshape_progress; |
| sector_div(writepos, new_data_disks); |
| readpos = conf->reshape_progress; |
| sector_div(readpos, data_disks); |
| safepos = conf->reshape_safe; |
| sector_div(safepos, data_disks); |
| if (mddev->reshape_backwards) { |
| BUG_ON(writepos < reshape_sectors); |
| writepos -= reshape_sectors; |
| readpos += reshape_sectors; |
| safepos += reshape_sectors; |
| } else { |
| writepos += reshape_sectors; |
| /* readpos and safepos are worst-case calculations. |
| * A negative number is overly pessimistic, and causes |
| * obvious problems for unsigned storage. So clip to 0. |
| */ |
| readpos -= min_t(sector_t, reshape_sectors, readpos); |
| safepos -= min_t(sector_t, reshape_sectors, safepos); |
| } |
| |
| /* Having calculated the 'writepos' possibly use it |
| * to set 'stripe_addr' which is where we will write to. |
| */ |
| if (mddev->reshape_backwards) { |
| BUG_ON(conf->reshape_progress == 0); |
| stripe_addr = writepos; |
| BUG_ON((mddev->dev_sectors & |
| ~((sector_t)reshape_sectors - 1)) |
| - reshape_sectors - stripe_addr |
| != sector_nr); |
| } else { |
| BUG_ON(writepos != sector_nr + reshape_sectors); |
| stripe_addr = sector_nr; |
| } |
| |
| /* 'writepos' is the most advanced device address we might write. |
| * 'readpos' is the least advanced device address we might read. |
| * 'safepos' is the least address recorded in the metadata as having |
| * been reshaped. |
| * If there is a min_offset_diff, these are adjusted either by |
| * increasing the safepos/readpos if diff is negative, or |
| * increasing writepos if diff is positive. |
| * If 'readpos' is then behind 'writepos', there is no way that we can |
| * ensure safety in the face of a crash - that must be done by userspace |
| * making a backup of the data. So in that case there is no particular |
| * rush to update metadata. |
| * Otherwise if 'safepos' is behind 'writepos', then we really need to |
| * update the metadata to advance 'safepos' to match 'readpos' so that |
| * we can be safe in the event of a crash. |
| * So we insist on updating metadata if safepos is behind writepos and |
| * readpos is beyond writepos. |
| * In any case, update the metadata every 10 seconds. |
| * Maybe that number should be configurable, but I'm not sure it is |
| * worth it.... maybe it could be a multiple of safemode_delay??? |
| */ |
| if (conf->min_offset_diff < 0) { |
| safepos += -conf->min_offset_diff; |
| readpos += -conf->min_offset_diff; |
| } else |
| writepos += conf->min_offset_diff; |
| |
| if ((mddev->reshape_backwards |
| ? (safepos > writepos && readpos < writepos) |
| : (safepos < writepos && readpos > writepos)) || |
| time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { |
| /* Cannot proceed until we've updated the superblock... */ |
| wait_event(conf->wait_for_overlap, |
| atomic_read(&conf->reshape_stripes)==0 |
| || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); |
| if (atomic_read(&conf->reshape_stripes) != 0) |
| return 0; |
| mddev->reshape_position = conf->reshape_progress; |
| mddev->curr_resync_completed = sector_nr; |
| conf->reshape_checkpoint = jiffies; |
| set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); |
| md_wakeup_thread(mddev->thread); |
| wait_event(mddev->sb_wait, mddev->sb_flags == 0 || |
| test_bit(MD_RECOVERY_INTR, &mddev->recovery)); |
| if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) |
| return 0; |
| spin_lock_irq(&conf->device_lock); |
| conf->reshape_safe = mddev->reshape_position; |
| spin_unlock_irq(&conf->device_lock); |
| wake_up(&conf->wait_for_overlap); |
| sysfs_notify(&mddev->kobj, NULL, "sync_completed"); |
| } |
| |
| INIT_LIST_HEAD(&stripes); |
| for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { |
| int j; |
| int skipped_disk = 0; |
| sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1); |
| set_bit(STRIPE_EXPANDING, &sh->state); |
| atomic_inc(&conf->reshape_stripes); |
| /* If any of this stripe is beyond the end of the old |
| * array, then we need to zero those blocks |
| */ |
| for (j=sh->disks; j--;) { |
| sector_t s; |
| if (j == sh->pd_idx) |
| continue; |
| if (conf->level == 6 && |
| j == sh->qd_idx) |
| continue; |
| s = raid5_compute_blocknr(sh, j, 0); |
| if (s < raid5_size(mddev, 0, 0)) { |
| skipped_disk = 1; |
| continue; |
| } |
| memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); |
| set_bit(R5_Expanded, &sh->dev[j].flags); |
| set_bit(R5_UPTODATE, &sh->dev[j].flags); |
| } |
| if (!skipped_disk) { |
| set_bit(STRIPE_EXPAND_READY, &sh->state); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| } |
| list_add(&sh->lru, &stripes); |
| } |
| spin_lock_irq(&conf->device_lock); |
| if (mddev->reshape_backwards) |
| conf->reshape_progress -= reshape_sectors * new_data_disks; |
| else |
| conf->reshape_progress += reshape_sectors * new_data_disks; |
| spin_unlock_irq(&conf->device_lock); |
| /* Ok, those stripe are ready. We can start scheduling |
| * reads on the source stripes. |
| * The source stripes are determined by mapping the first and last |
| * block on the destination stripes. |
| */ |
| first_sector = |
| raid5_compute_sector(conf, stripe_addr*(new_data_disks), |
| 1, &dd_idx, NULL); |
| last_sector = |
| raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) |
| * new_data_disks - 1), |
| 1, &dd_idx, NULL); |
| if (last_sector >= mddev->dev_sectors) |
| last_sector = mddev->dev_sectors - 1; |
| while (first_sector <= last_sector) { |
| sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1); |
| set_bit(STRIPE_EXPAND_SOURCE, &sh->state); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| raid5_release_stripe(sh); |
| first_sector += STRIPE_SECTORS; |
| } |
| /* Now that the sources are clearly marked, we can release |
| * the destination stripes |
| */ |
| while (!list_empty(&stripes)) { |
| sh = list_entry(stripes.next, struct stripe_head, lru); |
| list_del_init(&sh->lru); |
| raid5_release_stripe(sh); |
| } |
| /* If this takes us to the resync_max point where we have to pause, |
| * then we need to write out the superblock. |
| */ |
| sector_nr += reshape_sectors; |
| retn = reshape_sectors; |
| finish: |
| if (mddev->curr_resync_completed > mddev->resync_max || |
| (sector_nr - mddev->curr_resync_completed) * 2 |
| >= mddev->resync_max - mddev->curr_resync_completed) { |
| /* Cannot proceed until we've updated the superblock... */ |
| wait_event(conf->wait_for_overlap, |
| atomic_read(&conf->reshape_stripes) == 0 |
| || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); |
| if (atomic_read(&conf->reshape_stripes) != 0) |
| goto ret; |
| mddev->reshape_position = conf->reshape_progress; |
| mddev->curr_resync_completed = sector_nr; |
| conf->reshape_checkpoint = jiffies; |
| set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); |
| md_wakeup_thread(mddev->thread); |
| wait_event(mddev->sb_wait, |
| !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) |
| || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); |
| if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) |
| goto ret; |
| spin_lock_irq(&conf->device_lock); |
| conf->reshape_safe = mddev->reshape_position; |
| spin_unlock_irq(&conf->device_lock); |
| wake_up(&conf->wait_for_overlap); |
| sysfs_notify(&mddev->kobj, NULL, "sync_completed"); |
| } |
| ret: |
| return retn; |
| } |
| |
| static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, |
| int *skipped) |
| { |
| struct r5conf *conf = mddev->private; |
| struct stripe_head *sh; |
| sector_t max_sector = mddev->dev_sectors; |
| sector_t sync_blocks; |
| int still_degraded = 0; |
| int i; |
| |
| if (sector_nr >= max_sector) { |
| /* just being told to finish up .. nothing much to do */ |
| |
| if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { |
| end_reshape(conf); |
| return 0; |
| } |
| |
| if (mddev->curr_resync < max_sector) /* aborted */ |
| bitmap_end_sync(mddev->bitmap, mddev->curr_resync, |
| &sync_blocks, 1); |
| else /* completed sync */ |
| conf->fullsync = 0; |
| bitmap_close_sync(mddev->bitmap); |
| |
| return 0; |
| } |
| |
| /* Allow raid5_quiesce to complete */ |
| wait_event(conf->wait_for_overlap, conf->quiesce != 2); |
| |
| if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) |
| return reshape_request(mddev, sector_nr, skipped); |
| |
| /* No need to check resync_max as we never do more than one |
| * stripe, and as resync_max will always be on a chunk boundary, |
| * if the check in md_do_sync didn't fire, there is no chance |
| * of overstepping resync_max here |
| */ |
| |
| /* if there is too many failed drives and we are trying |
| * to resync, then assert that we are finished, because there is |
| * nothing we can do. |
| */ |
| if (mddev->degraded >= conf->max_degraded && |
| test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { |
| sector_t rv = mddev->dev_sectors - sector_nr; |
| *skipped = 1; |
| return rv; |
| } |
| if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && |
| !conf->fullsync && |
| !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && |
| sync_blocks >= STRIPE_SECTORS) { |
| /* we can skip this block, and probably more */ |
| sync_blocks /= STRIPE_SECTORS; |
| *skipped = 1; |
| return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ |
| } |
| |
| bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); |
| |
| sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0); |
| if (sh == NULL) { |
| sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0); |
| /* make sure we don't swamp the stripe cache if someone else |
| * is trying to get access |
| */ |
| schedule_timeout_uninterruptible(1); |
| } |
| /* Need to check if array will still be degraded after recovery/resync |
| * Note in case of > 1 drive failures it's possible we're rebuilding |
| * one drive while leaving another faulty drive in array. |
| */ |
| rcu_read_lock(); |
| for (i = 0; i < conf->raid_disks; i++) { |
| struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev); |
| |
| if (rdev == NULL || test_bit(Faulty, &rdev->flags)) |
| still_degraded = 1; |
| } |
| rcu_read_unlock(); |
| |
| bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); |
| |
| set_bit(STRIPE_SYNC_REQUESTED, &sh->state); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| |
| raid5_release_stripe(sh); |
| |
| return STRIPE_SECTORS; |
| } |
| |
| static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) |
| { |
| /* We may not be able to submit a whole bio at once as there |
| * may not be enough stripe_heads available. |
| * We cannot pre-allocate enough stripe_heads as we may need |
| * more than exist in the cache (if we allow ever large chunks). |
| * So we do one stripe head at a time and record in |
| * ->bi_hw_segments how many have been done. |
| * |
| * We *know* that this entire raid_bio is in one chunk, so |
| * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. |
| */ |
| struct stripe_head *sh; |
| int dd_idx; |
| sector_t sector, logical_sector, last_sector; |
| int scnt = 0; |
| int remaining; |
| int handled = 0; |
| |
| logical_sector = raid_bio->bi_iter.bi_sector & |
| ~((sector_t)STRIPE_SECTORS-1); |
| sector = raid5_compute_sector(conf, logical_sector, |
| 0, &dd_idx, NULL); |
| last_sector = bio_end_sector(raid_bio); |
| |
| for (; logical_sector < last_sector; |
| logical_sector += STRIPE_SECTORS, |
| sector += STRIPE_SECTORS, |
| scnt++) { |
| |
| if (scnt < raid5_bi_processed_stripes(raid_bio)) |
| /* already done this stripe */ |
| continue; |
| |
| sh = raid5_get_active_stripe(conf, sector, 0, 1, 1); |
| |
| if (!sh) { |
| /* failed to get a stripe - must wait */ |
| raid5_set_bi_processed_stripes(raid_bio, scnt); |
| conf->retry_read_aligned = raid_bio; |
| return handled; |
| } |
| |
| if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { |
| raid5_release_stripe(sh); |
| raid5_set_bi_processed_stripes(raid_bio, scnt); |
| conf->retry_read_aligned = raid_bio; |
| return handled; |
| } |
| |
| set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); |
| handle_stripe(sh); |
| raid5_release_stripe(sh); |
| handled++; |
| } |
| remaining = raid5_dec_bi_active_stripes(raid_bio); |
| if (remaining == 0) { |
| trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev), |
| raid_bio, 0); |
| bio_endio(raid_bio); |
| } |
| if (atomic_dec_and_test(&conf->active_aligned_reads)) |
| wake_up(&conf->wait_for_quiescent); |
| return handled; |
| } |
| |
| static int handle_active_stripes(struct r5conf *conf, int group, |
| struct r5worker *worker, |
| struct list_head *temp_inactive_list) |
| { |
| struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; |
| int i, batch_size = 0, hash; |
| bool release_inactive = false; |
| |
| while (batch_size < MAX_STRIPE_BATCH && |
| (sh = __get_priority_stripe(conf, group)) != NULL) |
| batch[batch_size++] = sh; |
| |
| if (batch_size == 0) { |
| for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) |
| if (!list_empty(temp_inactive_list + i)) |
| break; |
| if (i == NR_STRIPE_HASH_LOCKS) { |
| spin_unlock_irq(&conf->device_lock); |
| r5l_flush_stripe_to_raid(conf->log); |
| spin_lock_irq(&conf->device_lock); |
| return batch_size; |
| } |
| release_inactive = true; |
| } |
| spin_unlock_irq(&conf->device_lock); |
| |
| release_inactive_stripe_list(conf, temp_inactive_list, |
| NR_STRIPE_HASH_LOCKS); |
| |
| r5l_flush_stripe_to_raid(conf->log); |
| if (release_inactive) { |
| spin_lock_irq(&conf->device_lock); |
| return 0; |
| } |
| |
| for (i = 0; i < batch_size; i++) |
| handle_stripe(batch[i]); |
| r5l_write_stripe_run(conf->log); |
| |
| cond_resched(); |
| |
| spin_lock_irq(&conf->device_lock); |
| for (i = 0; i < batch_size; i++) { |
| hash = batch[i]->hash_lock_index; |
| __release_stripe(conf, batch[i], &temp_inactive_list[hash]); |
| } |
| return batch_size; |
| } |
| |
| static void raid5_do_work(struct work_struct *work) |
| { |
| struct r5worker *worker = container_of(work, struct r5worker, work); |
| struct r5worker_group *group = worker->group; |
| struct r5conf *conf = group->conf; |
| int group_id = group - conf->worker_groups; |
| int handled; |
| struct blk_plug plug; |
| |
| pr_debug("+++ raid5worker active\n"); |
| |
| blk_start_plug(&plug); |
| handled = 0; |
| spin_lock_irq(&conf->device_lock); |
| while (1) { |
| int batch_size, released; |
| |
| released = release_stripe_list(conf, worker->temp_inactive_list); |
| |
| batch_size = handle_active_stripes(conf, group_id, worker, |
| worker->temp_inactive_list); |
| worker->working = false; |
| if (!batch_size && !released) |
| break; |
| handled += batch_size; |
| } |
| pr_debug("%d stripes handled\n", handled); |
| |
| spin_unlock_irq(&conf->device_lock); |
| blk_finish_plug(&plug); |
| |
| pr_debug("--- raid5worker inactive\n"); |
| } |
| |
| /* |
| * This is our raid5 kernel thread. |
| * |
| * We scan the hash table for stripes which can be handled now. |
| * During the scan, completed stripes are saved for us by the interrupt |
| * handler, so that they will not have to wait for our next wakeup. |
| */ |
| static void raid5d(struct md_thread *thread) |
| { |
| struct mddev *mddev = thread->mddev; |
| struct r5conf *conf = mddev->private; |
| int handled; |
| struct blk_plug plug; |
| |
| pr_debug("+++ raid5d active\n"); |
| |
| md_check_recovery(mddev); |
| |
| if (!bio_list_empty(&conf->return_bi) && |
| !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { |
| struct bio_list tmp = BIO_EMPTY_LIST; |
| spin_lock_irq(&conf->device_lock); |
| if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { |
| bio_list_merge(&tmp, &conf->return_bi); |
| bio_list_init(&conf->return_bi); |
| } |
| spin_unlock_irq(&conf->device_lock); |
| return_io(&tmp); |
| } |
| |
| blk_start_plug(&plug); |
| handled = 0; |
| spin_lock_irq(&conf->device_lock); |
| while (1) { |
| struct bio *bio; |
| int batch_size, released; |
| |
| released = release_stripe_list(conf, conf->temp_inactive_list); |
| if (released) |
| clear_bit(R5_DID_ALLOC, &conf->cache_state); |
| |
| if ( |
| !list_empty(&conf->bitmap_list)) { |
| /* Now is a good time to flush some bitmap updates */ |
| conf->seq_flush++; |
| spin_unlock_irq(&conf->device_lock); |
| bitmap_unplug(mddev->bitmap); |
| spin_lock_irq(&conf->device_lock); |
| conf->seq_write = conf->seq_flush; |
| activate_bit_delay(conf, conf->temp_inactive_list); |
| } |
| raid5_activate_delayed(conf); |
| |
| while ((bio = remove_bio_from_retry(conf))) { |
| int ok; |
| spin_unlock_irq(&conf->device_lock); |
| ok = retry_aligned_read(conf, bio); |
| spin_lock_irq(&conf->device_lock); |
| if (!ok) |
| break; |
| handled++; |
| } |
| |
| batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, |
| conf->temp_inactive_list); |
| if (!batch_size && !released) |
| break; |
| handled += batch_size; |
| |
| if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { |
| spin_unlock_irq(&conf->device_lock); |
| md_check_recovery(mddev); |
| spin_lock_irq(&conf->device_lock); |
| } |
| } |
| pr_debug("%d stripes handled\n", handled); |
| |
| spin_unlock_irq(&conf->device_lock); |
| if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && |
| mutex_trylock(&conf->cache_size_mutex)) { |
| grow_one_stripe(conf, __GFP_NOWARN); |
| /* Set flag even if allocation failed. This helps |
| * slow down allocation requests when mem is short |
| */ |
| set_bit(R5_DID_ALLOC, &conf->cache_state); |
| mutex_unlock(&conf->cache_size_mutex); |
| } |
| |
| r5l_flush_stripe_to_raid(conf->log); |
| |
| async_tx_issue_pending_all(); |
| blk_finish_plug(&plug); |
| |
| pr_debug("--- raid5d inactive\n"); |
| } |
| |
| static ssize_t |
| raid5_show_stripe_cache_size(struct mddev *mddev, char *page) |
| { |
| struct r5conf *conf; |
| int ret = 0; |
| spin_lock(&mddev->lock); |
| conf = mddev->private; |
| if (conf) |
| ret = sprintf(page, "%d\n", conf->min_nr_stripes); |
| spin_unlock(&mddev->lock); |
| return ret; |
| } |
| |
| int |
| raid5_set_cache_size(struct mddev *mddev, int size) |
| { |
| struct r5conf *conf = mddev->private; |
| int err; |
| |
| if (size <= 16 || size > 32768) |
| return -EINVAL; |
| |
| conf->min_nr_stripes = size; |
| mutex_lock(&conf->cache_size_mutex); |
| while (size < conf->max_nr_stripes && |
| drop_one_stripe(conf)) |
| ; |
| mutex_unlock(&conf->cache_size_mutex); |
| |
| |
| err = md_allow_write(mddev); |
| if (err) |
| return err; |
| |
| mutex_lock(&conf->cache_size_mutex); |
| while (size > conf->max_nr_stripes) |
| if (!grow_one_stripe(conf, GFP_KERNEL)) |
| break; |
| mutex_unlock(&conf->cache_size_mutex); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(raid5_set_cache_size); |
| |
| static ssize_t |
| raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) |
| { |
| struct r5conf *conf; |
| unsigned long new; |
| int err; |
| |
| if (len >= PAGE_SIZE) |
| return -EINVAL; |
| if (kstrtoul(page, 10, &new)) |
| return -EINVAL; |
| err = mddev_lock(mddev); |
| if (err) |
| return err; |
| conf = mddev->private; |
| if (!conf) |
| err = -ENODEV; |
| else |
| err = raid5_set_cache_size(mddev, new); |
| mddev_unlock(mddev); |
| |
| return err ?: len; |
| } |
| |
| static struct md_sysfs_entry |
| raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, |
| raid5_show_stripe_cache_size, |
| raid5_store_stripe_cache_size); |
| |
| static ssize_t |
| raid5_show_rmw_level(struct mddev *mddev, char *page) |
| { |
| struct r5conf *conf = mddev->private; |
| if (conf) |
| return sprintf(page, "%d\n", conf->rmw_level); |
| else |
| return 0; |
| } |
| |
| static ssize_t |
| raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) |
| { |
| struct r5conf *conf = mddev->private; |
| unsigned long new; |
| |
| if (!conf) |
| return -ENODEV; |
| |
| if (len >= PAGE_SIZE) |
| return -EINVAL; |
| |
| if (kstrtoul(page, 10, &new)) |
| return -EINVAL; |
| |
| if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) |
| return -EINVAL; |
| |
| if (new != PARITY_DISABLE_RMW && |
| new != PARITY_ENABLE_RMW && |
| new != PARITY_PREFER_RMW) |
| return -EINVAL; |
| |
| conf->rmw_level = new; |
| return len; |
| } |
| |
| static struct md_sysfs_entry |
| raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, |
| raid5_show_rmw_level, |
| raid5_store_rmw_level); |
| |
| |
| static ssize_t |
| raid5_show_preread_threshold(struct mddev *mddev, char *page) |
| { |
| struct r5conf *conf; |
| int ret = 0; |
| spin_lock(&mddev->lock); |
| conf = mddev->private; |
| if (conf) |
| ret = sprintf(page, "%d\n", conf->bypass_threshold); |
| spin_unlock(&mddev->lock); |
| return ret; |
| } |
| |
| static ssize_t |
| raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) |
| { |
| struct r5conf *conf; |
| unsigned long new; |
| int err; |
| |
| if (len >= PAGE_SIZE) |
| return -EINVAL; |
| if (kstrtoul(page, 10, &new)) |
| return -EINVAL; |
| |
| err = mddev_lock(mddev); |
| if (err) |
| return err; |
| conf = mddev->private; |
| if (!conf) |
| err = -ENODEV; |
| else if (new > conf->min_nr_stripes) |
| err = -EINVAL; |
| else |
| conf->bypass_threshold = new; |
| mddev_unlock(mddev); |
| return err ?: len; |
| } |
| |
| static struct md_sysfs_entry |
| raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, |
| S_IRUGO | S_IWUSR, |
| raid5_show_preread_threshold, |
| raid5_store_preread_threshold); |
| |
| static ssize_t |
| raid5_show_skip_copy(struct mddev *mddev, char *page) |
| { |
| struct r5conf *conf; |
| int ret = 0; |
| spin_lock(&mddev->lock); |
| conf = mddev->private; |
| if (conf) |
| ret = sprintf(page, "%d\n", conf->skip_copy); |
| spin_unlock(&mddev->lock); |
| return ret; |
| } |
| |
| static ssize_t |
| raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) |
| { |
| struct r5conf *conf; |
| unsigned long new; |
| int err; |
| |
| if (len >= PAGE_SIZE) |
| return -EINVAL; |
| if (kstrtoul(page, 10, &new)) |
| return -EINVAL; |
| new = !!new; |
| |
| err = mddev_lock(mddev); |
| if (err) |
| return err; |
| conf = mddev->private; |
| if (!conf) |
| err = -ENODEV; |
| else if (new != conf->skip_copy) { |
| mddev_suspend(mddev); |
| conf->skip_copy = new; |
| if (new) |
| mddev->queue->backing_dev_info->capabilities |= |
| BDI_CAP_STABLE_WRITES; |
| else |
| mddev->queue->backing_dev_info->capabilities &= |
| ~BDI_CAP_STABLE_WRITES; |
| mddev_resume(mddev); |
| } |
| mddev_unlock(mddev); |
| return err ?: len; |
| } |
| |
| static struct md_sysfs_entry |
| raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, |
| raid5_show_skip_copy, |
| raid5_store_skip_copy); |
| |
| static ssize_t |
| stripe_cache_active_show(struct mddev *mddev, char *page) |
| { |
| struct r5conf *conf = mddev->private; |
| if (conf) |
| return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); |
| else |
| return 0; |
| } |
| |
| static struct md_sysfs_entry |
| raid5_stripecache_active = __ATTR_RO(stripe_cache_active); |
| |
| static ssize_t |
| raid5_show_group_thread_cnt(struct mddev *mddev, char *page) |
| { |
| struct r5conf *conf; |
| int ret = 0; |
| spin_lock(&mddev->lock); |
| conf = mddev->private; |
| if (conf) |
| ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); |
| spin_unlock(&mddev->lock); |
| return ret; |
| } |
| |
| static int alloc_thread_groups(struct r5conf *conf, int cnt, |
| int *group_cnt, |
| int *worker_cnt_per_group, |
| struct r5worker_group **worker_groups); |
| static ssize_t |
| raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) |
| { |
| struct r5conf *conf; |
| unsigned long new; |
| int err; |
| struct r5worker_group *new_groups, *old_groups; |
| int group_cnt, worker_cnt_per_group; |
| |
| if (len >= PAGE_SIZE) |
| return -EINVAL; |
| if (kstrtoul(page, 10, &new)) |
| return -EINVAL; |
| |
| err = mddev_lock(mddev); |
| if (err) |
| return err; |
| conf = mddev->private; |
| if (!conf) |
| err = -ENODEV; |
| else if (new != conf->worker_cnt_per_group) { |
| mddev_suspend(mddev); |
| |
| old_groups = conf->worker_groups; |
| if (old_groups) |
| flush_workqueue(raid5_wq); |
| |
| err = alloc_thread_groups(conf, new, |
| &group_cnt, &worker_cnt_per_group, |
| &new_groups); |
| if (!err) { |
| spin_lock_irq(&conf->device_lock); |
| conf->group_cnt = group_cnt; |
| conf->worker_cnt_per_group = worker_cnt_per_group; |
| conf->worker_groups = new_groups; |
| spin_unlock_irq(&conf->device_lock); |
| |
| if (old_groups) |
| kfree(old_groups[0].workers); |
| kfree(old_groups); |
| } |
| mddev_resume(mddev); |
| } |
| mddev_unlock(mddev); |
| |
| return err ?: len; |
| } |
| |
| static struct md_sysfs_entry |
| raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, |
| raid5_show_group_thread_cnt, |
| raid5_store_group_thread_cnt); |
| |
| static struct attribute *raid5_attrs[] = { |
| &raid5_stripecache_size.attr, |
| &raid5_stripecache_active.attr, |
| &raid5_preread_bypass_threshold.attr, |
| &raid5_group_thread_cnt.attr, |
| &raid5_skip_copy.attr, |
| &raid5_rmw_level.attr, |
| &r5c_journal_mode.attr, |
| NULL, |
| }; |
| static struct attribute_group raid5_attrs_group = { |
| .name = NULL, |
| .attrs = raid5_attrs, |
| }; |
| |
| static int alloc_thread_groups(struct r5conf *conf, int cnt, |
| int *group_cnt, |
| int *worker_cnt_per_group, |
| struct r5worker_group **worker_groups) |
| { |
| int i, j, k; |
| ssize_t size; |
| struct r5worker *workers; |
| |
| *worker_cnt_per_group = cnt; |
| if (cnt == 0) { |
| *group_cnt = 0; |
| *worker_groups = NULL; |
| return 0; |
| } |
| *group_cnt = num_possible_nodes(); |
| size = sizeof(struct r5worker) * cnt; |
| workers = kzalloc(size * *group_cnt, GFP_NOIO); |
| *worker_groups = kzalloc(sizeof(struct r5worker_group) * |
| *group_cnt, GFP_NOIO); |
| if (!*worker_groups || !workers) { |
| kfree(workers); |
| kfree(*worker_groups); |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < *group_cnt; i++) { |
| struct r5worker_group *group; |
| |
| group = &(*worker_groups)[i]; |
| INIT_LIST_HEAD(&group->handle_list); |
| group->conf = conf; |
| group->workers = workers + i * cnt; |
| |
| for (j = 0; j < cnt; j++) { |
| struct r5worker *worker = group->workers + j; |
| worker->group = group; |
| INIT_WORK(&worker->work, raid5_do_work); |
| |
| for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) |
| INIT_LIST_HEAD(worker->temp_inactive_list + k); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void free_thread_groups(struct r5conf *conf) |
| { |
| if (conf->worker_groups) |
| kfree(conf->worker_groups[0].workers); |
| kfree(conf->worker_groups); |
| conf->worker_groups = NULL; |
| } |
| |
| static sector_t |
| raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) |
| { |
| struct r5conf *conf = mddev->private; |
| |
| if (!sectors) |
| sectors = mddev->dev_sectors; |
| if (!raid_disks) |
| /* size is defined by the smallest of previous and new size */ |
| raid_disks = min(conf->raid_disks, conf->previous_raid_disks); |
| |
| sectors &= ~((sector_t)conf->chunk_sectors - 1); |
| sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); |
| return sectors * (raid_disks - conf->max_degraded); |
| } |
| |
| static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) |
| { |
| safe_put_page(percpu->spare_page); |
| if (percpu->scribble) |
| flex_array_free(percpu->scribble); |
| percpu->spare_page = NULL; |
| percpu->scribble = NULL; |
| } |
| |
| static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) |
| { |
| if (conf->level == 6 && !percpu->spare_page) |
| percpu->spare_page = alloc_page(GFP_KERNEL); |
| if (!percpu->scribble) |
| percpu->scribble = scribble_alloc(max(conf->raid_disks, |
| conf->previous_raid_disks), |
| max(conf->chunk_sectors, |
| conf->prev_chunk_sectors) |
| / STRIPE_SECTORS, |
| GFP_KERNEL); |
| |
| if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) { |
| free_scratch_buffer(conf, percpu); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) |
| { |
| struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); |
| |
| free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); |
| return 0; |
| } |
| |
| static void raid5_free_percpu(struct r5conf *conf) |
| { |
| if (!conf->percpu) |
| return; |
| |
| cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); |
| free_percpu(conf->percpu); |
| } |
| |
| static void free_conf(struct r5conf *conf) |
| { |
| int i; |
| |
| if (conf->log) |
| r5l_exit_log(conf->log); |
| if (conf->shrinker.nr_deferred) |
| unregister_shrinker(&conf->shrinker); |
| |
| free_thread_groups(conf); |
| shrink_stripes(conf); |
| raid5_free_percpu(conf); |
| for (i = 0; i < conf->pool_size; i++) |
| if (conf->disks[i].extra_page) |
| put_page(conf->disks[i].extra_page); |
| kfree(conf->disks); |
| kfree(conf->stripe_hashtbl); |
| kfree(conf); |
| } |
| |
| static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) |
| { |
| struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); |
| struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); |
| |
| if (alloc_scratch_buffer(conf, percpu)) { |
| pr_warn("%s: failed memory allocation for cpu%u\n", |
| __func__, cpu); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| static int raid5_alloc_percpu(struct r5conf *conf) |
| { |
| int err = 0; |
| |
| conf->percpu = alloc_percpu(struct raid5_percpu); |
| if (!conf->percpu) |
| return -ENOMEM; |
| |
| err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); |
| if (!err) { |
| conf->scribble_disks = max(conf->raid_disks, |
| conf->previous_raid_disks); |
| conf->scribble_sectors = max(conf->chunk_sectors, |
| conf->prev_chunk_sectors); |
| } |
| return err; |
| } |
| |
| static unsigned long raid5_cache_scan(struct shrinker *shrink, |
| struct shrink_control *sc) |
| { |
| struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); |
| unsigned long ret = SHRINK_STOP; |
| |
| if (mutex_trylock(&conf->cache_size_mutex)) { |
| ret= 0; |
| while (ret < sc->nr_to_scan && |
| conf->max_nr_stripes > conf->min_nr_stripes) { |
| if (drop_one_stripe(conf) == 0) { |
| ret = SHRINK_STOP; |
| break; |
| } |
| ret++; |
| } |
| mutex_unlock(&conf->cache_size_mutex); |
| } |
| return ret; |
| } |
| |
| static unsigned long raid5_cache_count(struct shrinker *shrink, |
| struct shrink_control *sc) |
| { |
| struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); |
| |
| if (conf->max_nr_stripes < conf->min_nr_stripes) |
| /* unlikely, but not impossible */ |
| return 0; |
| return conf->max_nr_stripes - conf->min_nr_stripes; |
| } |
| |
| static struct r5conf *setup_conf(struct mddev *mddev) |
| { |
| struct r5conf *conf; |
| int raid_disk, memory, max_disks; |
| struct md_rdev *rdev; |
| struct disk_info *disk; |
| char pers_name[6]; |
| int i; |
| int group_cnt, worker_cnt_per_group; |
| struct r5worker_group *new_group; |
| |
| if (mddev->new_level != 5 |
| && mddev->new_level != 4 |
| && mddev->new_level != 6) { |
| pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", |
| mdname(mddev), mddev->new_level); |
| return ERR_PTR(-EIO); |
| } |
| if ((mddev->new_level == 5 |
| && !algorithm_valid_raid5(mddev->new_layout)) || |
| (mddev->new_level == 6 |
| && !algorithm_valid_raid6(mddev->new_layout))) { |
| pr_warn("md/raid:%s: layout %d not supported\n", |
| mdname(mddev), mddev->new_layout); |
| return ERR_PTR(-EIO); |
| } |
| if (mddev->new_level == 6 && mddev->raid_disks < 4) { |
| pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", |
| mdname(mddev), mddev->raid_disks); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| if (!mddev->new_chunk_sectors || |
| (mddev->new_chunk_sectors << 9) % PAGE_SIZE || |
| !is_power_of_2(mddev->new_chunk_sectors)) { |
| pr_warn("md/raid:%s: invalid chunk size %d\n", |
| mdname(mddev), mddev->new_chunk_sectors << 9); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); |
| if (conf == NULL) |
| goto abort; |
| /* Don't enable multi-threading by default*/ |
| if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, |
| &new_group)) { |
| conf->group_cnt = group_cnt; |
| conf->worker_cnt_per_group = worker_cnt_per_group; |
| conf->worker_groups = new_group; |
| } else |
| goto abort; |
| spin_lock_init(&conf->device_lock); |
| seqcount_init(&conf->gen_lock); |
| mutex_init(&conf->cache_size_mutex); |
| init_waitqueue_head(&conf->wait_for_quiescent); |
| init_waitqueue_head(&conf->wait_for_stripe); |
| init_waitqueue_head(&conf->wait_for_overlap); |
| INIT_LIST_HEAD(&conf->handle_list); |
| INIT_LIST_HEAD(&conf->hold_list); |
| INIT_LIST_HEAD(&conf->delayed_list); |
| INIT_LIST_HEAD(&conf->bitmap_list); |
| bio_list_init(&conf->return_bi); |
| init_llist_head(&conf->released_stripes); |
| atomic_set(&conf->active_stripes, 0); |
| atomic_set(&conf->preread_active_stripes, 0); |
| atomic_set(&conf->active_aligned_reads, 0); |
| conf->bypass_threshold = BYPASS_THRESHOLD; |
| conf->recovery_disabled = mddev->recovery_disabled - 1; |
| |
| conf->raid_disks = mddev->raid_disks; |
| if (mddev->reshape_position == MaxSector) |
| conf->previous_raid_disks = mddev->raid_disks; |
| else |
| conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; |
| max_disks = max(conf->raid_disks, conf->previous_raid_disks); |
| |
| conf->disks = kzalloc(max_disks * sizeof(struct disk_info), |
| GFP_KERNEL); |
| |
| if (!conf->disks) |
| goto abort; |
| |
| for (i = 0; i < max_disks; i++) { |
| conf->disks[i].extra_page = alloc_page(GFP_KERNEL); |
| if (!conf->disks[i].extra_page) |
| goto abort; |
| } |
| |
| conf->mddev = mddev; |
| |
| if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) |
| goto abort; |
| |
| /* We init hash_locks[0] separately to that it can be used |
| * as the reference lock in the spin_lock_nest_lock() call |
| * in lock_all_device_hash_locks_irq in order to convince |
| * lockdep that we know what we are doing. |
| */ |
| spin_lock_init(conf->hash_locks); |
| for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) |
| spin_lock_init(conf->hash_locks + i); |
| |
| for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) |
| INIT_LIST_HEAD(conf->inactive_list + i); |
| |
| for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) |
| INIT_LIST_HEAD(conf->temp_inactive_list + i); |
| |
| atomic_set(&conf->r5c_cached_full_stripes, 0); |
| INIT_LIST_HEAD(&conf->r5c_full_stripe_list); |
| atomic_set(&conf->r5c_cached_partial_stripes, 0); |
| INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); |
| |
| conf->level = mddev->new_level; |
| conf->chunk_sectors = mddev->new_chunk_sectors; |
| if (raid5_alloc_percpu(conf) != 0) |
| goto abort; |
| |
| pr_debug("raid456: run(%s) called.\n", mdname(mddev)); |
| |
| rdev_for_each(rdev, mddev) { |
| raid_disk = rdev->raid_disk; |
| if (raid_disk >= max_disks |
| || raid_disk < 0 || test_bit(Journal, &rdev->flags)) |
| continue; |
| disk = conf->disks + raid_disk; |
| |
| if (test_bit(Replacement, &rdev->flags)) { |
| if (disk->replacement) |
| goto abort; |
| disk->replacement = rdev; |
| } else { |
| if (disk->rdev) |
| goto abort; |
| disk->rdev = rdev; |
| } |
| |
| if (test_bit(In_sync, &rdev->flags)) { |
| char b[BDEVNAME_SIZE]; |
| pr_info("md/raid:%s: device %s operational as raid disk %d\n", |
| mdname(mddev), bdevname(rdev->bdev, b), raid_disk); |
| } else if (rdev->saved_raid_disk != raid_disk) |
| /* Cannot rely on bitmap to complete recovery */ |
| conf->fullsync = 1; |
| } |
| |
| conf->level = mddev->new_level; |
| if (conf->level == 6) { |
| conf->max_degraded = 2; |
| if (raid6_call.xor_syndrome) |
| conf->rmw_level = PARITY_ENABLE_RMW; |
| else |
| conf->rmw_level = PARITY_DISABLE_RMW; |
| } else { |
| conf->max_degraded = 1; |
| conf->rmw_level = PARITY_ENABLE_RMW; |
| } |
| conf->algorithm = mddev->new_layout; |
| conf->reshape_progress = mddev->reshape_position; |
| if (conf->reshape_progress != MaxSector) { |
| conf->prev_chunk_sectors = mddev->chunk_sectors; |
| conf->prev_algo = mddev->layout; |
| } else { |
| conf->prev_chunk_sectors = conf->chunk_sectors; |
| conf->prev_algo = conf->algorithm; |
| } |
| |
| conf->min_nr_stripes = NR_STRIPES; |
| if (mddev->reshape_position != MaxSector) { |
| int stripes = max_t(int, |
| ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4, |
| ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4); |
| conf->min_nr_stripes = max(NR_STRIPES, stripes); |
| if (conf->min_nr_stripes != NR_STRIPES) |
| pr_info("md/raid:%s: force stripe size %d for reshape\n", |
| mdname(mddev), conf->min_nr_stripes); |
| } |
| memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + |
| max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; |
| atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); |
| if (grow_stripes(conf, conf->min_nr_stripes)) { |
| pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", |
| mdname(mddev), memory); |
| goto abort; |
| } else |
| pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); |
| /* |
| * Losing a stripe head costs more than the time to refill it, |
| * it reduces the queue depth and so can hurt throughput. |
| * So set it rather large, scaled by number of devices. |
| */ |
| conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; |
| conf->shrinker.scan_objects = raid5_cache_scan; |
| conf->shrinker.count_objects = raid5_cache_count; |
| conf->shrinker.batch = 128; |
| conf->shrinker.flags = 0; |
| if (register_shrinker(&conf->shrinker)) { |
| pr_warn("md/raid:%s: couldn't register shrinker.\n", |
| mdname(mddev)); |
| goto abort; |
| } |
| |
| sprintf(pers_name, "raid%d", mddev->new_level); |
| conf->thread = md_register_thread(raid5d, mddev, pers_name); |
| if (!conf->thread) { |
| pr_warn("md/raid:%s: couldn't allocate thread.\n", |
| mdname(mddev)); |
| goto abort; |
| } |
| |
| return conf; |
| |
| abort: |
| if (conf) { |
| free_conf(conf); |
| return ERR_PTR(-EIO); |
| } else |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) |
| { |
| switch (algo) { |
| case ALGORITHM_PARITY_0: |
| if (raid_disk < max_degraded) |
| return 1; |
| break; |
| case ALGORITHM_PARITY_N: |
| if (raid_disk >= raid_disks - max_degraded) |
| return 1; |
| break; |
| case ALGORITHM_PARITY_0_6: |
| if (raid_disk == 0 || |
| raid_disk == raid_disks - 1) |
| return 1; |
| break; |
| case ALGORITHM_LEFT_ASYMMETRIC_6: |
| case ALGORITHM_RIGHT_ASYMMETRIC_6: |
| case ALGORITHM_LEFT_SYMMETRIC_6: |
| case ALGORITHM_RIGHT_SYMMETRIC_6: |
| if (raid_disk == raid_disks - 1) |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int raid5_run(struct mddev *mddev) |
| { |
| struct r5conf *conf; |
| int working_disks = 0; |
| int dirty_parity_disks = 0; |
| struct md_rdev *rdev; |
| struct md_rdev *journal_dev = NULL; |
| sector_t reshape_offset = 0; |
| int i; |
| long long min_offset_diff = 0; |
| int first = 1; |
| |
| if (mddev->recovery_cp != MaxSector) |
| pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", |
| mdname(mddev)); |
| |
| rdev_for_each(rdev, mddev) { |
| long long diff; |
| |
| if (test_bit(Journal, &rdev->flags)) { |
| journal_dev = rdev; |
| continue; |
| } |
| if (rdev->raid_disk < 0) |
| continue; |
| diff = (rdev->new_data_offset - rdev->data_offset); |
| if (first) { |
| min_offset_diff = diff; |
| first = 0; |
| } else if (mddev->reshape_backwards && |
| diff < min_offset_diff) |
| min_offset_diff = diff; |
| else if (!mddev->reshape_backwards && |
| diff > min_offset_diff) |
| min_offset_diff = diff; |
| } |
| |
| if (mddev->reshape_position != MaxSector) { |
| /* Check that we can continue the reshape. |
| * Difficulties arise if the stripe we would write to |
| * next is at or after the stripe we would read from next. |
| * For a reshape that changes the number of devices, this |
| * is only possible for a very short time, and mdadm makes |
| * sure that time appears to have past before assembling |
| * the array. So we fail if that time hasn't passed. |
| * For a reshape that keeps the number of devices the same |
| * mdadm must be monitoring the reshape can keeping the |
| * critical areas read-only and backed up. It will start |
| * the array in read-only mode, so we check for that. |
| */ |
| sector_t here_new, here_old; |
| int old_disks; |
| int max_degraded = (mddev->level == 6 ? 2 : 1); |
| int chunk_sectors; |
| int new_data_disks; |
| |
| if (journal_dev) { |
| pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", |
| mdname(mddev)); |
| return -EINVAL; |
| } |
| |
| if (mddev->new_level != mddev->level) { |
| pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", |
| mdname(mddev)); |
| return -EINVAL; |
| } |
| old_disks = mddev->raid_disks - mddev->delta_disks; |
| /* reshape_position must be on a new-stripe boundary, and one |
| * further up in new geometry must map after here in old |
| * geometry. |
| * If the chunk sizes are different, then as we perform reshape |
| * in units of the largest of the two, reshape_position needs |
| * be a multiple of the largest chunk size times new data disks. |
| */ |
| here_new = mddev->reshape_position; |
| chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); |
| new_data_disks = mddev->raid_disks - max_degraded; |
| if (sector_div(here_new, chunk_sectors * new_data_disks)) { |
| pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", |
| mdname(mddev)); |
| return -EINVAL; |
| } |
| reshape_offset = here_new * chunk_sectors; |
| /* here_new is the stripe we will write to */ |
| here_old = mddev->reshape_position; |
| sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); |
| /* here_old is the first stripe that we might need to read |
| * from */ |
| if (mddev->delta_disks == 0) { |
| /* We cannot be sure it is safe to start an in-place |
| * reshape. It is only safe if user-space is monitoring |
| * and taking constant backups. |
| * mdadm always starts a situation like this in |
| * readonly mode so it can take control before |
| * allowing any writes. So just check for that. |
| */ |
| if (abs(min_offset_diff) >= mddev->chunk_sectors && |
| abs(min_offset_diff) >= mddev->new_chunk_sectors) |
| /* not really in-place - so OK */; |
| else if (mddev->ro == 0) { |
| pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", |
| mdname(mddev)); |
| return -EINVAL; |
| } |
| } else if (mddev->reshape_backwards |
| ? (here_new * chunk_sectors + min_offset_diff <= |
| here_old * chunk_sectors) |
| : (here_new * chunk_sectors >= |
| here_old * chunk_sectors + (-min_offset_diff))) { |
| /* Reading from the same stripe as writing to - bad */ |
| pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", |
| mdname(mddev)); |
| return -EINVAL; |
| } |
| pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); |
| /* OK, we should be able to continue; */ |
| } else { |
| BUG_ON(mddev->level != mddev->new_level); |
| BUG_ON(mddev->layout != mddev->new_layout); |
| BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); |
| BUG_ON(mddev->delta_disks != 0); |
| } |
| |
| if (mddev->private == NULL) |
| conf = setup_conf(mddev); |
| else |
| conf = mddev->private; |
| |
| if (IS_ERR(conf)) |
| return PTR_ERR(conf); |
| |
| if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { |
| if (!journal_dev) { |
| pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", |
| mdname(mddev)); |
| mddev->ro = 1; |
| set_disk_ro(mddev->gendisk, 1); |
| } else if (mddev->recovery_cp == MaxSector) |
| set_bit(MD_JOURNAL_CLEAN, &mddev->flags); |
| } |
| |
| conf->min_offset_diff = min_offset_diff; |
| mddev->thread = conf->thread; |
| conf->thread = NULL; |
| mddev->private = conf; |
| |
| for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; |
| i++) { |
| rdev = conf->disks[i].rdev; |
| if (!rdev && conf->disks[i].replacement) { |
| /* The replacement is all we have yet */ |
| rdev = conf->disks[i].replacement; |
| conf->disks[i].replacement = NULL; |
| clear_bit(Replacement, &rdev->flags); |
| conf->disks[i].rdev = rdev; |
| } |
| if (!rdev) |
| continue; |
| if (conf->disks[i].replacement && |
| conf->reshape_progress != MaxSector) { |
| /* replacements and reshape simply do not mix. */ |
| pr_warn("md: cannot handle concurrent replacement and reshape.\n"); |
| goto abort; |
| } |
| if (test_bit(In_sync, &rdev->flags)) { |
| working_disks++; |
| continue; |
| } |
| /* This disc is not fully in-sync. However if it |
| * just stored parity (beyond the recovery_offset), |
| * when we don't need to be concerned about the |
| * array being dirty. |
| * When reshape goes 'backwards', we never have |
| * partially completed devices, so we only need |
| * to worry about reshape going forwards. |
| */ |
| /* Hack because v0.91 doesn't store recovery_offset properly. */ |
| if (mddev->major_version == 0 && |
| mddev->minor_version > 90) |
| rdev->recovery_offset = reshape_offset; |
| |
| if (rdev->recovery_offset < reshape_offset) { |
| /* We need to check old and new layout */ |
| if (!only_parity(rdev->raid_disk, |
| conf->algorithm, |
| conf->raid_disks, |
| conf->max_degraded)) |
| continue; |
| } |
| if (!only_parity(rdev->raid_disk, |
| conf->prev_algo, |
| conf->previous_raid_disks, |
| conf->max_degraded)) |
| continue; |
| dirty_parity_disks++; |
| } |
| |
| /* |
| * 0 for a fully functional array, 1 or 2 for a degraded array. |
| */ |
| mddev->degraded = raid5_calc_degraded(conf); |
| |
| if (has_failed(conf)) { |
| pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", |
| mdname(mddev), mddev->degraded, conf->raid_disks); |
| goto abort; |
| } |
| |
| /* device size must be a multiple of chunk size */ |
| mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); |
| mddev->resync_max_sectors = mddev->dev_sectors; |
| |
| if (mddev->degraded > dirty_parity_disks && |
| mddev->recovery_cp != MaxSector) { |
| if (mddev->ok_start_degraded) |
| pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", |
| mdname(mddev)); |
| else { |
| pr_crit("md/raid:%s: cannot start dirty degraded array.\n", |
| mdname(mddev)); |
| goto abort; |
| } |
| } |
| |
| pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", |
| mdname(mddev), conf->level, |
| mddev->raid_disks-mddev->degraded, mddev->raid_disks, |
| mddev->new_layout); |
| |
| print_raid5_conf(conf); |
| |
| if (conf->reshape_progress != MaxSector) { |
| conf->reshape_safe = conf->reshape_progress; |
| atomic_set(&conf->reshape_stripes, 0); |
| clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); |
| clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); |
| set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); |
| set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); |
| mddev->sync_thread = md_register_thread(md_do_sync, mddev, |
| "reshape"); |
| } |
| |
| /* Ok, everything is just fine now */ |
| if (mddev->to_remove == &raid5_attrs_group) |
| mddev->to_remove = NULL; |
| else if (mddev->kobj.sd && |
| sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) |
| pr_warn("raid5: failed to create sysfs attributes for %s\n", |
| mdname(mddev)); |
| md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); |
| |
| if (mddev->queue) { |
| int chunk_size; |
| bool discard_supported = true; |
| /* read-ahead size must cover two whole stripes, which |
| * is 2 * (datadisks) * chunksize where 'n' is the |
| * number of raid devices |
| */ |
| int data_disks = conf->previous_raid_disks - conf->max_degraded; |
| int stripe = data_disks * |
| ((mddev->chunk_sectors << 9) / PAGE_SIZE); |
| if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) |
| mddev->queue->backing_dev_info->ra_pages = 2 * stripe; |
| |
| chunk_size = mddev->chunk_sectors << 9; |
| blk_queue_io_min(mddev->queue, chunk_size); |
| blk_queue_io_opt(mddev->queue, chunk_size * |
| (conf->raid_disks - conf->max_degraded)); |
| mddev->queue->limits.raid_partial_stripes_expensive = 1; |
| /* |
| * We can only discard a whole stripe. It doesn't make sense to |
| * discard data disk but write parity disk |
| */ |
| stripe = stripe * PAGE_SIZE; |
| /* Round up to power of 2, as discard handling |
| * currently assumes that */ |
| while ((stripe-1) & stripe) |
| stripe = (stripe | (stripe-1)) + 1; |
| mddev->queue->limits.discard_alignment = stripe; |
| mddev->queue->limits.discard_granularity = stripe; |
| |
| /* |
| * We use 16-bit counter of active stripes in bi_phys_segments |
| * (minus one for over-loaded initialization) |
| */ |
| blk_queue_max_hw_sectors(mddev->queue, 0xfffe * STRIPE_SECTORS); |
| blk_queue_max_discard_sectors(mddev->queue, |
| 0xfffe * STRIPE_SECTORS); |
| |
| /* |
| * unaligned part of discard request will be ignored, so can't |
| * guarantee discard_zeroes_data |
| */ |
| mddev->queue->limits.discard_zeroes_data = 0; |
| |
| blk_queue_max_write_same_sectors(mddev->queue, 0); |
| |
| rdev_for_each(rdev, mddev) { |
| disk_stack_limits(mddev->gendisk, rdev->bdev, |
| rdev->data_offset << 9); |
| disk_stack_limits(mddev->gendisk, rdev->bdev, |
| rdev->new_data_offset << 9); |
| /* |
| * discard_zeroes_data is required, otherwise data |
| * could be lost. Consider a scenario: discard a stripe |
| * (the stripe could be inconsistent if |
| * discard_zeroes_data is 0); write one disk of the |
| * stripe (the stripe could be inconsistent again |
| * depending on which disks are used to calculate |
| * parity); the disk is broken; The stripe data of this |
| * disk is lost. |
| */ |
| if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) || |
| !bdev_get_queue(rdev->bdev)-> |
| limits.discard_zeroes_data) |
| discard_supported = false; |
| /* Unfortunately, discard_zeroes_data is not currently |
| * a guarantee - just a hint. So we only allow DISCARD |
| * if the sysadmin has confirmed that only safe devices |
| * are in use by setting a module parameter. |
| */ |
| if (!devices_handle_discard_safely) { |
| if (discard_supported) { |
| pr_info("md/raid456: discard support disabled due to uncertainty.\n"); |
| pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n"); |
| } |
| discard_supported = false; |
| } |
| } |
| |
| if (discard_supported && |
| mddev->queue->limits.max_discard_sectors >= (stripe >> 9) && |
| mddev->queue->limits.discard_granularity >= stripe) |
| queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, |
| mddev->queue); |
| else |
| queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, |
| mddev->queue); |
| |
| blk_queue_max_hw_sectors(mddev->queue, UINT_MAX); |
| } |
| |
| if (journal_dev) { |
| char b[BDEVNAME_SIZE]; |
| |
| pr_debug("md/raid:%s: using device %s as journal\n", |
| mdname(mddev), bdevname(journal_dev->bdev, b)); |
| if (r5l_init_log(conf, journal_dev)) |
| goto abort; |
| } |
| |
| return 0; |
| abort: |
| md_unregister_thread(&mddev->thread); |
| print_raid5_conf(conf); |
| free_conf(conf); |
| mddev->private = NULL; |
| pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); |
| return -EIO; |
| } |
| |
| static void raid5_free(struct mddev *mddev, void *priv) |
| { |
| struct r5conf *conf = priv; |
| |
| free_conf(conf); |
| mddev->to_remove = &raid5_attrs_group; |
| } |
| |
| static void raid5_status(struct seq_file *seq, struct mddev *mddev) |
| { |
| struct r5conf *conf = mddev->private; |
| int i; |
| |
| seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, |
| conf->chunk_sectors / 2, mddev->layout); |
| seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); |
| rcu_read_lock(); |
| for (i = 0; i < conf->raid_disks; i++) { |
| struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); |
| seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); |
| } |
| rcu_read_unlock(); |
| seq_printf (seq, "]"); |
| } |
| |
| static void print_raid5_conf (struct r5conf *conf) |
| { |
| int i; |
| struct disk_info *tmp; |
| |
| pr_debug("RAID conf printout:\n"); |
| if (!conf) { |
| pr_debug("(conf==NULL)\n"); |
| return; |
| } |
| pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, |
| conf->raid_disks, |
| conf->raid_disks - conf->mddev->degraded); |
| |
| for (i = 0; i < conf->raid_disks; i++) { |
| char b[BDEVNAME_SIZE]; |
| tmp = conf->disks + i; |
| if (tmp->rdev) |
| pr_debug(" disk %d, o:%d, dev:%s\n", |
| i, !test_bit(Faulty, &tmp->rdev->flags), |
| bdevname(tmp->rdev->bdev, b)); |
| } |
| } |
| |
| static int raid5_spare_active(struct mddev *mddev) |
| { |
| int i; |
| struct r5conf *conf = mddev->private; |
| struct disk_info *tmp; |
| int count = 0; |
| unsigned long flags; |
| |
| for (i = 0; i < conf->raid_disks; i++) { |
| tmp = conf->disks + i; |
| if (tmp->replacement |
| && tmp->replacement->recovery_offset == MaxSector |
| && !test_bit(Faulty, &tmp->replacement->flags) |
| && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { |
| /* Replacement has just become active. */ |
| if (!tmp->rdev |
| || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) |
| count++; |
| if (tmp->rdev) { |
| /* Replaced device not technically faulty, |
| * but we need to be sure it gets removed |
| * and never re-added. |
| */ |
| set_bit(Faulty, &tmp->rdev->flags); |
| sysfs_notify_dirent_safe( |
| tmp->rdev->sysfs_state); |
| } |
| sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); |
| } else if (tmp->rdev |
| && tmp->rdev->recovery_offset == MaxSector |
| && !test_bit(Faulty, &tmp->rdev->flags) |
| && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { |
| count++; |
| sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); |
| } |
| } |
| spin_lock_irqsave(&conf->device_lock, flags); |
| mddev->degraded = raid5_calc_degraded(conf); |
| spin_unlock_irqrestore(&conf->device_lock, flags); |
| print_raid5_conf(conf); |
| return count; |
| } |
| |
| static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) |
| { |
| struct r5conf *conf = mddev->private; |
| int err = 0; |
| int number = rdev->raid_disk; |
| struct md_rdev **rdevp; |
| struct disk_info *p = conf->disks + number; |
| |
| print_raid5_conf(conf); |
| if (test_bit(Journal, &rdev->flags) && conf->log) { |
| struct r5l_log *log; |
| /* |
| * we can't wait pending write here, as this is called in |
| * raid5d, wait will deadlock. |
| */ |
| if (atomic_read(&mddev->writes_pending)) |
| return -EBUSY; |
| log = conf->log; |
| conf->log = NULL; |
| synchronize_rcu(); |
| r5l_exit_log(log); |
| return 0; |
| } |
| if (rdev == p->rdev) |
| rdevp = &p->rdev; |
| else if (rdev == p->replacement) |
| rdevp = &p->replacement; |
| else |
| return 0; |
| |
| if (number >= conf->raid_disks && |
| conf->reshape_progress == MaxSector) |
| clear_bit(In_sync, &rdev->flags); |
| |
| if (test_bit(In_sync, &rdev->flags) || |
| atomic_read(&rdev->nr_pending)) { |
| err = -EBUSY; |
| goto abort; |
| } |
| /* Only remove non-faulty devices if recovery |
| * isn't possible. |
| */ |
| if (!test_bit(Faulty, &rdev->flags) && |
| mddev->recovery_disabled != conf->recovery_disabled && |
| !has_failed(conf) && |
| (!p->replacement || p->replacement == rdev) && |
| number < conf->raid_disks) { |
| err = -EBUSY; |
| goto abort; |
| } |
| *rdevp = NULL; |
| if (!test_bit(RemoveSynchronized, &rdev->flags)) { |
| synchronize_rcu(); |
| if (atomic_read(&rdev->nr_pending)) { |
| /* lost the race, try later */ |
| err = -EBUSY; |
| *rdevp = rdev; |
| } |
| } |
| if (p->replacement) { |
| /* We must have just cleared 'rdev' */ |
| p->rdev = p->replacement; |
| clear_bit(Replacement, &p->replacement->flags); |
| smp_mb(); /* Make sure other CPUs may see both as identical |
| * but will never see neither - if they are careful |
| */ |
| p->replacement = NULL; |
| clear_bit(WantReplacement, &rdev->flags); |
| } else |
| /* We might have just removed the Replacement as faulty- |
| * clear the bit just in case |
| */ |
| clear_bit(WantReplacement, &rdev->flags); |
| abort: |
| |
| print_raid5_conf(conf); |
| return err; |
| } |
| |
| static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) |
| { |
| struct r5conf *conf = mddev->private; |
| int err = -EEXIST; |
| int disk; |
| struct disk_info *p; |
| int first = 0; |
| int last = conf->raid_disks - 1; |
| |
| if (test_bit(Journal, &rdev->flags)) { |
| char b[BDEVNAME_SIZE]; |
| if (conf->log) |
| return -EBUSY; |
| |
| rdev->raid_disk = 0; |
| /* |
| * The array is in readonly mode if journal is missing, so no |
| * write requests running. We should be safe |
| */ |
| r5l_init_log(conf, rdev); |
| pr_debug("md/raid:%s: using device %s as journal\n", |
| mdname(mddev), bdevname(rdev->bdev, b)); |
| return 0; |
| } |
| if (mddev->recovery_disabled == conf->recovery_disabled) |
| return -EBUSY; |
| |
| if (rdev->saved_raid_disk < 0 && has_failed(conf)) |
| /* no point adding a device */ |
| return -EINVAL; |
| |
| if (rdev->raid_disk >= 0) |
| first = last = rdev->raid_disk; |
| |
| /* |
| * find the disk ... but prefer rdev->saved_raid_disk |
| * if possible. |
| */ |
| if (rdev->saved_raid_disk >= 0 && |
| rdev->saved_raid_disk >= first && |
| conf->disks[rdev->saved_raid_disk].rdev == NULL) |
| first = rdev->saved_raid_disk; |
| |
| for (disk = first; disk <= last; disk++) { |
| p = conf->disks + disk; |
| if (p->rdev == NULL) { |
| clear_bit(In_sync, &rdev->flags); |
| rdev->raid_disk = disk; |
| err = 0; |
| if (rdev->saved_raid_disk != disk) |
| conf->fullsync = 1; |
| rcu_assign_pointer(p->rdev, rdev); |
| goto out; |
| } |
| } |
| for (disk = first; disk <= last; disk++) { |
| p = conf->disks + disk; |
| if (test_bit(WantReplacement, &p->rdev->flags) && |
| p->replacement == NULL) { |
| clear_bit(In_sync, &rdev->flags); |
| set_bit(Replacement, &rdev->flags); |
| rdev->raid_disk = disk; |
| err = 0; |
| conf->fullsync = 1; |
| rcu_assign_pointer(p->replacement, rdev); |
| break; |
| } |
| } |
| out: |
| print_raid5_conf(conf); |
| return err; |
| } |
| |
| static int raid5_resize(struct mddev *mddev, sector_t sectors) |
| { |
| /* no resync is happening, and there is enough space |
| * on all devices, so we can resize. |
| * We need to make sure resync covers any new space. |
| * If the array is shrinking we should possibly wait until |
| * any io in the removed space completes, but it hardly seems |
| * worth it. |
| */ |
| sector_t newsize; |
| struct r5conf *conf = mddev->private; |
| |
| if (conf->log) |
| return -EINVAL; |
| sectors &= ~((sector_t)conf->chunk_sectors - 1); |
| newsize = raid5_size(mddev, sectors, mddev->raid_disks); |
| if (mddev->external_size && |
| mddev->array_sectors > newsize) |
| return -EINVAL; |
| if (mddev->bitmap) { |
| int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); |
| if (ret) |
| return ret; |
| } |
| md_set_array_sectors(mddev, newsize); |
| set_capacity(mddev->gendisk, mddev->array_sectors); |
| revalidate_disk(mddev->gendisk); |
| if (sectors > mddev->dev_sectors && |
| mddev->recovery_cp > mddev->dev_sectors) { |
| mddev->recovery_cp = mddev->dev_sectors; |
| set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); |
| } |
| mddev->dev_sectors = sectors; |
| mddev->resync_max_sectors = sectors; |
| return 0; |
| } |
| |
| static int check_stripe_cache(struct mddev *mddev) |
| { |
| /* Can only proceed if there are plenty of stripe_heads. |
| * We need a minimum of one full stripe,, and for sensible progress |
| * it is best to have about 4 times that. |
| * If we require 4 times, then the default 256 4K stripe_heads will |
| * allow for chunk sizes up to 256K, which is probably OK. |
| * If the chunk size is greater, user-space should request more |
| * stripe_heads first. |
| */ |
| struct r5conf *conf = mddev->private; |
| if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 |
| > conf->min_nr_stripes || |
| ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 |
| > conf->min_nr_stripes) { |
| pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", |
| mdname(mddev), |
| ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) |
| / STRIPE_SIZE)*4); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int check_reshape(struct mddev *mddev) |
| { |
| struct r5conf *conf = mddev->private; |
| |
| if (conf->log) |
| return -EINVAL; |
| if (mddev->delta_disks == 0 && |
| mddev->new_layout == mddev->layout && |
| mddev->new_chunk_sectors == mddev->chunk_sectors) |
| return 0; /* nothing to do */ |
| if (has_failed(conf)) |
| return -EINVAL; |
| if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { |
| /* We might be able to shrink, but the devices must |
| * be made bigger first. |
| * For raid6, 4 is the minimum size. |
| * Otherwise 2 is the minimum |
| */ |
| int min = 2; |
| if (mddev->level == 6) |
| min = 4; |
| if (mddev->raid_disks + mddev->delta_disks < min) |
| return -EINVAL; |
| } |
| |
| if (!check_stripe_cache(mddev)) |
| return -ENOSPC; |
| |
| if (mddev->new_chunk_sectors > mddev->chunk_sectors || |
| mddev->delta_disks > 0) |
| if (resize_chunks(conf, |
| conf->previous_raid_disks |
| + max(0, mddev->delta_disks), |
| max(mddev->new_chunk_sectors, |
| mddev->chunk_sectors) |
| ) < 0) |
| return -ENOMEM; |
| return resize_stripes(conf, (conf->previous_raid_disks |
| + mddev->delta_disks)); |
| } |
| |
| static int raid5_start_reshape(struct mddev *mddev) |
| { |
| struct r5conf *conf = mddev->private; |
| struct md_rdev *rdev; |
| int spares = 0; |
| unsigned long flags; |
| |
| if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) |
| return -EBUSY; |
| |
| if (!check_stripe_cache(mddev)) |
| return -ENOSPC; |
| |
| if (has_failed(conf)) |
| return -EINVAL; |
| |
| rdev_for_each(rdev, mddev) { |
| if (!test_bit(In_sync, &rdev->flags) |
| && !test_bit(Faulty, &rdev->flags)) |
| spares++; |
| } |
| |
| if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) |
| /* Not enough devices even to make a degraded array |
| * of that size |
| */ |
| return -EINVAL; |
| |
| /* Refuse to reduce size of the array. Any reductions in |
| * array size must be through explicit setting of array_size |
| * attribute. |
| */ |
| if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) |
| < mddev->array_sectors) { |
| pr_warn("md/raid:%s: array size must be reduced before number of disks\n", |
| mdname(mddev)); |
| return -EINVAL; |
| } |
| |
| atomic_set(&conf->reshape_stripes, 0); |
| spin_lock_irq(&conf->device_lock); |
| write_seqcount_begin(&conf->gen_lock); |
| conf->previous_raid_disks = conf->raid_disks; |
| conf->raid_disks += mddev->delta_disks; |
| conf->prev_chunk_sectors = conf->chunk_sectors; |
| conf->chunk_sectors = mddev->new_chunk_sectors; |
| conf->prev_algo = conf->algorithm; |
| conf->algorithm = mddev->new_layout; |
| conf->generation++; |
| /* Code that selects data_offset needs to see the generation update |
| * if reshape_progress has been set - so a memory barrier needed. |
| */ |
| smp_mb(); |
| if (mddev->reshape_backwards) |
| conf->reshape_progress = raid5_size(mddev, 0, 0); |
| else |
| conf->reshape_progress = 0; |
| conf->reshape_safe = conf->reshape_progress; |
| write_seqcount_end(&conf->gen_lock); |
| spin_unlock_irq(&conf->device_lock); |
| |
| /* Now make sure any requests that proceeded on the assumption |
| * the reshape wasn't running - like Discard or Read - have |
| * completed. |
| */ |
| mddev_suspend(mddev); |
| mddev_resume(mddev); |
| |
| /* Add some new drives, as many as will fit. |
| * We know there are enough to make the newly sized array work. |
| * Don't add devices if we are reducing the number of |
| * devices in the array. This is because it is not possible |
| * to correctly record the "partially reconstructed" state of |
| * such devices during the reshape and confusion could result. |
| */ |
| if (mddev->delta_disks >= 0) { |
| rdev_for_each(rdev, mddev) |
| if (rdev->raid_disk < 0 && |
| !test_bit(Faulty, &rdev->flags)) { |
| if (raid5_add_disk(mddev, rdev) == 0) { |
| if (rdev->raid_disk |
| >= conf->previous_raid_disks) |
| set_bit(In_sync, &rdev->flags); |
| else |
| rdev->recovery_offset = 0; |
| |
| if (sysfs_link_rdev(mddev, rdev)) |
| /* Failure here is OK */; |
| } |
| } else if (rdev->raid_disk >= conf->previous_raid_disks |
| && !test_bit(Faulty, &rdev->flags)) { |
| /* This is a spare that was manually added */ |
| set_bit(In_sync, &rdev->flags); |
| } |
| |
| /* When a reshape changes the number of devices, |
| * ->degraded is measured against the larger of the |
| * pre and post number of devices. |
| */ |
| spin_lock_irqsave(&conf->device_lock, flags); |
| mddev->degraded = raid5_calc_degraded(conf); |
| spin_unlock_irqrestore(&conf->device_lock, flags); |
| } |
| mddev->raid_disks = conf->raid_disks; |
| mddev->reshape_position = conf->reshape_progress; |
| set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); |
| |
| clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); |
| clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); |
| clear_bit(MD_RECOVERY_DONE, &mddev->recovery); |
| set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); |
| set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); |
| mddev->sync_thread = md_register_thread(md_do_sync, mddev, |
| "reshape"); |
| if (!mddev->sync_thread) { |
| mddev->recovery = 0; |
| spin_lock_irq(&conf->device_lock); |
| write_seqcount_begin(&conf->gen_lock); |
| mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; |
| mddev->new_chunk_sectors = |
| conf->chunk_sectors = conf->prev_chunk_sectors; |
| mddev->new_layout = conf->algorithm = conf->prev_algo; |
| rdev_for_each(rdev, mddev) |
| rdev->new_data_offset = rdev->data_offset; |
| smp_wmb(); |
| conf->generation --; |
| conf->reshape_progress = MaxSector; |
| mddev->reshape_position = MaxSector; |
| write_seqcount_end(&conf->gen_lock); |
| spin_unlock_irq(&conf->device_lock); |
| return -EAGAIN; |
| } |
| conf->reshape_checkpoint = jiffies; |
| md_wakeup_thread(mddev->sync_thread); |
| md_new_event(mddev); |
| return 0; |
| } |
| |
| /* This is called from the reshape thread and should make any |
| * changes needed in 'conf' |
| */ |
| static void end_reshape(struct r5conf *conf) |
| { |
| |
| if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { |
| struct md_rdev *rdev; |
| |
| spin_lock_irq(&conf->device_lock); |
| conf->previous_raid_disks = conf->raid_disks; |
| rdev_for_each(rdev, conf->mddev) |
| rdev->data_offset = rdev->new_data_offset; |
| smp_wmb(); |
| conf->reshape_progress = MaxSector; |
| conf->mddev->reshape_position = MaxSector; |
| spin_unlock_irq(&conf->device_lock); |
| wake_up(&conf->wait_for_overlap); |
| |
| /* read-ahead size must cover two whole stripes, which is |
| * 2 * (datadisks) * chunksize where 'n' is the number of raid devices |
| */ |
| if (conf->mddev->queue) { |
| int data_disks = conf->raid_disks - conf->max_degraded; |
| int stripe = data_disks * ((conf->chunk_sectors << 9) |
| / PAGE_SIZE); |
| if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) |
| conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; |
| } |
| } |
| } |
| |
| /* This is called from the raid5d thread with mddev_lock held. |
| * It makes config changes to the device. |
| */ |
| static void raid5_finish_reshape(struct mddev *mddev) |
| { |
| struct r5conf *conf = mddev->private; |
| |
| if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { |
| |
| if (mddev->delta_disks > 0) { |
| md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); |
| if (mddev->queue) { |
| set_capacity(mddev->gendisk, mddev->array_sectors); |
| revalidate_disk(mddev->gendisk); |
| } |
| } else { |
| int d; |
| spin_lock_irq(&conf->device_lock); |
| mddev->degraded = raid5_calc_degraded(conf); |
| spin_unlock_irq(&conf->device_lock); |
| for (d = conf->raid_disks ; |
| d < conf->raid_disks - mddev->delta_disks; |
| d++) { |
| struct md_rdev *rdev = conf->disks[d].rdev; |
| if (rdev) |
| clear_bit(In_sync, &rdev->flags); |
| rdev = conf->disks[d].replacement; |
| if (rdev) |
| clear_bit(In_sync, &rdev->flags); |
| } |
| } |
| mddev->layout = conf->algorithm; |
| mddev->chunk_sectors = conf->chunk_sectors; |
| mddev->reshape_position = MaxSector; |
| mddev->delta_disks = 0; |
| mddev->reshape_backwards = 0; |
| } |
| } |
| |
| static void raid5_quiesce(struct mddev *mddev, int state) |
| { |
| struct r5conf *conf = mddev->private; |
| |
| switch(state) { |
| case 2: /* resume for a suspend */ |
| wake_up(&conf->wait_for_overlap); |
| break; |
| |
| case 1: /* stop all writes */ |
| lock_all_device_hash_locks_irq(conf); |
| /* '2' tells resync/reshape to pause so that all |
| * active stripes can drain |
| */ |
| r5c_flush_cache(conf, INT_MAX); |
| conf->quiesce = 2; |
| wait_event_cmd(conf->wait_for_quiescent, |
| atomic_read(&conf->active_stripes) == 0 && |
| atomic_read(&conf->active_aligned_reads) == 0, |
| unlock_all_device_hash_locks_irq(conf), |
| lock_all_device_hash_locks_irq(conf)); |
| conf->quiesce = 1; |
| unlock_all_device_hash_locks_irq(conf); |
| /* allow reshape to continue */ |
| wake_up(&conf->wait_for_overlap); |
| break; |
| |
| case 0: /* re-enable writes */ |
| lock_all_device_hash_locks_irq(conf); |
| conf->quiesce = 0; |
| wake_up(&conf->wait_for_quiescent); |
| wake_up(&conf->wait_for_overlap); |
| unlock_all_device_hash_locks_irq(conf); |
| break; |
| } |
| r5l_quiesce(conf->log, state); |
| } |
| |
| static void *raid45_takeover_raid0(struct mddev *mddev, int level) |
| { |
| struct r0conf *raid0_conf = mddev->private; |
| sector_t sectors; |
| |
| /* for raid0 takeover only one zone is supported */ |
| if (raid0_conf->nr_strip_zones > 1) { |
| pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", |
| mdname(mddev)); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| sectors = raid0_conf->strip_zone[0].zone_end; |
| sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); |
| mddev->dev_sectors = sectors; |
| mddev->new_level = level; |
| mddev->new_layout = ALGORITHM_PARITY_N; |
| mddev->new_chunk_sectors = mddev->chunk_sectors; |
| mddev->raid_disks += 1; |
| mddev->delta_disks = 1; |
| /* make sure it will be not marked as dirty */ |
| mddev->recovery_cp = MaxSector; |
| |
| return setup_conf(mddev); |
| } |
| |
| static void *raid5_takeover_raid1(struct mddev *mddev) |
| { |
| int chunksect; |
| void *ret; |
| |
| if (mddev->raid_disks != 2 || |
| mddev->degraded > 1) |
| return ERR_PTR(-EINVAL); |
| |
| /* Should check if there are write-behind devices? */ |
| |
| chunksect = 64*2; /* 64K by default */ |
| |
| /* The array must be an exact multiple of chunksize */ |
| while (chunksect && (mddev->array_sectors & (chunksect-1))) |
| chunksect >>= 1; |
| |
| if ((chunksect<<9) < STRIPE_SIZE) |
| /* array size does not allow a suitable chunk size */ |
| return ERR_PTR(-EINVAL); |
| |
| mddev->new_level = 5; |
| mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; |
| mddev->new_chunk_sectors = chunksect; |
| |
| ret = setup_conf(mddev); |
| if (!IS_ERR(ret)) |
| mddev_clear_unsupported_flags(mddev, |
| UNSUPPORTED_MDDEV_FLAGS); |
| return ret; |
| } |
| |
| static void *raid5_takeover_raid6(struct mddev *mddev) |
| { |
| int new_layout; |
| |
| switch (mddev->layout) { |
| case ALGORITHM_LEFT_ASYMMETRIC_6: |
| new_layout = ALGORITHM_LEFT_ASYMMETRIC; |
| break; |
| case ALGORITHM_RIGHT_ASYMMETRIC_6: |
| new_layout = ALGORITHM_RIGHT_ASYMMETRIC; |
| break; |
| case ALGORITHM_LEFT_SYMMETRIC_6: |
| new_layout = ALGORITHM_LEFT_SYMMETRIC; |
| break; |
| case ALGORITHM_RIGHT_SYMMETRIC_6: |
| new_layout = ALGORITHM_RIGHT_SYMMETRIC; |
| break; |
| case ALGORITHM_PARITY_0_6: |
| new_layout = ALGORITHM_PARITY_0; |
| break; |
| case ALGORITHM_PARITY_N: |
| new_layout = ALGORITHM_PARITY_N; |
| break; |
| default: |
| return ERR_PTR(-EINVAL); |
| } |
| mddev->new_level = 5; |
| mddev->new_layout = new_layout; |
| mddev->delta_disks = -1; |
| mddev->raid_disks -= 1; |
| return setup_conf(mddev); |
| } |
| |
| static int raid5_check_reshape(struct mddev *mddev) |
| { |
| /* For a 2-drive array, the layout and chunk size can be changed |
| * immediately as not restriping is needed. |
| * For larger arrays we record the new value - after validation |
| * to be used by a reshape pass. |
| */ |
| struct r5conf *conf = mddev->private; |
| int new_chunk = mddev->new_chunk_sectors; |
| |
| if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) |
| return -EINVAL; |
| if (new_chunk > 0) { |
| if (!is_power_of_2(new_chunk)) |
| return -EINVAL; |
| if (new_chunk < (PAGE_SIZE>>9)) |
| return -EINVAL; |
| if (mddev->array_sectors & (new_chunk-1)) |
| /* not factor of array size */ |
| return -EINVAL; |
| } |
| |
| /* They look valid */ |
| |
| if (mddev->raid_disks == 2) { |
| /* can make the change immediately */ |
| if (mddev->new_layout >= 0) { |
| conf->algorithm = mddev->new_layout; |
| mddev->layout = mddev->new_layout; |
| } |
| if (new_chunk > 0) { |
| conf->chunk_sectors = new_chunk ; |
| mddev->chunk_sectors = new_chunk; |
| } |
| set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); |
| md_wakeup_thread(mddev->thread); |
| } |
| return check_reshape(mddev); |
| } |
| |
| static int raid6_check_reshape(struct mddev *mddev) |
| { |
| int new_chunk = mddev->new_chunk_sectors; |
| |
| if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) |
| return -EINVAL; |
| if (new_chunk > 0) { |
| if (!is_power_of_2(new_chunk)) |
| return -EINVAL; |
| if (new_chunk < (PAGE_SIZE >> 9)) |
| return -EINVAL; |
| if (mddev->array_sectors & (new_chunk-1)) |
| /* not factor of array size */ |
| return -EINVAL; |
| } |
| |
| /* They look valid */ |
| return check_reshape(mddev); |
| } |
| |
| static void *raid5_takeover(struct mddev *mddev) |
| { |
| /* raid5 can take over: |
| * raid0 - if there is only one strip zone - make it a raid4 layout |
| * raid1 - if there are two drives. We need to know the chunk size |
| * raid4 - trivial - just use a raid4 layout. |
| * raid6 - Providing it is a *_6 layout |
| */ |
| if (mddev->level == 0) |
| return raid45_takeover_raid0(mddev, 5); |
| if (mddev->level == 1) |
| return raid5_takeover_raid1(mddev); |
| if (mddev->level == 4) { |
| mddev->new_layout = ALGORITHM_PARITY_N; |
| mddev->new_level = 5; |
| return setup_conf(mddev); |
| } |
| if (mddev->level == 6) |
| return raid5_takeover_raid6(mddev); |
| |
| return ERR_PTR(-EINVAL); |
| } |
| |
| static void *raid4_takeover(struct mddev *mddev) |
| { |
| /* raid4 can take over: |
| * raid0 - if there is only one strip zone |
| * raid5 - if layout is right |
| */ |
| if (mddev->level == 0) |
| return raid45_takeover_raid0(mddev, 4); |
| if (mddev->level == 5 && |
| mddev->layout == ALGORITHM_PARITY_N) { |
| mddev->new_layout = 0; |
| mddev->new_level = 4; |
| return setup_conf(mddev); |
| } |
| return ERR_PTR(-EINVAL); |
| } |
| |
| static struct md_personality raid5_personality; |
| |
| static void *raid6_takeover(struct mddev *mddev) |
| { |
| /* Currently can only take over a raid5. We map the |
| * personality to an equivalent raid6 personality |
| * with the Q block at the end. |
| */ |
| int new_layout; |
| |
| if (mddev->pers != &raid5_personality) |
| return ERR_PTR(-EINVAL); |
| if (mddev->degraded > 1) |
| return ERR_PTR(-EINVAL); |
| if (mddev->raid_disks > 253) |
| return ERR_PTR(-EINVAL); |
| if (mddev->raid_disks < 3) |
| return ERR_PTR(-EINVAL); |
| |
| switch (mddev->layout) { |
| case ALGORITHM_LEFT_ASYMMETRIC: |
| new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; |
| break; |
| case ALGORITHM_RIGHT_ASYMMETRIC: |
| new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; |
| break; |
| case ALGORITHM_LEFT_SYMMETRIC: |
| new_layout = ALGORITHM_LEFT_SYMMETRIC_6; |
| break; |
| case ALGORITHM_RIGHT_SYMMETRIC: |
| new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; |
| break; |
| case ALGORITHM_PARITY_0: |
| new_layout = ALGORITHM_PARITY_0_6; |
| break; |
| case ALGORITHM_PARITY_N: |
| new_layout = ALGORITHM_PARITY_N; |
| break; |
| default: |
| return ERR_PTR(-EINVAL); |
| } |
| mddev->new_level = 6; |
| mddev->new_layout = new_layout; |
| mddev->delta_disks = 1; |
| mddev->raid_disks += 1; |
| return setup_conf(mddev); |
| } |
| |
| static struct md_personality raid6_personality = |
| { |
| .name = "raid6", |
| .level = 6, |
| .owner = THIS_MODULE, |
| .make_request = raid5_make_request, |
| .run = raid5_run, |
| .free = raid5_free, |
| .status = raid5_status, |
| .error_handler = raid5_error, |
| .hot_add_disk = raid5_add_disk, |
| .hot_remove_disk= raid5_remove_disk, |
| .spare_active = raid5_spare_active, |
| .sync_request = raid5_sync_request, |
| .resize = raid5_resize, |
| .size = raid5_size, |
| .check_reshape = raid6_check_reshape, |
| .start_reshape = raid5_start_reshape, |
| .finish_reshape = raid5_finish_reshape, |
| .quiesce = raid5_quiesce, |
| .takeover = raid6_takeover, |
| .congested = raid5_congested, |
| }; |
| static struct md_personality raid5_personality = |
| { |
| .name = "raid5", |
| .level = 5, |
| .owner = THIS_MODULE, |
| .make_request = raid5_make_request, |
| .run = raid5_run, |
| .free = raid5_free, |
| .status = raid5_status, |
| .error_handler = raid5_error, |
| .hot_add_disk = raid5_add_disk, |
| .hot_remove_disk= raid5_remove_disk, |
| .spare_active = raid5_spare_active, |
| .sync_request = raid5_sync_request, |
| .resize = raid5_resize, |
| .size = raid5_size, |
| .check_reshape = raid5_check_reshape, |
| .start_reshape = raid5_start_reshape, |
| .finish_reshape = raid5_finish_reshape, |
| .quiesce = raid5_quiesce, |
| .takeover = raid5_takeover, |
| .congested = raid5_congested, |
| }; |
| |
| static struct md_personality raid4_personality = |
| { |
| .name = "raid4", |
| .level = 4, |
| .owner = THIS_MODULE, |
| .make_request = raid5_make_request, |
| .run = raid5_run, |
| .free = raid5_free, |
| .status = raid5_status, |
| .error_handler = raid5_error, |
| .hot_add_disk = raid5_add_disk, |
| .hot_remove_disk= raid5_remove_disk, |
| .spare_active = raid5_spare_active, |
| .sync_request = raid5_sync_request, |
| .resize = raid5_resize, |
| .size = raid5_size, |
| .check_reshape = raid5_check_reshape, |
| .start_reshape = raid5_start_reshape, |
| .finish_reshape = raid5_finish_reshape, |
| .quiesce = raid5_quiesce, |
| .takeover = raid4_takeover, |
| .congested = raid5_congested, |
| }; |
| |
| static int __init raid5_init(void) |
| { |
| int ret; |
| |
| raid5_wq = alloc_workqueue("raid5wq", |
| WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); |
| if (!raid5_wq) |
| return -ENOMEM; |
| |
| ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, |
| "md/raid5:prepare", |
| raid456_cpu_up_prepare, |
| raid456_cpu_dead); |
| if (ret) { |
| destroy_workqueue(raid5_wq); |
| return ret; |
| } |
| register_md_personality(&raid6_personality); |
| register_md_personality(&raid5_personality); |
| register_md_personality(&raid4_personality); |
| return 0; |
| } |
| |
| static void raid5_exit(void) |
| { |
| unregister_md_personality(&raid6_personality); |
| unregister_md_personality(&raid5_personality); |
| unregister_md_personality(&raid4_personality); |
| cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); |
| destroy_workqueue(raid5_wq); |
| } |
| |
| module_init(raid5_init); |
| module_exit(raid5_exit); |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); |
| MODULE_ALIAS("md-personality-4"); /* RAID5 */ |
| MODULE_ALIAS("md-raid5"); |
| MODULE_ALIAS("md-raid4"); |
| MODULE_ALIAS("md-level-5"); |
| MODULE_ALIAS("md-level-4"); |
| MODULE_ALIAS("md-personality-8"); /* RAID6 */ |
| MODULE_ALIAS("md-raid6"); |
| MODULE_ALIAS("md-level-6"); |
| |
| /* This used to be two separate modules, they were: */ |
| MODULE_ALIAS("raid5"); |
| MODULE_ALIAS("raid6"); |