| /* Performance event support for sparc64. |
| * |
| * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net> |
| * |
| * This code is based almost entirely upon the x86 perf event |
| * code, which is: |
| * |
| * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> |
| * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar |
| * Copyright (C) 2009 Jaswinder Singh Rajput |
| * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter |
| * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> |
| */ |
| |
| #include <linux/perf_event.h> |
| #include <linux/kprobes.h> |
| #include <linux/ftrace.h> |
| #include <linux/kernel.h> |
| #include <linux/kdebug.h> |
| #include <linux/mutex.h> |
| |
| #include <asm/stacktrace.h> |
| #include <asm/cpudata.h> |
| #include <asm/uaccess.h> |
| #include <asm/atomic.h> |
| #include <asm/nmi.h> |
| #include <asm/pcr.h> |
| |
| #include "kstack.h" |
| |
| /* Sparc64 chips have two performance counters, 32-bits each, with |
| * overflow interrupts generated on transition from 0xffffffff to 0. |
| * The counters are accessed in one go using a 64-bit register. |
| * |
| * Both counters are controlled using a single control register. The |
| * only way to stop all sampling is to clear all of the context (user, |
| * supervisor, hypervisor) sampling enable bits. But these bits apply |
| * to both counters, thus the two counters can't be enabled/disabled |
| * individually. |
| * |
| * The control register has two event fields, one for each of the two |
| * counters. It's thus nearly impossible to have one counter going |
| * while keeping the other one stopped. Therefore it is possible to |
| * get overflow interrupts for counters not currently "in use" and |
| * that condition must be checked in the overflow interrupt handler. |
| * |
| * So we use a hack, in that we program inactive counters with the |
| * "sw_count0" and "sw_count1" events. These count how many times |
| * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an |
| * unusual way to encode a NOP and therefore will not trigger in |
| * normal code. |
| */ |
| |
| #define MAX_HWEVENTS 2 |
| #define MAX_PERIOD ((1UL << 32) - 1) |
| |
| #define PIC_UPPER_INDEX 0 |
| #define PIC_LOWER_INDEX 1 |
| #define PIC_NO_INDEX -1 |
| |
| struct cpu_hw_events { |
| /* Number of events currently scheduled onto this cpu. |
| * This tells how many entries in the arrays below |
| * are valid. |
| */ |
| int n_events; |
| |
| /* Number of new events added since the last hw_perf_disable(). |
| * This works because the perf event layer always adds new |
| * events inside of a perf_{disable,enable}() sequence. |
| */ |
| int n_added; |
| |
| /* Array of events current scheduled on this cpu. */ |
| struct perf_event *event[MAX_HWEVENTS]; |
| |
| /* Array of encoded longs, specifying the %pcr register |
| * encoding and the mask of PIC counters this even can |
| * be scheduled on. See perf_event_encode() et al. |
| */ |
| unsigned long events[MAX_HWEVENTS]; |
| |
| /* The current counter index assigned to an event. When the |
| * event hasn't been programmed into the cpu yet, this will |
| * hold PIC_NO_INDEX. The event->hw.idx value tells us where |
| * we ought to schedule the event. |
| */ |
| int current_idx[MAX_HWEVENTS]; |
| |
| /* Software copy of %pcr register on this cpu. */ |
| u64 pcr; |
| |
| /* Enabled/disable state. */ |
| int enabled; |
| |
| unsigned int group_flag; |
| }; |
| DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, }; |
| |
| /* An event map describes the characteristics of a performance |
| * counter event. In particular it gives the encoding as well as |
| * a mask telling which counters the event can be measured on. |
| */ |
| struct perf_event_map { |
| u16 encoding; |
| u8 pic_mask; |
| #define PIC_NONE 0x00 |
| #define PIC_UPPER 0x01 |
| #define PIC_LOWER 0x02 |
| }; |
| |
| /* Encode a perf_event_map entry into a long. */ |
| static unsigned long perf_event_encode(const struct perf_event_map *pmap) |
| { |
| return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask; |
| } |
| |
| static u8 perf_event_get_msk(unsigned long val) |
| { |
| return val & 0xff; |
| } |
| |
| static u64 perf_event_get_enc(unsigned long val) |
| { |
| return val >> 16; |
| } |
| |
| #define C(x) PERF_COUNT_HW_CACHE_##x |
| |
| #define CACHE_OP_UNSUPPORTED 0xfffe |
| #define CACHE_OP_NONSENSE 0xffff |
| |
| typedef struct perf_event_map cache_map_t |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX]; |
| |
| struct sparc_pmu { |
| const struct perf_event_map *(*event_map)(int); |
| const cache_map_t *cache_map; |
| int max_events; |
| int upper_shift; |
| int lower_shift; |
| int event_mask; |
| int hv_bit; |
| int irq_bit; |
| int upper_nop; |
| int lower_nop; |
| }; |
| |
| static const struct perf_event_map ultra3_perfmon_event_map[] = { |
| [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER }, |
| [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER }, |
| [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER }, |
| [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER }, |
| }; |
| |
| static const struct perf_event_map *ultra3_event_map(int event_id) |
| { |
| return &ultra3_perfmon_event_map[event_id]; |
| } |
| |
| static const cache_map_t ultra3_cache_map = { |
| [C(L1D)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, }, |
| [C(RESULT_MISS)] = { 0x09, PIC_UPPER, }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER }, |
| [C(RESULT_MISS)] = { 0x0a, PIC_UPPER }, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, |
| [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| }, |
| [C(L1I)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, }, |
| [C(RESULT_MISS)] = { 0x09, PIC_UPPER, }, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE }, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| }, |
| [C(LL)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, }, |
| [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER }, |
| [C(RESULT_MISS)] = { 0x0c, PIC_UPPER }, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, |
| [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| }, |
| [C(DTLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, |
| [C(RESULT_MISS)] = { 0x12, PIC_UPPER, }, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| }, |
| [C(ITLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, |
| [C(RESULT_MISS)] = { 0x11, PIC_UPPER, }, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| }, |
| [C(BPU)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, |
| [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| }, |
| }; |
| |
| static const struct sparc_pmu ultra3_pmu = { |
| .event_map = ultra3_event_map, |
| .cache_map = &ultra3_cache_map, |
| .max_events = ARRAY_SIZE(ultra3_perfmon_event_map), |
| .upper_shift = 11, |
| .lower_shift = 4, |
| .event_mask = 0x3f, |
| .upper_nop = 0x1c, |
| .lower_nop = 0x14, |
| }; |
| |
| /* Niagara1 is very limited. The upper PIC is hard-locked to count |
| * only instructions, so it is free running which creates all kinds of |
| * problems. Some hardware designs make one wonder if the creator |
| * even looked at how this stuff gets used by software. |
| */ |
| static const struct perf_event_map niagara1_perfmon_event_map[] = { |
| [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER }, |
| [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER }, |
| [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE }, |
| [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER }, |
| }; |
| |
| static const struct perf_event_map *niagara1_event_map(int event_id) |
| { |
| return &niagara1_perfmon_event_map[event_id]; |
| } |
| |
| static const cache_map_t niagara1_cache_map = { |
| [C(L1D)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, |
| [C(RESULT_MISS)] = { 0x03, PIC_LOWER, }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, |
| [C(RESULT_MISS)] = { 0x03, PIC_LOWER, }, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, |
| [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| }, |
| [C(L1I)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER }, |
| [C(RESULT_MISS)] = { 0x02, PIC_LOWER, }, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE }, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| }, |
| [C(LL)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, |
| [C(RESULT_MISS)] = { 0x07, PIC_LOWER, }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, |
| [C(RESULT_MISS)] = { 0x07, PIC_LOWER, }, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, |
| [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| }, |
| [C(DTLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, |
| [C(RESULT_MISS)] = { 0x05, PIC_LOWER, }, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| }, |
| [C(ITLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, |
| [C(RESULT_MISS)] = { 0x04, PIC_LOWER, }, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| }, |
| [C(BPU)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, |
| [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| }, |
| }; |
| |
| static const struct sparc_pmu niagara1_pmu = { |
| .event_map = niagara1_event_map, |
| .cache_map = &niagara1_cache_map, |
| .max_events = ARRAY_SIZE(niagara1_perfmon_event_map), |
| .upper_shift = 0, |
| .lower_shift = 4, |
| .event_mask = 0x7, |
| .upper_nop = 0x0, |
| .lower_nop = 0x0, |
| }; |
| |
| static const struct perf_event_map niagara2_perfmon_event_map[] = { |
| [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER }, |
| [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER }, |
| [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER }, |
| [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER }, |
| [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER }, |
| [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER }, |
| }; |
| |
| static const struct perf_event_map *niagara2_event_map(int event_id) |
| { |
| return &niagara2_perfmon_event_map[event_id]; |
| } |
| |
| static const cache_map_t niagara2_cache_map = { |
| [C(L1D)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, }, |
| [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, }, |
| [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, }, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, |
| [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| }, |
| [C(L1I)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, }, |
| [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, }, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE }, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| }, |
| [C(LL)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, }, |
| [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, }, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, }, |
| [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, }, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, |
| [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| }, |
| [C(DTLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, |
| [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, }, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| }, |
| [C(ITLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, |
| [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, }, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| }, |
| [C(BPU)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, |
| [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, |
| [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, |
| }, |
| }, |
| }; |
| |
| static const struct sparc_pmu niagara2_pmu = { |
| .event_map = niagara2_event_map, |
| .cache_map = &niagara2_cache_map, |
| .max_events = ARRAY_SIZE(niagara2_perfmon_event_map), |
| .upper_shift = 19, |
| .lower_shift = 6, |
| .event_mask = 0xfff, |
| .hv_bit = 0x8, |
| .irq_bit = 0x30, |
| .upper_nop = 0x220, |
| .lower_nop = 0x220, |
| }; |
| |
| static const struct sparc_pmu *sparc_pmu __read_mostly; |
| |
| static u64 event_encoding(u64 event_id, int idx) |
| { |
| if (idx == PIC_UPPER_INDEX) |
| event_id <<= sparc_pmu->upper_shift; |
| else |
| event_id <<= sparc_pmu->lower_shift; |
| return event_id; |
| } |
| |
| static u64 mask_for_index(int idx) |
| { |
| return event_encoding(sparc_pmu->event_mask, idx); |
| } |
| |
| static u64 nop_for_index(int idx) |
| { |
| return event_encoding(idx == PIC_UPPER_INDEX ? |
| sparc_pmu->upper_nop : |
| sparc_pmu->lower_nop, idx); |
| } |
| |
| static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx) |
| { |
| u64 val, mask = mask_for_index(idx); |
| |
| val = cpuc->pcr; |
| val &= ~mask; |
| val |= hwc->config; |
| cpuc->pcr = val; |
| |
| pcr_ops->write(cpuc->pcr); |
| } |
| |
| static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx) |
| { |
| u64 mask = mask_for_index(idx); |
| u64 nop = nop_for_index(idx); |
| u64 val; |
| |
| val = cpuc->pcr; |
| val &= ~mask; |
| val |= nop; |
| cpuc->pcr = val; |
| |
| pcr_ops->write(cpuc->pcr); |
| } |
| |
| static u32 read_pmc(int idx) |
| { |
| u64 val; |
| |
| read_pic(val); |
| if (idx == PIC_UPPER_INDEX) |
| val >>= 32; |
| |
| return val & 0xffffffff; |
| } |
| |
| static void write_pmc(int idx, u64 val) |
| { |
| u64 shift, mask, pic; |
| |
| shift = 0; |
| if (idx == PIC_UPPER_INDEX) |
| shift = 32; |
| |
| mask = ((u64) 0xffffffff) << shift; |
| val <<= shift; |
| |
| read_pic(pic); |
| pic &= ~mask; |
| pic |= val; |
| write_pic(pic); |
| } |
| |
| static u64 sparc_perf_event_update(struct perf_event *event, |
| struct hw_perf_event *hwc, int idx) |
| { |
| int shift = 64 - 32; |
| u64 prev_raw_count, new_raw_count; |
| s64 delta; |
| |
| again: |
| prev_raw_count = atomic64_read(&hwc->prev_count); |
| new_raw_count = read_pmc(idx); |
| |
| if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count, |
| new_raw_count) != prev_raw_count) |
| goto again; |
| |
| delta = (new_raw_count << shift) - (prev_raw_count << shift); |
| delta >>= shift; |
| |
| atomic64_add(delta, &event->count); |
| atomic64_sub(delta, &hwc->period_left); |
| |
| return new_raw_count; |
| } |
| |
| static int sparc_perf_event_set_period(struct perf_event *event, |
| struct hw_perf_event *hwc, int idx) |
| { |
| s64 left = atomic64_read(&hwc->period_left); |
| s64 period = hwc->sample_period; |
| int ret = 0; |
| |
| if (unlikely(left <= -period)) { |
| left = period; |
| atomic64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| ret = 1; |
| } |
| |
| if (unlikely(left <= 0)) { |
| left += period; |
| atomic64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| ret = 1; |
| } |
| if (left > MAX_PERIOD) |
| left = MAX_PERIOD; |
| |
| atomic64_set(&hwc->prev_count, (u64)-left); |
| |
| write_pmc(idx, (u64)(-left) & 0xffffffff); |
| |
| perf_event_update_userpage(event); |
| |
| return ret; |
| } |
| |
| /* If performance event entries have been added, move existing |
| * events around (if necessary) and then assign new entries to |
| * counters. |
| */ |
| static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr) |
| { |
| int i; |
| |
| if (!cpuc->n_added) |
| goto out; |
| |
| /* Read in the counters which are moving. */ |
| for (i = 0; i < cpuc->n_events; i++) { |
| struct perf_event *cp = cpuc->event[i]; |
| |
| if (cpuc->current_idx[i] != PIC_NO_INDEX && |
| cpuc->current_idx[i] != cp->hw.idx) { |
| sparc_perf_event_update(cp, &cp->hw, |
| cpuc->current_idx[i]); |
| cpuc->current_idx[i] = PIC_NO_INDEX; |
| } |
| } |
| |
| /* Assign to counters all unassigned events. */ |
| for (i = 0; i < cpuc->n_events; i++) { |
| struct perf_event *cp = cpuc->event[i]; |
| struct hw_perf_event *hwc = &cp->hw; |
| int idx = hwc->idx; |
| u64 enc; |
| |
| if (cpuc->current_idx[i] != PIC_NO_INDEX) |
| continue; |
| |
| sparc_perf_event_set_period(cp, hwc, idx); |
| cpuc->current_idx[i] = idx; |
| |
| enc = perf_event_get_enc(cpuc->events[i]); |
| pcr &= ~mask_for_index(idx); |
| pcr |= event_encoding(enc, idx); |
| } |
| out: |
| return pcr; |
| } |
| |
| void hw_perf_enable(void) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| u64 pcr; |
| |
| if (cpuc->enabled) |
| return; |
| |
| cpuc->enabled = 1; |
| barrier(); |
| |
| pcr = cpuc->pcr; |
| if (!cpuc->n_events) { |
| pcr = 0; |
| } else { |
| pcr = maybe_change_configuration(cpuc, pcr); |
| |
| /* We require that all of the events have the same |
| * configuration, so just fetch the settings from the |
| * first entry. |
| */ |
| cpuc->pcr = pcr | cpuc->event[0]->hw.config_base; |
| } |
| |
| pcr_ops->write(cpuc->pcr); |
| } |
| |
| void hw_perf_disable(void) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| u64 val; |
| |
| if (!cpuc->enabled) |
| return; |
| |
| cpuc->enabled = 0; |
| cpuc->n_added = 0; |
| |
| val = cpuc->pcr; |
| val &= ~(PCR_UTRACE | PCR_STRACE | |
| sparc_pmu->hv_bit | sparc_pmu->irq_bit); |
| cpuc->pcr = val; |
| |
| pcr_ops->write(cpuc->pcr); |
| } |
| |
| static void sparc_pmu_disable(struct perf_event *event) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| unsigned long flags; |
| int i; |
| |
| local_irq_save(flags); |
| perf_disable(); |
| |
| for (i = 0; i < cpuc->n_events; i++) { |
| if (event == cpuc->event[i]) { |
| int idx = cpuc->current_idx[i]; |
| |
| /* Shift remaining entries down into |
| * the existing slot. |
| */ |
| while (++i < cpuc->n_events) { |
| cpuc->event[i - 1] = cpuc->event[i]; |
| cpuc->events[i - 1] = cpuc->events[i]; |
| cpuc->current_idx[i - 1] = |
| cpuc->current_idx[i]; |
| } |
| |
| /* Absorb the final count and turn off the |
| * event. |
| */ |
| sparc_pmu_disable_event(cpuc, hwc, idx); |
| barrier(); |
| sparc_perf_event_update(event, hwc, idx); |
| |
| perf_event_update_userpage(event); |
| |
| cpuc->n_events--; |
| break; |
| } |
| } |
| |
| perf_enable(); |
| local_irq_restore(flags); |
| } |
| |
| static int active_event_index(struct cpu_hw_events *cpuc, |
| struct perf_event *event) |
| { |
| int i; |
| |
| for (i = 0; i < cpuc->n_events; i++) { |
| if (cpuc->event[i] == event) |
| break; |
| } |
| BUG_ON(i == cpuc->n_events); |
| return cpuc->current_idx[i]; |
| } |
| |
| static void sparc_pmu_read(struct perf_event *event) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| int idx = active_event_index(cpuc, event); |
| struct hw_perf_event *hwc = &event->hw; |
| |
| sparc_perf_event_update(event, hwc, idx); |
| } |
| |
| static void sparc_pmu_unthrottle(struct perf_event *event) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| int idx = active_event_index(cpuc, event); |
| struct hw_perf_event *hwc = &event->hw; |
| |
| sparc_pmu_enable_event(cpuc, hwc, idx); |
| } |
| |
| static atomic_t active_events = ATOMIC_INIT(0); |
| static DEFINE_MUTEX(pmc_grab_mutex); |
| |
| static void perf_stop_nmi_watchdog(void *unused) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| |
| stop_nmi_watchdog(NULL); |
| cpuc->pcr = pcr_ops->read(); |
| } |
| |
| void perf_event_grab_pmc(void) |
| { |
| if (atomic_inc_not_zero(&active_events)) |
| return; |
| |
| mutex_lock(&pmc_grab_mutex); |
| if (atomic_read(&active_events) == 0) { |
| if (atomic_read(&nmi_active) > 0) { |
| on_each_cpu(perf_stop_nmi_watchdog, NULL, 1); |
| BUG_ON(atomic_read(&nmi_active) != 0); |
| } |
| atomic_inc(&active_events); |
| } |
| mutex_unlock(&pmc_grab_mutex); |
| } |
| |
| void perf_event_release_pmc(void) |
| { |
| if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) { |
| if (atomic_read(&nmi_active) == 0) |
| on_each_cpu(start_nmi_watchdog, NULL, 1); |
| mutex_unlock(&pmc_grab_mutex); |
| } |
| } |
| |
| static const struct perf_event_map *sparc_map_cache_event(u64 config) |
| { |
| unsigned int cache_type, cache_op, cache_result; |
| const struct perf_event_map *pmap; |
| |
| if (!sparc_pmu->cache_map) |
| return ERR_PTR(-ENOENT); |
| |
| cache_type = (config >> 0) & 0xff; |
| if (cache_type >= PERF_COUNT_HW_CACHE_MAX) |
| return ERR_PTR(-EINVAL); |
| |
| cache_op = (config >> 8) & 0xff; |
| if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) |
| return ERR_PTR(-EINVAL); |
| |
| cache_result = (config >> 16) & 0xff; |
| if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) |
| return ERR_PTR(-EINVAL); |
| |
| pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]); |
| |
| if (pmap->encoding == CACHE_OP_UNSUPPORTED) |
| return ERR_PTR(-ENOENT); |
| |
| if (pmap->encoding == CACHE_OP_NONSENSE) |
| return ERR_PTR(-EINVAL); |
| |
| return pmap; |
| } |
| |
| static void hw_perf_event_destroy(struct perf_event *event) |
| { |
| perf_event_release_pmc(); |
| } |
| |
| /* Make sure all events can be scheduled into the hardware at |
| * the same time. This is simplified by the fact that we only |
| * need to support 2 simultaneous HW events. |
| * |
| * As a side effect, the evts[]->hw.idx values will be assigned |
| * on success. These are pending indexes. When the events are |
| * actually programmed into the chip, these values will propagate |
| * to the per-cpu cpuc->current_idx[] slots, see the code in |
| * maybe_change_configuration() for details. |
| */ |
| static int sparc_check_constraints(struct perf_event **evts, |
| unsigned long *events, int n_ev) |
| { |
| u8 msk0 = 0, msk1 = 0; |
| int idx0 = 0; |
| |
| /* This case is possible when we are invoked from |
| * hw_perf_group_sched_in(). |
| */ |
| if (!n_ev) |
| return 0; |
| |
| if (n_ev > perf_max_events) |
| return -1; |
| |
| msk0 = perf_event_get_msk(events[0]); |
| if (n_ev == 1) { |
| if (msk0 & PIC_LOWER) |
| idx0 = 1; |
| goto success; |
| } |
| BUG_ON(n_ev != 2); |
| msk1 = perf_event_get_msk(events[1]); |
| |
| /* If both events can go on any counter, OK. */ |
| if (msk0 == (PIC_UPPER | PIC_LOWER) && |
| msk1 == (PIC_UPPER | PIC_LOWER)) |
| goto success; |
| |
| /* If one event is limited to a specific counter, |
| * and the other can go on both, OK. |
| */ |
| if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) && |
| msk1 == (PIC_UPPER | PIC_LOWER)) { |
| if (msk0 & PIC_LOWER) |
| idx0 = 1; |
| goto success; |
| } |
| |
| if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) && |
| msk0 == (PIC_UPPER | PIC_LOWER)) { |
| if (msk1 & PIC_UPPER) |
| idx0 = 1; |
| goto success; |
| } |
| |
| /* If the events are fixed to different counters, OK. */ |
| if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) || |
| (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) { |
| if (msk0 & PIC_LOWER) |
| idx0 = 1; |
| goto success; |
| } |
| |
| /* Otherwise, there is a conflict. */ |
| return -1; |
| |
| success: |
| evts[0]->hw.idx = idx0; |
| if (n_ev == 2) |
| evts[1]->hw.idx = idx0 ^ 1; |
| return 0; |
| } |
| |
| static int check_excludes(struct perf_event **evts, int n_prev, int n_new) |
| { |
| int eu = 0, ek = 0, eh = 0; |
| struct perf_event *event; |
| int i, n, first; |
| |
| n = n_prev + n_new; |
| if (n <= 1) |
| return 0; |
| |
| first = 1; |
| for (i = 0; i < n; i++) { |
| event = evts[i]; |
| if (first) { |
| eu = event->attr.exclude_user; |
| ek = event->attr.exclude_kernel; |
| eh = event->attr.exclude_hv; |
| first = 0; |
| } else if (event->attr.exclude_user != eu || |
| event->attr.exclude_kernel != ek || |
| event->attr.exclude_hv != eh) { |
| return -EAGAIN; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int collect_events(struct perf_event *group, int max_count, |
| struct perf_event *evts[], unsigned long *events, |
| int *current_idx) |
| { |
| struct perf_event *event; |
| int n = 0; |
| |
| if (!is_software_event(group)) { |
| if (n >= max_count) |
| return -1; |
| evts[n] = group; |
| events[n] = group->hw.event_base; |
| current_idx[n++] = PIC_NO_INDEX; |
| } |
| list_for_each_entry(event, &group->sibling_list, group_entry) { |
| if (!is_software_event(event) && |
| event->state != PERF_EVENT_STATE_OFF) { |
| if (n >= max_count) |
| return -1; |
| evts[n] = event; |
| events[n] = event->hw.event_base; |
| current_idx[n++] = PIC_NO_INDEX; |
| } |
| } |
| return n; |
| } |
| |
| static int sparc_pmu_enable(struct perf_event *event) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| int n0, ret = -EAGAIN; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| perf_disable(); |
| |
| n0 = cpuc->n_events; |
| if (n0 >= perf_max_events) |
| goto out; |
| |
| cpuc->event[n0] = event; |
| cpuc->events[n0] = event->hw.event_base; |
| cpuc->current_idx[n0] = PIC_NO_INDEX; |
| |
| /* |
| * If group events scheduling transaction was started, |
| * skip the schedulability test here, it will be peformed |
| * at commit time(->commit_txn) as a whole |
| */ |
| if (cpuc->group_flag & PERF_EVENT_TXN_STARTED) |
| goto nocheck; |
| |
| if (check_excludes(cpuc->event, n0, 1)) |
| goto out; |
| if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1)) |
| goto out; |
| |
| nocheck: |
| cpuc->n_events++; |
| cpuc->n_added++; |
| |
| ret = 0; |
| out: |
| perf_enable(); |
| local_irq_restore(flags); |
| return ret; |
| } |
| |
| static int __hw_perf_event_init(struct perf_event *event) |
| { |
| struct perf_event_attr *attr = &event->attr; |
| struct perf_event *evts[MAX_HWEVENTS]; |
| struct hw_perf_event *hwc = &event->hw; |
| unsigned long events[MAX_HWEVENTS]; |
| int current_idx_dmy[MAX_HWEVENTS]; |
| const struct perf_event_map *pmap; |
| int n; |
| |
| if (atomic_read(&nmi_active) < 0) |
| return -ENODEV; |
| |
| if (attr->type == PERF_TYPE_HARDWARE) { |
| if (attr->config >= sparc_pmu->max_events) |
| return -EINVAL; |
| pmap = sparc_pmu->event_map(attr->config); |
| } else if (attr->type == PERF_TYPE_HW_CACHE) { |
| pmap = sparc_map_cache_event(attr->config); |
| if (IS_ERR(pmap)) |
| return PTR_ERR(pmap); |
| } else |
| return -EOPNOTSUPP; |
| |
| /* We save the enable bits in the config_base. */ |
| hwc->config_base = sparc_pmu->irq_bit; |
| if (!attr->exclude_user) |
| hwc->config_base |= PCR_UTRACE; |
| if (!attr->exclude_kernel) |
| hwc->config_base |= PCR_STRACE; |
| if (!attr->exclude_hv) |
| hwc->config_base |= sparc_pmu->hv_bit; |
| |
| hwc->event_base = perf_event_encode(pmap); |
| |
| n = 0; |
| if (event->group_leader != event) { |
| n = collect_events(event->group_leader, |
| perf_max_events - 1, |
| evts, events, current_idx_dmy); |
| if (n < 0) |
| return -EINVAL; |
| } |
| events[n] = hwc->event_base; |
| evts[n] = event; |
| |
| if (check_excludes(evts, n, 1)) |
| return -EINVAL; |
| |
| if (sparc_check_constraints(evts, events, n + 1)) |
| return -EINVAL; |
| |
| hwc->idx = PIC_NO_INDEX; |
| |
| /* Try to do all error checking before this point, as unwinding |
| * state after grabbing the PMC is difficult. |
| */ |
| perf_event_grab_pmc(); |
| event->destroy = hw_perf_event_destroy; |
| |
| if (!hwc->sample_period) { |
| hwc->sample_period = MAX_PERIOD; |
| hwc->last_period = hwc->sample_period; |
| atomic64_set(&hwc->period_left, hwc->sample_period); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Start group events scheduling transaction |
| * Set the flag to make pmu::enable() not perform the |
| * schedulability test, it will be performed at commit time |
| */ |
| static void sparc_pmu_start_txn(const struct pmu *pmu) |
| { |
| struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); |
| |
| cpuhw->group_flag |= PERF_EVENT_TXN_STARTED; |
| } |
| |
| /* |
| * Stop group events scheduling transaction |
| * Clear the flag and pmu::enable() will perform the |
| * schedulability test. |
| */ |
| static void sparc_pmu_cancel_txn(const struct pmu *pmu) |
| { |
| struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); |
| |
| cpuhw->group_flag &= ~PERF_EVENT_TXN_STARTED; |
| } |
| |
| /* |
| * Commit group events scheduling transaction |
| * Perform the group schedulability test as a whole |
| * Return 0 if success |
| */ |
| static int sparc_pmu_commit_txn(const struct pmu *pmu) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| int n; |
| |
| if (!sparc_pmu) |
| return -EINVAL; |
| |
| cpuc = &__get_cpu_var(cpu_hw_events); |
| n = cpuc->n_events; |
| if (check_excludes(cpuc->event, 0, n)) |
| return -EINVAL; |
| if (sparc_check_constraints(cpuc->event, cpuc->events, n)) |
| return -EAGAIN; |
| |
| return 0; |
| } |
| |
| static const struct pmu pmu = { |
| .enable = sparc_pmu_enable, |
| .disable = sparc_pmu_disable, |
| .read = sparc_pmu_read, |
| .unthrottle = sparc_pmu_unthrottle, |
| .start_txn = sparc_pmu_start_txn, |
| .cancel_txn = sparc_pmu_cancel_txn, |
| .commit_txn = sparc_pmu_commit_txn, |
| }; |
| |
| const struct pmu *hw_perf_event_init(struct perf_event *event) |
| { |
| int err = __hw_perf_event_init(event); |
| |
| if (err) |
| return ERR_PTR(err); |
| return &pmu; |
| } |
| |
| void perf_event_print_debug(void) |
| { |
| unsigned long flags; |
| u64 pcr, pic; |
| int cpu; |
| |
| if (!sparc_pmu) |
| return; |
| |
| local_irq_save(flags); |
| |
| cpu = smp_processor_id(); |
| |
| pcr = pcr_ops->read(); |
| read_pic(pic); |
| |
| pr_info("\n"); |
| pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n", |
| cpu, pcr, pic); |
| |
| local_irq_restore(flags); |
| } |
| |
| static int __kprobes perf_event_nmi_handler(struct notifier_block *self, |
| unsigned long cmd, void *__args) |
| { |
| struct die_args *args = __args; |
| struct perf_sample_data data; |
| struct cpu_hw_events *cpuc; |
| struct pt_regs *regs; |
| int i; |
| |
| if (!atomic_read(&active_events)) |
| return NOTIFY_DONE; |
| |
| switch (cmd) { |
| case DIE_NMI: |
| break; |
| |
| default: |
| return NOTIFY_DONE; |
| } |
| |
| regs = args->regs; |
| |
| perf_sample_data_init(&data, 0); |
| |
| cpuc = &__get_cpu_var(cpu_hw_events); |
| |
| /* If the PMU has the TOE IRQ enable bits, we need to do a |
| * dummy write to the %pcr to clear the overflow bits and thus |
| * the interrupt. |
| * |
| * Do this before we peek at the counters to determine |
| * overflow so we don't lose any events. |
| */ |
| if (sparc_pmu->irq_bit) |
| pcr_ops->write(cpuc->pcr); |
| |
| for (i = 0; i < cpuc->n_events; i++) { |
| struct perf_event *event = cpuc->event[i]; |
| int idx = cpuc->current_idx[i]; |
| struct hw_perf_event *hwc; |
| u64 val; |
| |
| hwc = &event->hw; |
| val = sparc_perf_event_update(event, hwc, idx); |
| if (val & (1ULL << 31)) |
| continue; |
| |
| data.period = event->hw.last_period; |
| if (!sparc_perf_event_set_period(event, hwc, idx)) |
| continue; |
| |
| if (perf_event_overflow(event, 1, &data, regs)) |
| sparc_pmu_disable_event(cpuc, hwc, idx); |
| } |
| |
| return NOTIFY_STOP; |
| } |
| |
| static __read_mostly struct notifier_block perf_event_nmi_notifier = { |
| .notifier_call = perf_event_nmi_handler, |
| }; |
| |
| static bool __init supported_pmu(void) |
| { |
| if (!strcmp(sparc_pmu_type, "ultra3") || |
| !strcmp(sparc_pmu_type, "ultra3+") || |
| !strcmp(sparc_pmu_type, "ultra3i") || |
| !strcmp(sparc_pmu_type, "ultra4+")) { |
| sparc_pmu = &ultra3_pmu; |
| return true; |
| } |
| if (!strcmp(sparc_pmu_type, "niagara")) { |
| sparc_pmu = &niagara1_pmu; |
| return true; |
| } |
| if (!strcmp(sparc_pmu_type, "niagara2")) { |
| sparc_pmu = &niagara2_pmu; |
| return true; |
| } |
| return false; |
| } |
| |
| void __init init_hw_perf_events(void) |
| { |
| pr_info("Performance events: "); |
| |
| if (!supported_pmu()) { |
| pr_cont("No support for PMU type '%s'\n", sparc_pmu_type); |
| return; |
| } |
| |
| pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type); |
| |
| /* All sparc64 PMUs currently have 2 events. */ |
| perf_max_events = 2; |
| |
| register_die_notifier(&perf_event_nmi_notifier); |
| } |
| |
| static inline void callchain_store(struct perf_callchain_entry *entry, u64 ip) |
| { |
| if (entry->nr < PERF_MAX_STACK_DEPTH) |
| entry->ip[entry->nr++] = ip; |
| } |
| |
| static void perf_callchain_kernel(struct pt_regs *regs, |
| struct perf_callchain_entry *entry) |
| { |
| unsigned long ksp, fp; |
| #ifdef CONFIG_FUNCTION_GRAPH_TRACER |
| int graph = 0; |
| #endif |
| |
| callchain_store(entry, PERF_CONTEXT_KERNEL); |
| callchain_store(entry, regs->tpc); |
| |
| ksp = regs->u_regs[UREG_I6]; |
| fp = ksp + STACK_BIAS; |
| do { |
| struct sparc_stackf *sf; |
| struct pt_regs *regs; |
| unsigned long pc; |
| |
| if (!kstack_valid(current_thread_info(), fp)) |
| break; |
| |
| sf = (struct sparc_stackf *) fp; |
| regs = (struct pt_regs *) (sf + 1); |
| |
| if (kstack_is_trap_frame(current_thread_info(), regs)) { |
| if (user_mode(regs)) |
| break; |
| pc = regs->tpc; |
| fp = regs->u_regs[UREG_I6] + STACK_BIAS; |
| } else { |
| pc = sf->callers_pc; |
| fp = (unsigned long)sf->fp + STACK_BIAS; |
| } |
| callchain_store(entry, pc); |
| #ifdef CONFIG_FUNCTION_GRAPH_TRACER |
| if ((pc + 8UL) == (unsigned long) &return_to_handler) { |
| int index = current->curr_ret_stack; |
| if (current->ret_stack && index >= graph) { |
| pc = current->ret_stack[index - graph].ret; |
| callchain_store(entry, pc); |
| graph++; |
| } |
| } |
| #endif |
| } while (entry->nr < PERF_MAX_STACK_DEPTH); |
| } |
| |
| static void perf_callchain_user_64(struct pt_regs *regs, |
| struct perf_callchain_entry *entry) |
| { |
| unsigned long ufp; |
| |
| callchain_store(entry, PERF_CONTEXT_USER); |
| callchain_store(entry, regs->tpc); |
| |
| ufp = regs->u_regs[UREG_I6] + STACK_BIAS; |
| do { |
| struct sparc_stackf *usf, sf; |
| unsigned long pc; |
| |
| usf = (struct sparc_stackf *) ufp; |
| if (__copy_from_user_inatomic(&sf, usf, sizeof(sf))) |
| break; |
| |
| pc = sf.callers_pc; |
| ufp = (unsigned long)sf.fp + STACK_BIAS; |
| callchain_store(entry, pc); |
| } while (entry->nr < PERF_MAX_STACK_DEPTH); |
| } |
| |
| static void perf_callchain_user_32(struct pt_regs *regs, |
| struct perf_callchain_entry *entry) |
| { |
| unsigned long ufp; |
| |
| callchain_store(entry, PERF_CONTEXT_USER); |
| callchain_store(entry, regs->tpc); |
| |
| ufp = regs->u_regs[UREG_I6] & 0xffffffffUL; |
| do { |
| struct sparc_stackf32 *usf, sf; |
| unsigned long pc; |
| |
| usf = (struct sparc_stackf32 *) ufp; |
| if (__copy_from_user_inatomic(&sf, usf, sizeof(sf))) |
| break; |
| |
| pc = sf.callers_pc; |
| ufp = (unsigned long)sf.fp; |
| callchain_store(entry, pc); |
| } while (entry->nr < PERF_MAX_STACK_DEPTH); |
| } |
| |
| /* Like powerpc we can't get PMU interrupts within the PMU handler, |
| * so no need for separate NMI and IRQ chains as on x86. |
| */ |
| static DEFINE_PER_CPU(struct perf_callchain_entry, callchain); |
| |
| struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) |
| { |
| struct perf_callchain_entry *entry = &__get_cpu_var(callchain); |
| |
| entry->nr = 0; |
| if (!user_mode(regs)) { |
| stack_trace_flush(); |
| perf_callchain_kernel(regs, entry); |
| if (current->mm) |
| regs = task_pt_regs(current); |
| else |
| regs = NULL; |
| } |
| if (regs) { |
| flushw_user(); |
| if (test_thread_flag(TIF_32BIT)) |
| perf_callchain_user_32(regs, entry); |
| else |
| perf_callchain_user_64(regs, entry); |
| } |
| return entry; |
| } |