| /* audit.c -- Auditing support |
| * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. |
| * System-call specific features have moved to auditsc.c |
| * |
| * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| * Written by Rickard E. (Rik) Faith <faith@redhat.com> |
| * |
| * Goals: 1) Integrate fully with SELinux. |
| * 2) Minimal run-time overhead: |
| * a) Minimal when syscall auditing is disabled (audit_enable=0). |
| * b) Small when syscall auditing is enabled and no audit record |
| * is generated (defer as much work as possible to record |
| * generation time): |
| * i) context is allocated, |
| * ii) names from getname are stored without a copy, and |
| * iii) inode information stored from path_lookup. |
| * 3) Ability to disable syscall auditing at boot time (audit=0). |
| * 4) Usable by other parts of the kernel (if audit_log* is called, |
| * then a syscall record will be generated automatically for the |
| * current syscall). |
| * 5) Netlink interface to user-space. |
| * 6) Support low-overhead kernel-based filtering to minimize the |
| * information that must be passed to user-space. |
| * |
| * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ |
| */ |
| |
| #include <linux/init.h> |
| #include <asm/atomic.h> |
| #include <asm/types.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/err.h> |
| #include <linux/kthread.h> |
| |
| #include <linux/audit.h> |
| |
| #include <net/sock.h> |
| #include <linux/skbuff.h> |
| #include <linux/netlink.h> |
| |
| /* No auditing will take place until audit_initialized != 0. |
| * (Initialization happens after skb_init is called.) */ |
| static int audit_initialized; |
| |
| /* No syscall auditing will take place unless audit_enabled != 0. */ |
| int audit_enabled; |
| |
| /* Default state when kernel boots without any parameters. */ |
| static int audit_default; |
| |
| /* If auditing cannot proceed, audit_failure selects what happens. */ |
| static int audit_failure = AUDIT_FAIL_PRINTK; |
| |
| /* If audit records are to be written to the netlink socket, audit_pid |
| * contains the (non-zero) pid. */ |
| int audit_pid; |
| |
| /* If audit_limit is non-zero, limit the rate of sending audit records |
| * to that number per second. This prevents DoS attacks, but results in |
| * audit records being dropped. */ |
| static int audit_rate_limit; |
| |
| /* Number of outstanding audit_buffers allowed. */ |
| static int audit_backlog_limit = 64; |
| |
| /* The identity of the user shutting down the audit system. */ |
| uid_t audit_sig_uid = -1; |
| pid_t audit_sig_pid = -1; |
| |
| /* Records can be lost in several ways: |
| 0) [suppressed in audit_alloc] |
| 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] |
| 2) out of memory in audit_log_move [alloc_skb] |
| 3) suppressed due to audit_rate_limit |
| 4) suppressed due to audit_backlog_limit |
| */ |
| static atomic_t audit_lost = ATOMIC_INIT(0); |
| |
| /* The netlink socket. */ |
| static struct sock *audit_sock; |
| |
| /* The audit_freelist is a list of pre-allocated audit buffers (if more |
| * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of |
| * being placed on the freelist). */ |
| static DEFINE_SPINLOCK(audit_freelist_lock); |
| static int audit_freelist_count = 0; |
| static LIST_HEAD(audit_freelist); |
| |
| static struct sk_buff_head audit_skb_queue; |
| static struct task_struct *kauditd_task; |
| static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); |
| |
| /* There are three lists of rules -- one to search at task creation |
| * time, one to search at syscall entry time, and another to search at |
| * syscall exit time. */ |
| static LIST_HEAD(audit_tsklist); |
| static LIST_HEAD(audit_entlist); |
| static LIST_HEAD(audit_extlist); |
| |
| /* The netlink socket is only to be read by 1 CPU, which lets us assume |
| * that list additions and deletions never happen simultaneously in |
| * auditsc.c */ |
| static DECLARE_MUTEX(audit_netlink_sem); |
| |
| /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting |
| * audit records. Since printk uses a 1024 byte buffer, this buffer |
| * should be at least that large. */ |
| #define AUDIT_BUFSIZ 1024 |
| |
| /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the |
| * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ |
| #define AUDIT_MAXFREE (2*NR_CPUS) |
| |
| /* The audit_buffer is used when formatting an audit record. The caller |
| * locks briefly to get the record off the freelist or to allocate the |
| * buffer, and locks briefly to send the buffer to the netlink layer or |
| * to place it on a transmit queue. Multiple audit_buffers can be in |
| * use simultaneously. */ |
| struct audit_buffer { |
| struct list_head list; |
| struct sk_buff *skb; /* formatted skb ready to send */ |
| struct audit_context *ctx; /* NULL or associated context */ |
| }; |
| |
| static void audit_set_pid(struct audit_buffer *ab, pid_t pid) |
| { |
| struct nlmsghdr *nlh = (struct nlmsghdr *)ab->skb->data; |
| nlh->nlmsg_pid = pid; |
| } |
| |
| struct audit_entry { |
| struct list_head list; |
| struct audit_rule rule; |
| }; |
| |
| static void audit_panic(const char *message) |
| { |
| switch (audit_failure) |
| { |
| case AUDIT_FAIL_SILENT: |
| break; |
| case AUDIT_FAIL_PRINTK: |
| printk(KERN_ERR "audit: %s\n", message); |
| break; |
| case AUDIT_FAIL_PANIC: |
| panic("audit: %s\n", message); |
| break; |
| } |
| } |
| |
| static inline int audit_rate_check(void) |
| { |
| static unsigned long last_check = 0; |
| static int messages = 0; |
| static DEFINE_SPINLOCK(lock); |
| unsigned long flags; |
| unsigned long now; |
| unsigned long elapsed; |
| int retval = 0; |
| |
| if (!audit_rate_limit) return 1; |
| |
| spin_lock_irqsave(&lock, flags); |
| if (++messages < audit_rate_limit) { |
| retval = 1; |
| } else { |
| now = jiffies; |
| elapsed = now - last_check; |
| if (elapsed > HZ) { |
| last_check = now; |
| messages = 0; |
| retval = 1; |
| } |
| } |
| spin_unlock_irqrestore(&lock, flags); |
| |
| return retval; |
| } |
| |
| /* Emit at least 1 message per second, even if audit_rate_check is |
| * throttling. */ |
| void audit_log_lost(const char *message) |
| { |
| static unsigned long last_msg = 0; |
| static DEFINE_SPINLOCK(lock); |
| unsigned long flags; |
| unsigned long now; |
| int print; |
| |
| atomic_inc(&audit_lost); |
| |
| print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); |
| |
| if (!print) { |
| spin_lock_irqsave(&lock, flags); |
| now = jiffies; |
| if (now - last_msg > HZ) { |
| print = 1; |
| last_msg = now; |
| } |
| spin_unlock_irqrestore(&lock, flags); |
| } |
| |
| if (print) { |
| printk(KERN_WARNING |
| "audit: audit_lost=%d audit_rate_limit=%d audit_backlog_limit=%d\n", |
| atomic_read(&audit_lost), |
| audit_rate_limit, |
| audit_backlog_limit); |
| audit_panic(message); |
| } |
| |
| } |
| |
| static int audit_set_rate_limit(int limit, uid_t loginuid) |
| { |
| int old = audit_rate_limit; |
| audit_rate_limit = limit; |
| audit_log(NULL, AUDIT_CONFIG_CHANGE, |
| "audit_rate_limit=%d old=%d by auid=%u", |
| audit_rate_limit, old, loginuid); |
| return old; |
| } |
| |
| static int audit_set_backlog_limit(int limit, uid_t loginuid) |
| { |
| int old = audit_backlog_limit; |
| audit_backlog_limit = limit; |
| audit_log(NULL, AUDIT_CONFIG_CHANGE, |
| "audit_backlog_limit=%d old=%d by auid=%u", |
| audit_backlog_limit, old, loginuid); |
| return old; |
| } |
| |
| static int audit_set_enabled(int state, uid_t loginuid) |
| { |
| int old = audit_enabled; |
| if (state != 0 && state != 1) |
| return -EINVAL; |
| audit_enabled = state; |
| audit_log(NULL, AUDIT_CONFIG_CHANGE, |
| "audit_enabled=%d old=%d by auid=%u", |
| audit_enabled, old, loginuid); |
| return old; |
| } |
| |
| static int audit_set_failure(int state, uid_t loginuid) |
| { |
| int old = audit_failure; |
| if (state != AUDIT_FAIL_SILENT |
| && state != AUDIT_FAIL_PRINTK |
| && state != AUDIT_FAIL_PANIC) |
| return -EINVAL; |
| audit_failure = state; |
| audit_log(NULL, AUDIT_CONFIG_CHANGE, |
| "audit_failure=%d old=%d by auid=%u", |
| audit_failure, old, loginuid); |
| return old; |
| } |
| |
| int kauditd_thread(void *dummy) |
| { |
| struct sk_buff *skb; |
| |
| while (1) { |
| skb = skb_dequeue(&audit_skb_queue); |
| if (skb) { |
| if (audit_pid) { |
| int err = netlink_unicast(audit_sock, skb, audit_pid, 0); |
| if (err < 0) { |
| BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */ |
| printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid); |
| audit_pid = 0; |
| } |
| } else { |
| printk(KERN_ERR "%s\n", skb->data + NLMSG_SPACE(0)); |
| kfree_skb(skb); |
| } |
| } else { |
| DECLARE_WAITQUEUE(wait, current); |
| set_current_state(TASK_INTERRUPTIBLE); |
| add_wait_queue(&kauditd_wait, &wait); |
| |
| if (!skb_queue_len(&audit_skb_queue)) |
| schedule(); |
| |
| __set_current_state(TASK_RUNNING); |
| remove_wait_queue(&kauditd_wait, &wait); |
| } |
| } |
| } |
| |
| void audit_send_reply(int pid, int seq, int type, int done, int multi, |
| void *payload, int size) |
| { |
| struct sk_buff *skb; |
| struct nlmsghdr *nlh; |
| int len = NLMSG_SPACE(size); |
| void *data; |
| int flags = multi ? NLM_F_MULTI : 0; |
| int t = done ? NLMSG_DONE : type; |
| |
| skb = alloc_skb(len, GFP_KERNEL); |
| if (!skb) |
| return; |
| |
| nlh = NLMSG_PUT(skb, pid, seq, t, size); |
| nlh->nlmsg_flags = flags; |
| data = NLMSG_DATA(nlh); |
| memcpy(data, payload, size); |
| |
| /* Ignore failure. It'll only happen if the sender goes away, |
| because our timeout is set to infinite. */ |
| netlink_unicast(audit_sock, skb, pid, 0); |
| return; |
| |
| nlmsg_failure: /* Used by NLMSG_PUT */ |
| if (skb) |
| kfree_skb(skb); |
| } |
| |
| /* |
| * Check for appropriate CAP_AUDIT_ capabilities on incoming audit |
| * control messages. |
| */ |
| static int audit_netlink_ok(kernel_cap_t eff_cap, u16 msg_type) |
| { |
| int err = 0; |
| |
| switch (msg_type) { |
| case AUDIT_GET: |
| case AUDIT_LIST: |
| case AUDIT_SET: |
| case AUDIT_ADD: |
| case AUDIT_DEL: |
| case AUDIT_SIGNAL_INFO: |
| if (!cap_raised(eff_cap, CAP_AUDIT_CONTROL)) |
| err = -EPERM; |
| break; |
| case AUDIT_USER: |
| case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG: |
| if (!cap_raised(eff_cap, CAP_AUDIT_WRITE)) |
| err = -EPERM; |
| break; |
| default: /* bad msg */ |
| err = -EINVAL; |
| } |
| |
| return err; |
| } |
| |
| static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) |
| { |
| u32 uid, pid, seq; |
| void *data; |
| struct audit_status *status_get, status_set; |
| int err; |
| struct audit_buffer *ab; |
| u16 msg_type = nlh->nlmsg_type; |
| uid_t loginuid; /* loginuid of sender */ |
| struct audit_sig_info sig_data; |
| |
| err = audit_netlink_ok(NETLINK_CB(skb).eff_cap, msg_type); |
| if (err) |
| return err; |
| |
| /* As soon as there's any sign of userspace auditd, start kauditd to talk to it */ |
| if (!kauditd_task) |
| kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); |
| if (IS_ERR(kauditd_task)) { |
| err = PTR_ERR(kauditd_task); |
| kauditd_task = NULL; |
| return err; |
| } |
| |
| pid = NETLINK_CREDS(skb)->pid; |
| uid = NETLINK_CREDS(skb)->uid; |
| loginuid = NETLINK_CB(skb).loginuid; |
| seq = nlh->nlmsg_seq; |
| data = NLMSG_DATA(nlh); |
| |
| switch (msg_type) { |
| case AUDIT_GET: |
| status_set.enabled = audit_enabled; |
| status_set.failure = audit_failure; |
| status_set.pid = audit_pid; |
| status_set.rate_limit = audit_rate_limit; |
| status_set.backlog_limit = audit_backlog_limit; |
| status_set.lost = atomic_read(&audit_lost); |
| status_set.backlog = skb_queue_len(&audit_skb_queue); |
| audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0, |
| &status_set, sizeof(status_set)); |
| break; |
| case AUDIT_SET: |
| if (nlh->nlmsg_len < sizeof(struct audit_status)) |
| return -EINVAL; |
| status_get = (struct audit_status *)data; |
| if (status_get->mask & AUDIT_STATUS_ENABLED) { |
| err = audit_set_enabled(status_get->enabled, loginuid); |
| if (err < 0) return err; |
| } |
| if (status_get->mask & AUDIT_STATUS_FAILURE) { |
| err = audit_set_failure(status_get->failure, loginuid); |
| if (err < 0) return err; |
| } |
| if (status_get->mask & AUDIT_STATUS_PID) { |
| int old = audit_pid; |
| audit_pid = status_get->pid; |
| audit_log(NULL, AUDIT_CONFIG_CHANGE, |
| "audit_pid=%d old=%d by auid=%u", |
| audit_pid, old, loginuid); |
| } |
| if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) |
| audit_set_rate_limit(status_get->rate_limit, loginuid); |
| if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT) |
| audit_set_backlog_limit(status_get->backlog_limit, |
| loginuid); |
| break; |
| case AUDIT_USER: |
| case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG: |
| ab = audit_log_start(NULL, msg_type); |
| if (!ab) |
| break; /* audit_panic has been called */ |
| audit_log_format(ab, |
| "user pid=%d uid=%u auid=%u" |
| " msg='%.1024s'", |
| pid, uid, loginuid, (char *)data); |
| audit_set_pid(ab, pid); |
| audit_log_end(ab); |
| break; |
| case AUDIT_ADD: |
| case AUDIT_DEL: |
| if (nlh->nlmsg_len < sizeof(struct audit_rule)) |
| return -EINVAL; |
| /* fallthrough */ |
| case AUDIT_LIST: |
| err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid, |
| uid, seq, data, loginuid); |
| break; |
| case AUDIT_SIGNAL_INFO: |
| sig_data.uid = audit_sig_uid; |
| sig_data.pid = audit_sig_pid; |
| audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, |
| 0, 0, &sig_data, sizeof(sig_data)); |
| break; |
| default: |
| err = -EINVAL; |
| break; |
| } |
| |
| return err < 0 ? err : 0; |
| } |
| |
| /* Get message from skb (based on rtnetlink_rcv_skb). Each message is |
| * processed by audit_receive_msg. Malformed skbs with wrong length are |
| * discarded silently. */ |
| static void audit_receive_skb(struct sk_buff *skb) |
| { |
| int err; |
| struct nlmsghdr *nlh; |
| u32 rlen; |
| |
| while (skb->len >= NLMSG_SPACE(0)) { |
| nlh = (struct nlmsghdr *)skb->data; |
| if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len) |
| return; |
| rlen = NLMSG_ALIGN(nlh->nlmsg_len); |
| if (rlen > skb->len) |
| rlen = skb->len; |
| if ((err = audit_receive_msg(skb, nlh))) { |
| netlink_ack(skb, nlh, err); |
| } else if (nlh->nlmsg_flags & NLM_F_ACK) |
| netlink_ack(skb, nlh, 0); |
| skb_pull(skb, rlen); |
| } |
| } |
| |
| /* Receive messages from netlink socket. */ |
| static void audit_receive(struct sock *sk, int length) |
| { |
| struct sk_buff *skb; |
| unsigned int qlen; |
| |
| down(&audit_netlink_sem); |
| |
| for (qlen = skb_queue_len(&sk->sk_receive_queue); qlen; qlen--) { |
| skb = skb_dequeue(&sk->sk_receive_queue); |
| audit_receive_skb(skb); |
| kfree_skb(skb); |
| } |
| up(&audit_netlink_sem); |
| } |
| |
| |
| /* Initialize audit support at boot time. */ |
| static int __init audit_init(void) |
| { |
| printk(KERN_INFO "audit: initializing netlink socket (%s)\n", |
| audit_default ? "enabled" : "disabled"); |
| audit_sock = netlink_kernel_create(NETLINK_AUDIT, audit_receive, |
| THIS_MODULE); |
| if (!audit_sock) |
| audit_panic("cannot initialize netlink socket"); |
| |
| audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; |
| skb_queue_head_init(&audit_skb_queue); |
| audit_initialized = 1; |
| audit_enabled = audit_default; |
| audit_log(NULL, AUDIT_KERNEL, "initialized"); |
| return 0; |
| } |
| __initcall(audit_init); |
| |
| /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ |
| static int __init audit_enable(char *str) |
| { |
| audit_default = !!simple_strtol(str, NULL, 0); |
| printk(KERN_INFO "audit: %s%s\n", |
| audit_default ? "enabled" : "disabled", |
| audit_initialized ? "" : " (after initialization)"); |
| if (audit_initialized) |
| audit_enabled = audit_default; |
| return 0; |
| } |
| |
| __setup("audit=", audit_enable); |
| |
| static void audit_buffer_free(struct audit_buffer *ab) |
| { |
| unsigned long flags; |
| |
| if (!ab) |
| return; |
| |
| if (ab->skb) |
| kfree_skb(ab->skb); |
| |
| spin_lock_irqsave(&audit_freelist_lock, flags); |
| if (++audit_freelist_count > AUDIT_MAXFREE) |
| kfree(ab); |
| else |
| list_add(&ab->list, &audit_freelist); |
| spin_unlock_irqrestore(&audit_freelist_lock, flags); |
| } |
| |
| static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, |
| int gfp_mask, int type) |
| { |
| unsigned long flags; |
| struct audit_buffer *ab = NULL; |
| struct nlmsghdr *nlh; |
| |
| spin_lock_irqsave(&audit_freelist_lock, flags); |
| if (!list_empty(&audit_freelist)) { |
| ab = list_entry(audit_freelist.next, |
| struct audit_buffer, list); |
| list_del(&ab->list); |
| --audit_freelist_count; |
| } |
| spin_unlock_irqrestore(&audit_freelist_lock, flags); |
| |
| if (!ab) { |
| ab = kmalloc(sizeof(*ab), gfp_mask); |
| if (!ab) |
| goto err; |
| } |
| |
| ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask); |
| if (!ab->skb) |
| goto err; |
| |
| ab->ctx = ctx; |
| nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0)); |
| nlh->nlmsg_type = type; |
| nlh->nlmsg_flags = 0; |
| nlh->nlmsg_pid = 0; |
| nlh->nlmsg_seq = 0; |
| return ab; |
| err: |
| audit_buffer_free(ab); |
| return NULL; |
| } |
| |
| /* Compute a serial number for the audit record. Audit records are |
| * written to user-space as soon as they are generated, so a complete |
| * audit record may be written in several pieces. The timestamp of the |
| * record and this serial number are used by the user-space tools to |
| * determine which pieces belong to the same audit record. The |
| * (timestamp,serial) tuple is unique for each syscall and is live from |
| * syscall entry to syscall exit. |
| * |
| * Atomic values are only guaranteed to be 24-bit, so we count down. |
| * |
| * NOTE: Another possibility is to store the formatted records off the |
| * audit context (for those records that have a context), and emit them |
| * all at syscall exit. However, this could delay the reporting of |
| * significant errors until syscall exit (or never, if the system |
| * halts). */ |
| unsigned int audit_serial(void) |
| { |
| static atomic_t serial = ATOMIC_INIT(0xffffff); |
| unsigned int a, b; |
| |
| do { |
| a = atomic_read(&serial); |
| if (atomic_dec_and_test(&serial)) |
| atomic_set(&serial, 0xffffff); |
| b = atomic_read(&serial); |
| } while (b != a - 1); |
| |
| return 0xffffff - b; |
| } |
| |
| static inline void audit_get_stamp(struct audit_context *ctx, |
| struct timespec *t, unsigned int *serial) |
| { |
| if (ctx) |
| auditsc_get_stamp(ctx, t, serial); |
| else { |
| *t = CURRENT_TIME; |
| *serial = audit_serial(); |
| } |
| } |
| |
| /* Obtain an audit buffer. This routine does locking to obtain the |
| * audit buffer, but then no locking is required for calls to |
| * audit_log_*format. If the tsk is a task that is currently in a |
| * syscall, then the syscall is marked as auditable and an audit record |
| * will be written at syscall exit. If there is no associated task, tsk |
| * should be NULL. */ |
| struct audit_buffer *audit_log_start(struct audit_context *ctx, int type) |
| { |
| struct audit_buffer *ab = NULL; |
| struct timespec t; |
| unsigned int serial; |
| |
| if (!audit_initialized) |
| return NULL; |
| |
| if (audit_backlog_limit |
| && skb_queue_len(&audit_skb_queue) > audit_backlog_limit) { |
| if (audit_rate_check()) |
| printk(KERN_WARNING |
| "audit: audit_backlog=%d > " |
| "audit_backlog_limit=%d\n", |
| skb_queue_len(&audit_skb_queue), |
| audit_backlog_limit); |
| audit_log_lost("backlog limit exceeded"); |
| return NULL; |
| } |
| |
| ab = audit_buffer_alloc(ctx, GFP_ATOMIC, type); |
| if (!ab) { |
| audit_log_lost("out of memory in audit_log_start"); |
| return NULL; |
| } |
| |
| audit_get_stamp(ab->ctx, &t, &serial); |
| |
| audit_log_format(ab, "audit(%lu.%03lu:%u): ", |
| t.tv_sec, t.tv_nsec/1000000, serial); |
| return ab; |
| } |
| |
| /** |
| * audit_expand - expand skb in the audit buffer |
| * @ab: audit_buffer |
| * |
| * Returns 0 (no space) on failed expansion, or available space if |
| * successful. |
| */ |
| static inline int audit_expand(struct audit_buffer *ab, int extra) |
| { |
| struct sk_buff *skb = ab->skb; |
| int ret = pskb_expand_head(skb, skb_headroom(skb), extra, |
| GFP_ATOMIC); |
| if (ret < 0) { |
| audit_log_lost("out of memory in audit_expand"); |
| return 0; |
| } |
| return skb_tailroom(skb); |
| } |
| |
| /* Format an audit message into the audit buffer. If there isn't enough |
| * room in the audit buffer, more room will be allocated and vsnprint |
| * will be called a second time. Currently, we assume that a printk |
| * can't format message larger than 1024 bytes, so we don't either. */ |
| static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, |
| va_list args) |
| { |
| int len, avail; |
| struct sk_buff *skb; |
| va_list args2; |
| |
| if (!ab) |
| return; |
| |
| BUG_ON(!ab->skb); |
| skb = ab->skb; |
| avail = skb_tailroom(skb); |
| if (avail == 0) { |
| avail = audit_expand(ab, AUDIT_BUFSIZ); |
| if (!avail) |
| goto out; |
| } |
| va_copy(args2, args); |
| len = vsnprintf(skb->tail, avail, fmt, args); |
| if (len >= avail) { |
| /* The printk buffer is 1024 bytes long, so if we get |
| * here and AUDIT_BUFSIZ is at least 1024, then we can |
| * log everything that printk could have logged. */ |
| avail = audit_expand(ab, max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); |
| if (!avail) |
| goto out; |
| len = vsnprintf(skb->tail, avail, fmt, args2); |
| } |
| if (len > 0) |
| skb_put(skb, len); |
| out: |
| return; |
| } |
| |
| /* Format a message into the audit buffer. All the work is done in |
| * audit_log_vformat. */ |
| void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) |
| { |
| va_list args; |
| |
| if (!ab) |
| return; |
| va_start(args, fmt); |
| audit_log_vformat(ab, fmt, args); |
| va_end(args); |
| } |
| |
| /* This function will take the passed buf and convert it into a string of |
| * ascii hex digits. The new string is placed onto the skb. */ |
| void audit_log_hex(struct audit_buffer *ab, const unsigned char *buf, |
| size_t len) |
| { |
| int i, avail, new_len; |
| unsigned char *ptr; |
| struct sk_buff *skb; |
| static const unsigned char *hex = "0123456789ABCDEF"; |
| |
| BUG_ON(!ab->skb); |
| skb = ab->skb; |
| avail = skb_tailroom(skb); |
| new_len = len<<1; |
| if (new_len >= avail) { |
| /* Round the buffer request up to the next multiple */ |
| new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); |
| avail = audit_expand(ab, new_len); |
| if (!avail) |
| return; |
| } |
| |
| ptr = skb->tail; |
| for (i=0; i<len; i++) { |
| *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */ |
| *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */ |
| } |
| *ptr = 0; |
| skb_put(skb, len << 1); /* new string is twice the old string */ |
| } |
| |
| /* This code will escape a string that is passed to it if the string |
| * contains a control character, unprintable character, double quote mark, |
| * or a space. Unescaped strings will start and end with a double quote mark. |
| * Strings that are escaped are printed in hex (2 digits per char). */ |
| void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) |
| { |
| const unsigned char *p = string; |
| |
| while (*p) { |
| if (*p == '"' || *p < 0x21 || *p > 0x7f) { |
| audit_log_hex(ab, string, strlen(string)); |
| return; |
| } |
| p++; |
| } |
| audit_log_format(ab, "\"%s\"", string); |
| } |
| |
| /* This is a helper-function to print the escaped d_path */ |
| void audit_log_d_path(struct audit_buffer *ab, const char *prefix, |
| struct dentry *dentry, struct vfsmount *vfsmnt) |
| { |
| char *p, *path; |
| |
| if (prefix) |
| audit_log_format(ab, " %s", prefix); |
| |
| /* We will allow 11 spaces for ' (deleted)' to be appended */ |
| path = kmalloc(PATH_MAX+11, GFP_KERNEL); |
| if (!path) { |
| audit_log_format(ab, "<no memory>"); |
| return; |
| } |
| p = d_path(dentry, vfsmnt, path, PATH_MAX+11); |
| if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ |
| /* FIXME: can we save some information here? */ |
| audit_log_format(ab, "<too long>"); |
| } else |
| audit_log_untrustedstring(ab, p); |
| kfree(path); |
| } |
| |
| /* The netlink_* functions cannot be called inside an irq context, so |
| * the audit buffer is places on a queue and a tasklet is scheduled to |
| * remove them from the queue outside the irq context. May be called in |
| * any context. */ |
| void audit_log_end(struct audit_buffer *ab) |
| { |
| if (!ab) |
| return; |
| if (!audit_rate_check()) { |
| audit_log_lost("rate limit exceeded"); |
| } else { |
| if (audit_pid) { |
| struct nlmsghdr *nlh = (struct nlmsghdr *)ab->skb->data; |
| nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0); |
| skb_queue_tail(&audit_skb_queue, ab->skb); |
| ab->skb = NULL; |
| wake_up_interruptible(&kauditd_wait); |
| } else { |
| printk("%s\n", ab->skb->data + NLMSG_SPACE(0)); |
| } |
| } |
| audit_buffer_free(ab); |
| } |
| |
| /* Log an audit record. This is a convenience function that calls |
| * audit_log_start, audit_log_vformat, and audit_log_end. It may be |
| * called in any context. */ |
| void audit_log(struct audit_context *ctx, int type, const char *fmt, ...) |
| { |
| struct audit_buffer *ab; |
| va_list args; |
| |
| ab = audit_log_start(ctx, type); |
| if (ab) { |
| va_start(args, fmt); |
| audit_log_vformat(ab, fmt, args); |
| va_end(args); |
| audit_log_end(ab); |
| } |
| } |