blob: d7d248a000dd6772681f3f5541e344f9677a2d1d [file] [log] [blame]
#ifndef __KVM_X86_MMU_H
#define __KVM_X86_MMU_H
#include <linux/kvm_host.h>
#include "kvm_cache_regs.h"
#define PT64_PT_BITS 9
#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
#define PT32_PT_BITS 10
#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
#define PT_WRITABLE_SHIFT 1
#define PT_USER_SHIFT 2
#define PT_PRESENT_MASK (1ULL << 0)
#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
#define PT_PWT_MASK (1ULL << 3)
#define PT_PCD_MASK (1ULL << 4)
#define PT_ACCESSED_SHIFT 5
#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
#define PT_DIRTY_SHIFT 6
#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
#define PT_PAGE_SIZE_SHIFT 7
#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
#define PT_PAT_MASK (1ULL << 7)
#define PT_GLOBAL_MASK (1ULL << 8)
#define PT64_NX_SHIFT 63
#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
#define PT_PAT_SHIFT 7
#define PT_DIR_PAT_SHIFT 12
#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
#define PT32_DIR_PSE36_SIZE 4
#define PT32_DIR_PSE36_SHIFT 13
#define PT32_DIR_PSE36_MASK \
(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
#define PT64_ROOT_LEVEL 4
#define PT32_ROOT_LEVEL 2
#define PT32E_ROOT_LEVEL 3
#define PT_PDPE_LEVEL 3
#define PT_DIRECTORY_LEVEL 2
#define PT_PAGE_TABLE_LEVEL 1
#define PT_MAX_HUGEPAGE_LEVEL (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES - 1)
static inline u64 rsvd_bits(int s, int e)
{
return ((1ULL << (e - s + 1)) - 1) << s;
}
void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value);
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
/*
* Return values of handle_mmio_page_fault:
* RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
* directly.
* RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
* fault path update the mmio spte.
* RET_MMIO_PF_RETRY: let CPU fault again on the address.
* RET_MMIO_PF_BUG: a bug was detected (and a WARN was printed).
*/
enum {
RET_MMIO_PF_EMULATE = 1,
RET_MMIO_PF_INVALID = 2,
RET_MMIO_PF_RETRY = 0,
RET_MMIO_PF_BUG = -1
};
int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct);
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu);
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
bool accessed_dirty);
bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
u64 fault_address, char *insn, int insn_len,
bool need_unprotect);
static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
{
if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
return kvm->arch.n_max_mmu_pages -
kvm->arch.n_used_mmu_pages;
return 0;
}
static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
{
if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
return 0;
return kvm_mmu_load(vcpu);
}
/*
* Currently, we have two sorts of write-protection, a) the first one
* write-protects guest page to sync the guest modification, b) another one is
* used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
* between these two sorts are:
* 1) the first case clears SPTE_MMU_WRITEABLE bit.
* 2) the first case requires flushing tlb immediately avoiding corrupting
* shadow page table between all vcpus so it should be in the protection of
* mmu-lock. And the another case does not need to flush tlb until returning
* the dirty bitmap to userspace since it only write-protects the page
* logged in the bitmap, that means the page in the dirty bitmap is not
* missed, so it can flush tlb out of mmu-lock.
*
* So, there is the problem: the first case can meet the corrupted tlb caused
* by another case which write-protects pages but without flush tlb
* immediately. In order to making the first case be aware this problem we let
* it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
* is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
*
* Anyway, whenever a spte is updated (only permission and status bits are
* changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
* readonly, if that happens, we need to flush tlb. Fortunately,
* mmu_spte_update() has already handled it perfectly.
*
* The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
* - if we want to see if it has writable tlb entry or if the spte can be
* writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
* case, otherwise
* - if we fix page fault on the spte or do write-protection by dirty logging,
* check PT_WRITABLE_MASK.
*
* TODO: introduce APIs to split these two cases.
*/
static inline int is_writable_pte(unsigned long pte)
{
return pte & PT_WRITABLE_MASK;
}
static inline bool is_write_protection(struct kvm_vcpu *vcpu)
{
return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
}
/*
* Check if a given access (described through the I/D, W/R and U/S bits of a
* page fault error code pfec) causes a permission fault with the given PTE
* access rights (in ACC_* format).
*
* Return zero if the access does not fault; return the page fault error code
* if the access faults.
*/
static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
unsigned pte_access, unsigned pte_pkey,
unsigned pfec)
{
int cpl = kvm_x86_ops->get_cpl(vcpu);
unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
/*
* If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
*
* If CPL = 3, SMAP applies to all supervisor-mode data accesses
* (these are implicit supervisor accesses) regardless of the value
* of EFLAGS.AC.
*
* This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
* the result in X86_EFLAGS_AC. We then insert it in place of
* the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
* but it will be one in index if SMAP checks are being overridden.
* It is important to keep this branchless.
*/
unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
int index = (pfec >> 1) +
(smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
bool fault = (mmu->permissions[index] >> pte_access) & 1;
u32 errcode = PFERR_PRESENT_MASK;
WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
if (unlikely(mmu->pkru_mask)) {
u32 pkru_bits, offset;
/*
* PKRU defines 32 bits, there are 16 domains and 2
* attribute bits per domain in pkru. pte_pkey is the
* index of the protection domain, so pte_pkey * 2 is
* is the index of the first bit for the domain.
*/
pkru_bits = (kvm_read_pkru(vcpu) >> (pte_pkey * 2)) & 3;
/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
offset = (pfec & ~1) +
((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
pkru_bits &= mmu->pkru_mask >> offset;
errcode |= -pkru_bits & PFERR_PK_MASK;
fault |= (pkru_bits != 0);
}
return -(u32)fault & errcode;
}
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm);
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
struct kvm_memory_slot *slot, u64 gfn);
int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
#endif