blob: 7f57f30f88636c6e9908cab029f6c46572f9bbc7 [file] [log] [blame]
/*
* Copyright (C) 2016 Cavium, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*/
#include "cptvf.h"
#include "request_manager.h"
/**
* get_free_pending_entry - get free entry from pending queue
* @param pqinfo: pending_qinfo structure
* @param qno: queue number
*/
static struct pending_entry *get_free_pending_entry(struct pending_queue *q,
int qlen)
{
struct pending_entry *ent = NULL;
ent = &q->head[q->rear];
if (unlikely(ent->busy)) {
ent = NULL;
goto no_free_entry;
}
q->rear++;
if (unlikely(q->rear == qlen))
q->rear = 0;
no_free_entry:
return ent;
}
static inline void pending_queue_inc_front(struct pending_qinfo *pqinfo,
int qno)
{
struct pending_queue *queue = &pqinfo->queue[qno];
queue->front++;
if (unlikely(queue->front == pqinfo->qlen))
queue->front = 0;
}
static int setup_sgio_components(struct cpt_vf *cptvf, struct buf_ptr *list,
int buf_count, u8 *buffer)
{
int ret = 0, i, j;
int components;
struct sglist_component *sg_ptr = NULL;
struct pci_dev *pdev = cptvf->pdev;
if (unlikely(!list)) {
dev_err(&pdev->dev, "Input List pointer is NULL\n");
return -EFAULT;
}
for (i = 0; i < buf_count; i++) {
if (likely(list[i].vptr)) {
list[i].dma_addr = dma_map_single(&pdev->dev,
list[i].vptr,
list[i].size,
DMA_BIDIRECTIONAL);
if (unlikely(dma_mapping_error(&pdev->dev,
list[i].dma_addr))) {
dev_err(&pdev->dev, "DMA map kernel buffer failed for component: %d\n",
i);
ret = -EIO;
goto sg_cleanup;
}
}
}
components = buf_count / 4;
sg_ptr = (struct sglist_component *)buffer;
for (i = 0; i < components; i++) {
sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size);
sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size);
sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size);
sg_ptr->u.s.len3 = cpu_to_be16(list[i * 4 + 3].size);
sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr);
sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr);
sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr);
sg_ptr->ptr3 = cpu_to_be64(list[i * 4 + 3].dma_addr);
sg_ptr++;
}
components = buf_count % 4;
switch (components) {
case 3:
sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size);
sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr);
/* Fall through */
case 2:
sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size);
sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr);
/* Fall through */
case 1:
sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size);
sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr);
break;
default:
break;
}
return ret;
sg_cleanup:
for (j = 0; j < i; j++) {
if (list[j].dma_addr) {
dma_unmap_single(&pdev->dev, list[i].dma_addr,
list[i].size, DMA_BIDIRECTIONAL);
}
list[j].dma_addr = 0;
}
return ret;
}
static inline int setup_sgio_list(struct cpt_vf *cptvf,
struct cpt_info_buffer *info,
struct cpt_request_info *req)
{
u16 g_sz_bytes = 0, s_sz_bytes = 0;
int ret = 0;
struct pci_dev *pdev = cptvf->pdev;
if (req->incnt > MAX_SG_IN_CNT || req->outcnt > MAX_SG_OUT_CNT) {
dev_err(&pdev->dev, "Request SG components are higher than supported\n");
ret = -EINVAL;
goto scatter_gather_clean;
}
/* Setup gather (input) components */
g_sz_bytes = ((req->incnt + 3) / 4) * sizeof(struct sglist_component);
info->gather_components = kzalloc(g_sz_bytes, GFP_KERNEL);
if (!info->gather_components) {
ret = -ENOMEM;
goto scatter_gather_clean;
}
ret = setup_sgio_components(cptvf, req->in,
req->incnt,
info->gather_components);
if (ret) {
dev_err(&pdev->dev, "Failed to setup gather list\n");
ret = -EFAULT;
goto scatter_gather_clean;
}
/* Setup scatter (output) components */
s_sz_bytes = ((req->outcnt + 3) / 4) * sizeof(struct sglist_component);
info->scatter_components = kzalloc(s_sz_bytes, GFP_KERNEL);
if (!info->scatter_components) {
ret = -ENOMEM;
goto scatter_gather_clean;
}
ret = setup_sgio_components(cptvf, req->out,
req->outcnt,
info->scatter_components);
if (ret) {
dev_err(&pdev->dev, "Failed to setup gather list\n");
ret = -EFAULT;
goto scatter_gather_clean;
}
/* Create and initialize DPTR */
info->dlen = g_sz_bytes + s_sz_bytes + SG_LIST_HDR_SIZE;
info->in_buffer = kzalloc(info->dlen, GFP_KERNEL);
if (!info->in_buffer) {
ret = -ENOMEM;
goto scatter_gather_clean;
}
((u16 *)info->in_buffer)[0] = req->outcnt;
((u16 *)info->in_buffer)[1] = req->incnt;
((u16 *)info->in_buffer)[2] = 0;
((u16 *)info->in_buffer)[3] = 0;
*(u64 *)info->in_buffer = cpu_to_be64p((u64 *)info->in_buffer);
memcpy(&info->in_buffer[8], info->gather_components,
g_sz_bytes);
memcpy(&info->in_buffer[8 + g_sz_bytes],
info->scatter_components, s_sz_bytes);
info->dptr_baddr = dma_map_single(&pdev->dev,
(void *)info->in_buffer,
info->dlen,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(&pdev->dev, info->dptr_baddr)) {
dev_err(&pdev->dev, "Mapping DPTR Failed %d\n", info->dlen);
ret = -EIO;
goto scatter_gather_clean;
}
/* Create and initialize RPTR */
info->out_buffer = kzalloc(COMPLETION_CODE_SIZE, GFP_KERNEL);
if (!info->out_buffer) {
ret = -ENOMEM;
goto scatter_gather_clean;
}
*((u64 *)info->out_buffer) = ~((u64)COMPLETION_CODE_INIT);
info->alternate_caddr = (u64 *)info->out_buffer;
info->rptr_baddr = dma_map_single(&pdev->dev,
(void *)info->out_buffer,
COMPLETION_CODE_SIZE,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(&pdev->dev, info->rptr_baddr)) {
dev_err(&pdev->dev, "Mapping RPTR Failed %d\n",
COMPLETION_CODE_SIZE);
ret = -EIO;
goto scatter_gather_clean;
}
return 0;
scatter_gather_clean:
return ret;
}
int send_cpt_command(struct cpt_vf *cptvf, union cpt_inst_s *cmd,
u32 qno)
{
struct pci_dev *pdev = cptvf->pdev;
struct command_qinfo *qinfo = NULL;
struct command_queue *queue;
struct command_chunk *chunk;
u8 *ent;
int ret = 0;
if (unlikely(qno >= cptvf->nr_queues)) {
dev_err(&pdev->dev, "Invalid queue (qno: %d, nr_queues: %d)\n",
qno, cptvf->nr_queues);
return -EINVAL;
}
qinfo = &cptvf->cqinfo;
queue = &qinfo->queue[qno];
/* lock commad queue */
spin_lock(&queue->lock);
ent = &queue->qhead->head[queue->idx * qinfo->cmd_size];
memcpy(ent, (void *)cmd, qinfo->cmd_size);
if (++queue->idx >= queue->qhead->size / 64) {
struct hlist_node *node;
hlist_for_each(node, &queue->chead) {
chunk = hlist_entry(node, struct command_chunk,
nextchunk);
if (chunk == queue->qhead) {
continue;
} else {
queue->qhead = chunk;
break;
}
}
queue->idx = 0;
}
/* make sure all memory stores are done before ringing doorbell */
smp_wmb();
cptvf_write_vq_doorbell(cptvf, 1);
/* unlock command queue */
spin_unlock(&queue->lock);
return ret;
}
void do_request_cleanup(struct cpt_vf *cptvf,
struct cpt_info_buffer *info)
{
int i;
struct pci_dev *pdev = cptvf->pdev;
struct cpt_request_info *req;
if (info->dptr_baddr)
dma_unmap_single(&pdev->dev, info->dptr_baddr,
info->dlen, DMA_BIDIRECTIONAL);
if (info->rptr_baddr)
dma_unmap_single(&pdev->dev, info->rptr_baddr,
COMPLETION_CODE_SIZE, DMA_BIDIRECTIONAL);
if (info->comp_baddr)
dma_unmap_single(&pdev->dev, info->comp_baddr,
sizeof(union cpt_res_s), DMA_BIDIRECTIONAL);
if (info->req) {
req = info->req;
for (i = 0; i < req->outcnt; i++) {
if (req->out[i].dma_addr)
dma_unmap_single(&pdev->dev,
req->out[i].dma_addr,
req->out[i].size,
DMA_BIDIRECTIONAL);
}
for (i = 0; i < req->incnt; i++) {
if (req->in[i].dma_addr)
dma_unmap_single(&pdev->dev,
req->in[i].dma_addr,
req->in[i].size,
DMA_BIDIRECTIONAL);
}
}
if (info->scatter_components)
kzfree(info->scatter_components);
if (info->gather_components)
kzfree(info->gather_components);
if (info->out_buffer)
kzfree(info->out_buffer);
if (info->in_buffer)
kzfree(info->in_buffer);
if (info->completion_addr)
kzfree((void *)info->completion_addr);
kzfree(info);
}
void do_post_process(struct cpt_vf *cptvf, struct cpt_info_buffer *info)
{
struct pci_dev *pdev = cptvf->pdev;
if (!info || !cptvf) {
dev_err(&pdev->dev, "Input params are incorrect for post processing\n");
return;
}
do_request_cleanup(cptvf, info);
}
static inline void process_pending_queue(struct cpt_vf *cptvf,
struct pending_qinfo *pqinfo,
int qno)
{
struct pci_dev *pdev = cptvf->pdev;
struct pending_queue *pqueue = &pqinfo->queue[qno];
struct pending_entry *pentry = NULL;
struct cpt_info_buffer *info = NULL;
union cpt_res_s *status = NULL;
unsigned char ccode;
while (1) {
spin_lock_bh(&pqueue->lock);
pentry = &pqueue->head[pqueue->front];
if (unlikely(!pentry->busy)) {
spin_unlock_bh(&pqueue->lock);
break;
}
info = (struct cpt_info_buffer *)pentry->post_arg;
if (unlikely(!info)) {
dev_err(&pdev->dev, "Pending Entry post arg NULL\n");
pending_queue_inc_front(pqinfo, qno);
spin_unlock_bh(&pqueue->lock);
continue;
}
status = (union cpt_res_s *)pentry->completion_addr;
ccode = status->s.compcode;
if ((status->s.compcode == CPT_COMP_E_FAULT) ||
(status->s.compcode == CPT_COMP_E_SWERR)) {
dev_err(&pdev->dev, "Request failed with %s\n",
(status->s.compcode == CPT_COMP_E_FAULT) ?
"DMA Fault" : "Software error");
pentry->completion_addr = NULL;
pentry->busy = false;
atomic64_dec((&pqueue->pending_count));
pentry->post_arg = NULL;
pending_queue_inc_front(pqinfo, qno);
do_request_cleanup(cptvf, info);
spin_unlock_bh(&pqueue->lock);
break;
} else if (status->s.compcode == COMPLETION_CODE_INIT) {
/* check for timeout */
if (time_after_eq(jiffies,
(info->time_in +
(CPT_COMMAND_TIMEOUT * HZ)))) {
dev_err(&pdev->dev, "Request timed out");
pentry->completion_addr = NULL;
pentry->busy = false;
atomic64_dec((&pqueue->pending_count));
pentry->post_arg = NULL;
pending_queue_inc_front(pqinfo, qno);
do_request_cleanup(cptvf, info);
spin_unlock_bh(&pqueue->lock);
break;
} else if ((*info->alternate_caddr ==
(~COMPLETION_CODE_INIT)) &&
(info->extra_time < TIME_IN_RESET_COUNT)) {
info->time_in = jiffies;
info->extra_time++;
spin_unlock_bh(&pqueue->lock);
break;
}
}
pentry->completion_addr = NULL;
pentry->busy = false;
pentry->post_arg = NULL;
atomic64_dec((&pqueue->pending_count));
pending_queue_inc_front(pqinfo, qno);
spin_unlock_bh(&pqueue->lock);
do_post_process(info->cptvf, info);
/*
* Calling callback after we find
* that the request has been serviced
*/
pentry->callback(ccode, pentry->callback_arg);
}
}
int process_request(struct cpt_vf *cptvf, struct cpt_request_info *req)
{
int ret = 0, clear = 0, queue = 0;
struct cpt_info_buffer *info = NULL;
struct cptvf_request *cpt_req = NULL;
union ctrl_info *ctrl = NULL;
union cpt_res_s *result = NULL;
struct pending_entry *pentry = NULL;
struct pending_queue *pqueue = NULL;
struct pci_dev *pdev = cptvf->pdev;
u8 group = 0;
struct cpt_vq_command vq_cmd;
union cpt_inst_s cptinst;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (unlikely(!info)) {
dev_err(&pdev->dev, "Unable to allocate memory for info_buffer\n");
return -ENOMEM;
}
cpt_req = (struct cptvf_request *)&req->req;
ctrl = (union ctrl_info *)&req->ctrl;
info->cptvf = cptvf;
group = ctrl->s.grp;
ret = setup_sgio_list(cptvf, info, req);
if (ret) {
dev_err(&pdev->dev, "Setting up SG list failed");
goto request_cleanup;
}
cpt_req->dlen = info->dlen;
/*
* Get buffer for union cpt_res_s response
* structure and its physical address
*/
info->completion_addr = kzalloc(sizeof(union cpt_res_s), GFP_KERNEL);
if (unlikely(!info->completion_addr)) {
dev_err(&pdev->dev, "Unable to allocate memory for completion_addr\n");
return -ENOMEM;
}
result = (union cpt_res_s *)info->completion_addr;
result->s.compcode = COMPLETION_CODE_INIT;
info->comp_baddr = dma_map_single(&pdev->dev,
(void *)info->completion_addr,
sizeof(union cpt_res_s),
DMA_BIDIRECTIONAL);
if (dma_mapping_error(&pdev->dev, info->comp_baddr)) {
dev_err(&pdev->dev, "mapping compptr Failed %lu\n",
sizeof(union cpt_res_s));
ret = -EFAULT;
goto request_cleanup;
}
/* Fill the VQ command */
vq_cmd.cmd.u64 = 0;
vq_cmd.cmd.s.opcode = cpu_to_be16(cpt_req->opcode.flags);
vq_cmd.cmd.s.param1 = cpu_to_be16(cpt_req->param1);
vq_cmd.cmd.s.param2 = cpu_to_be16(cpt_req->param2);
vq_cmd.cmd.s.dlen = cpu_to_be16(cpt_req->dlen);
/* 64-bit swap for microcode data reads, not needed for addresses*/
vq_cmd.cmd.u64 = cpu_to_be64(vq_cmd.cmd.u64);
vq_cmd.dptr = info->dptr_baddr;
vq_cmd.rptr = info->rptr_baddr;
vq_cmd.cptr.u64 = 0;
vq_cmd.cptr.s.grp = group;
/* Get Pending Entry to submit command */
/* Always queue 0, because 1 queue per VF */
queue = 0;
pqueue = &cptvf->pqinfo.queue[queue];
if (atomic64_read(&pqueue->pending_count) > PENDING_THOLD) {
dev_err(&pdev->dev, "pending threshold reached\n");
process_pending_queue(cptvf, &cptvf->pqinfo, queue);
}
get_pending_entry:
spin_lock_bh(&pqueue->lock);
pentry = get_free_pending_entry(pqueue, cptvf->pqinfo.qlen);
if (unlikely(!pentry)) {
spin_unlock_bh(&pqueue->lock);
if (clear == 0) {
process_pending_queue(cptvf, &cptvf->pqinfo, queue);
clear = 1;
goto get_pending_entry;
}
dev_err(&pdev->dev, "Get free entry failed\n");
dev_err(&pdev->dev, "queue: %d, rear: %d, front: %d\n",
queue, pqueue->rear, pqueue->front);
ret = -EFAULT;
goto request_cleanup;
}
pentry->completion_addr = info->completion_addr;
pentry->post_arg = (void *)info;
pentry->callback = req->callback;
pentry->callback_arg = req->callback_arg;
info->pentry = pentry;
pentry->busy = true;
atomic64_inc(&pqueue->pending_count);
/* Send CPT command */
info->pentry = pentry;
info->time_in = jiffies;
info->req = req;
/* Create the CPT_INST_S type command for HW intrepretation */
cptinst.s.doneint = true;
cptinst.s.res_addr = (u64)info->comp_baddr;
cptinst.s.tag = 0;
cptinst.s.grp = 0;
cptinst.s.wq_ptr = 0;
cptinst.s.ei0 = vq_cmd.cmd.u64;
cptinst.s.ei1 = vq_cmd.dptr;
cptinst.s.ei2 = vq_cmd.rptr;
cptinst.s.ei3 = vq_cmd.cptr.u64;
ret = send_cpt_command(cptvf, &cptinst, queue);
spin_unlock_bh(&pqueue->lock);
if (unlikely(ret)) {
dev_err(&pdev->dev, "Send command failed for AE\n");
ret = -EFAULT;
goto request_cleanup;
}
return 0;
request_cleanup:
dev_dbg(&pdev->dev, "Failed to submit CPT command\n");
do_request_cleanup(cptvf, info);
return ret;
}
void vq_post_process(struct cpt_vf *cptvf, u32 qno)
{
struct pci_dev *pdev = cptvf->pdev;
if (unlikely(qno > cptvf->nr_queues)) {
dev_err(&pdev->dev, "Request for post processing on invalid pending queue: %u\n",
qno);
return;
}
process_pending_queue(cptvf, &cptvf->pqinfo, qno);
}
int cptvf_do_request(void *vfdev, struct cpt_request_info *req)
{
struct cpt_vf *cptvf = (struct cpt_vf *)vfdev;
struct pci_dev *pdev = cptvf->pdev;
if (!cpt_device_ready(cptvf)) {
dev_err(&pdev->dev, "CPT Device is not ready");
return -ENODEV;
}
if ((cptvf->vftype == SE_TYPES) && (!req->ctrl.s.se_req)) {
dev_err(&pdev->dev, "CPTVF-%d of SE TYPE got AE request",
cptvf->vfid);
return -EINVAL;
} else if ((cptvf->vftype == AE_TYPES) && (req->ctrl.s.se_req)) {
dev_err(&pdev->dev, "CPTVF-%d of AE TYPE got SE request",
cptvf->vfid);
return -EINVAL;
}
return process_request(cptvf, req);
}