| /* |
| * linux/arch/parisc/kernel/time.c |
| * |
| * Copyright (C) 1991, 1992, 1995 Linus Torvalds |
| * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King |
| * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org) |
| * |
| * 1994-07-02 Alan Modra |
| * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime |
| * 1998-12-20 Updated NTP code according to technical memorandum Jan '96 |
| * "A Kernel Model for Precision Timekeeping" by Dave Mills |
| */ |
| #include <linux/errno.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/param.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/time.h> |
| #include <linux/init.h> |
| #include <linux/smp.h> |
| #include <linux/profile.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| #include <asm/irq.h> |
| #include <asm/param.h> |
| #include <asm/pdc.h> |
| #include <asm/led.h> |
| |
| #include <linux/timex.h> |
| |
| static unsigned long clocktick __read_mostly; /* timer cycles per tick */ |
| static unsigned long halftick __read_mostly; |
| |
| #ifdef CONFIG_SMP |
| extern void smp_do_timer(struct pt_regs *regs); |
| #endif |
| |
| irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| unsigned long now; |
| unsigned long next_tick; |
| unsigned long cycles_elapsed; |
| unsigned long cycles_remainder; |
| unsigned long ticks_elapsed = 1; /* at least one elapsed */ |
| int cpu = smp_processor_id(); |
| |
| profile_tick(CPU_PROFILING, regs); |
| |
| /* Initialize next_tick to the expected tick time. */ |
| next_tick = cpu_data[cpu].it_value; |
| |
| /* Get current interval timer. |
| * CR16 reads as 64 bits in CPU wide mode. |
| * CR16 reads as 32 bits in CPU narrow mode. |
| */ |
| now = mfctl(16); |
| |
| cycles_elapsed = now - next_tick; |
| |
| /* Determine how much time elapsed. */ |
| if (now < next_tick) { |
| /* Scenario 2: CR16 wrapped after clock tick. |
| * 1's complement will give us the "elapse cycles". |
| * |
| * This "cr16 wrapped" cruft is primarily for 32-bit kernels. |
| * So think "unsigned long is u32" when reading the code. |
| * And yes, of course 64-bit will someday wrap, but only |
| * every 198841 days on a 1GHz machine. |
| */ |
| cycles_elapsed = ~cycles_elapsed; /* off by one cycle - don't care */ |
| } |
| |
| ticks_elapsed += cycles_elapsed / clocktick; |
| cycles_remainder = cycles_elapsed % clocktick; |
| |
| /* Can we differentiate between "early CR16" (aka Scenario 1) and |
| * "long delay" (aka Scenario 3)? I don't think so. |
| * |
| * We expected timer_interrupt to be delivered at least a few hundred |
| * cycles after the IT fires. But it's arbitrary how much time passes |
| * before we call it "late". I've picked one second. |
| */ |
| if (ticks_elapsed > HZ) { |
| /* Scenario 3: very long delay? bad in any case */ |
| printk (KERN_CRIT "timer_interrupt(CPU %d): delayed! run ntpdate" |
| " ticks %ld cycles %lX rem %lX" |
| " next/now %lX/%lX\n", |
| cpu, |
| ticks_elapsed, cycles_elapsed, cycles_remainder, |
| next_tick, now ); |
| |
| ticks_elapsed = 1; /* hack to limit damage in loop below */ |
| } |
| |
| |
| /* Determine when (in CR16 cycles) next IT interrupt will fire. |
| * We want IT to fire modulo clocktick even if we miss/skip some. |
| * But those interrupts don't in fact get delivered that regularly. |
| */ |
| next_tick = now + (clocktick - cycles_remainder); |
| |
| /* Program the IT when to deliver the next interrupt. */ |
| /* Only bottom 32-bits of next_tick are written to cr16. */ |
| mtctl(next_tick, 16); |
| cpu_data[cpu].it_value = next_tick; |
| |
| /* Now that we are done mucking with unreliable delivery of interrupts, |
| * go do system house keeping. |
| */ |
| while (ticks_elapsed--) { |
| #ifdef CONFIG_SMP |
| smp_do_timer(regs); |
| #else |
| update_process_times(user_mode(regs)); |
| #endif |
| if (cpu == 0) { |
| write_seqlock(&xtime_lock); |
| do_timer(1); |
| write_sequnlock(&xtime_lock); |
| } |
| } |
| |
| /* check soft power switch status */ |
| if (cpu == 0 && !atomic_read(&power_tasklet.count)) |
| tasklet_schedule(&power_tasklet); |
| |
| return IRQ_HANDLED; |
| } |
| |
| |
| unsigned long profile_pc(struct pt_regs *regs) |
| { |
| unsigned long pc = instruction_pointer(regs); |
| |
| if (regs->gr[0] & PSW_N) |
| pc -= 4; |
| |
| #ifdef CONFIG_SMP |
| if (in_lock_functions(pc)) |
| pc = regs->gr[2]; |
| #endif |
| |
| return pc; |
| } |
| EXPORT_SYMBOL(profile_pc); |
| |
| |
| /*** converted from ia64 ***/ |
| /* |
| * Return the number of micro-seconds that elapsed since the last |
| * update to wall time (aka xtime). The xtime_lock |
| * must be at least read-locked when calling this routine. |
| */ |
| static inline unsigned long |
| gettimeoffset (void) |
| { |
| #ifndef CONFIG_SMP |
| /* |
| * FIXME: This won't work on smp because jiffies are updated by cpu 0. |
| * Once parisc-linux learns the cr16 difference between processors, |
| * this could be made to work. |
| */ |
| unsigned long now; |
| unsigned long prev_tick; |
| unsigned long next_tick; |
| unsigned long elapsed_cycles; |
| unsigned long usec; |
| |
| next_tick = cpu_data[smp_processor_id()].it_value; |
| now = mfctl(16); /* Read the hardware interval timer. */ |
| |
| prev_tick = next_tick - clocktick; |
| |
| /* Assume Scenario 1: "now" is later than prev_tick. */ |
| elapsed_cycles = now - prev_tick; |
| |
| if (now < prev_tick) { |
| /* Scenario 2: CR16 wrapped! |
| * 1's complement is close enough. |
| */ |
| elapsed_cycles = ~elapsed_cycles; |
| } |
| |
| if (elapsed_cycles > (HZ * clocktick)) { |
| /* Scenario 3: clock ticks are missing. */ |
| printk (KERN_CRIT "gettimeoffset(CPU %d): missing ticks!" |
| "cycles %lX prev/now/next %lX/%lX/%lX clock %lX\n", |
| cpuid, |
| elapsed_cycles, prev_tick, now, next_tick, clocktick); |
| } |
| |
| /* FIXME: Can we improve the precision? Not with PAGE0. */ |
| usec = (elapsed_cycles * 10000) / PAGE0->mem_10msec; |
| |
| /* add in "lost" jiffies */ |
| usec += clocktick * (jiffies - wall_jiffies); |
| return usec; |
| #else |
| return 0; |
| #endif |
| } |
| |
| void |
| do_gettimeofday (struct timeval *tv) |
| { |
| unsigned long flags, seq, usec, sec; |
| |
| /* Hold xtime_lock and adjust timeval. */ |
| do { |
| seq = read_seqbegin_irqsave(&xtime_lock, flags); |
| usec = gettimeoffset(); |
| sec = xtime.tv_sec; |
| usec += (xtime.tv_nsec / 1000); |
| } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); |
| |
| /* Move adjusted usec's into sec's. */ |
| while (usec >= USEC_PER_SEC) { |
| usec -= USEC_PER_SEC; |
| ++sec; |
| } |
| |
| /* Return adjusted result. */ |
| tv->tv_sec = sec; |
| tv->tv_usec = usec; |
| } |
| |
| EXPORT_SYMBOL(do_gettimeofday); |
| |
| int |
| do_settimeofday (struct timespec *tv) |
| { |
| time_t wtm_sec, sec = tv->tv_sec; |
| long wtm_nsec, nsec = tv->tv_nsec; |
| |
| if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) |
| return -EINVAL; |
| |
| write_seqlock_irq(&xtime_lock); |
| { |
| /* |
| * This is revolting. We need to set "xtime" |
| * correctly. However, the value in this location is |
| * the value at the most recent update of wall time. |
| * Discover what correction gettimeofday would have |
| * done, and then undo it! |
| */ |
| nsec -= gettimeoffset() * 1000; |
| |
| wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); |
| wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); |
| |
| set_normalized_timespec(&xtime, sec, nsec); |
| set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); |
| |
| ntp_clear(); |
| } |
| write_sequnlock_irq(&xtime_lock); |
| clock_was_set(); |
| return 0; |
| } |
| EXPORT_SYMBOL(do_settimeofday); |
| |
| /* |
| * XXX: We can do better than this. |
| * Returns nanoseconds |
| */ |
| |
| unsigned long long sched_clock(void) |
| { |
| return (unsigned long long)jiffies * (1000000000 / HZ); |
| } |
| |
| |
| void __init start_cpu_itimer(void) |
| { |
| unsigned int cpu = smp_processor_id(); |
| unsigned long next_tick = mfctl(16) + clocktick; |
| |
| mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */ |
| |
| cpu_data[cpu].it_value = next_tick; |
| } |
| |
| void __init time_init(void) |
| { |
| static struct pdc_tod tod_data; |
| |
| clocktick = (100 * PAGE0->mem_10msec) / HZ; |
| halftick = clocktick / 2; |
| |
| start_cpu_itimer(); /* get CPU 0 started */ |
| |
| if(pdc_tod_read(&tod_data) == 0) { |
| write_seqlock_irq(&xtime_lock); |
| xtime.tv_sec = tod_data.tod_sec; |
| xtime.tv_nsec = tod_data.tod_usec * 1000; |
| set_normalized_timespec(&wall_to_monotonic, |
| -xtime.tv_sec, -xtime.tv_nsec); |
| write_sequnlock_irq(&xtime_lock); |
| } else { |
| printk(KERN_ERR "Error reading tod clock\n"); |
| xtime.tv_sec = 0; |
| xtime.tv_nsec = 0; |
| } |
| } |
| |