| #undef DEBUG |
| |
| /* |
| * ARM performance counter support. |
| * |
| * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles |
| * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com> |
| * |
| * This code is based on the sparc64 perf event code, which is in turn based |
| * on the x86 code. Callchain code is based on the ARM OProfile backtrace |
| * code. |
| */ |
| #define pr_fmt(fmt) "hw perfevents: " fmt |
| |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/perf_event.h> |
| #include <linux/platform_device.h> |
| #include <linux/spinlock.h> |
| #include <linux/uaccess.h> |
| |
| #include <asm/cputype.h> |
| #include <asm/irq.h> |
| #include <asm/irq_regs.h> |
| #include <asm/pmu.h> |
| #include <asm/stacktrace.h> |
| |
| static struct platform_device *pmu_device; |
| |
| /* |
| * Hardware lock to serialize accesses to PMU registers. Needed for the |
| * read/modify/write sequences. |
| */ |
| static DEFINE_RAW_SPINLOCK(pmu_lock); |
| |
| /* |
| * ARMv6 supports a maximum of 3 events, starting from index 1. If we add |
| * another platform that supports more, we need to increase this to be the |
| * largest of all platforms. |
| * |
| * ARMv7 supports up to 32 events: |
| * cycle counter CCNT + 31 events counters CNT0..30. |
| * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters. |
| */ |
| #define ARMPMU_MAX_HWEVENTS 33 |
| |
| /* The events for a given CPU. */ |
| struct cpu_hw_events { |
| /* |
| * The events that are active on the CPU for the given index. Index 0 |
| * is reserved. |
| */ |
| struct perf_event *events[ARMPMU_MAX_HWEVENTS]; |
| |
| /* |
| * A 1 bit for an index indicates that the counter is being used for |
| * an event. A 0 means that the counter can be used. |
| */ |
| unsigned long used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)]; |
| |
| /* |
| * A 1 bit for an index indicates that the counter is actively being |
| * used. |
| */ |
| unsigned long active_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)]; |
| }; |
| static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); |
| |
| struct arm_pmu { |
| enum arm_perf_pmu_ids id; |
| const char *name; |
| irqreturn_t (*handle_irq)(int irq_num, void *dev); |
| void (*enable)(struct hw_perf_event *evt, int idx); |
| void (*disable)(struct hw_perf_event *evt, int idx); |
| int (*get_event_idx)(struct cpu_hw_events *cpuc, |
| struct hw_perf_event *hwc); |
| u32 (*read_counter)(int idx); |
| void (*write_counter)(int idx, u32 val); |
| void (*start)(void); |
| void (*stop)(void); |
| void (*reset)(void *); |
| const unsigned (*cache_map)[PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX]; |
| const unsigned (*event_map)[PERF_COUNT_HW_MAX]; |
| u32 raw_event_mask; |
| int num_events; |
| u64 max_period; |
| }; |
| |
| /* Set at runtime when we know what CPU type we are. */ |
| static const struct arm_pmu *armpmu; |
| |
| enum arm_perf_pmu_ids |
| armpmu_get_pmu_id(void) |
| { |
| int id = -ENODEV; |
| |
| if (armpmu != NULL) |
| id = armpmu->id; |
| |
| return id; |
| } |
| EXPORT_SYMBOL_GPL(armpmu_get_pmu_id); |
| |
| int |
| armpmu_get_max_events(void) |
| { |
| int max_events = 0; |
| |
| if (armpmu != NULL) |
| max_events = armpmu->num_events; |
| |
| return max_events; |
| } |
| EXPORT_SYMBOL_GPL(armpmu_get_max_events); |
| |
| int perf_num_counters(void) |
| { |
| return armpmu_get_max_events(); |
| } |
| EXPORT_SYMBOL_GPL(perf_num_counters); |
| |
| #define HW_OP_UNSUPPORTED 0xFFFF |
| |
| #define C(_x) \ |
| PERF_COUNT_HW_CACHE_##_x |
| |
| #define CACHE_OP_UNSUPPORTED 0xFFFF |
| |
| static int |
| armpmu_map_cache_event(u64 config) |
| { |
| unsigned int cache_type, cache_op, cache_result, ret; |
| |
| cache_type = (config >> 0) & 0xff; |
| if (cache_type >= PERF_COUNT_HW_CACHE_MAX) |
| return -EINVAL; |
| |
| cache_op = (config >> 8) & 0xff; |
| if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) |
| return -EINVAL; |
| |
| cache_result = (config >> 16) & 0xff; |
| if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) |
| return -EINVAL; |
| |
| ret = (int)(*armpmu->cache_map)[cache_type][cache_op][cache_result]; |
| |
| if (ret == CACHE_OP_UNSUPPORTED) |
| return -ENOENT; |
| |
| return ret; |
| } |
| |
| static int |
| armpmu_map_event(u64 config) |
| { |
| int mapping = (*armpmu->event_map)[config]; |
| return mapping == HW_OP_UNSUPPORTED ? -EOPNOTSUPP : mapping; |
| } |
| |
| static int |
| armpmu_map_raw_event(u64 config) |
| { |
| return (int)(config & armpmu->raw_event_mask); |
| } |
| |
| static int |
| armpmu_event_set_period(struct perf_event *event, |
| struct hw_perf_event *hwc, |
| int idx) |
| { |
| s64 left = local64_read(&hwc->period_left); |
| s64 period = hwc->sample_period; |
| int ret = 0; |
| |
| if (unlikely(left <= -period)) { |
| left = period; |
| local64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| ret = 1; |
| } |
| |
| if (unlikely(left <= 0)) { |
| left += period; |
| local64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| ret = 1; |
| } |
| |
| if (left > (s64)armpmu->max_period) |
| left = armpmu->max_period; |
| |
| local64_set(&hwc->prev_count, (u64)-left); |
| |
| armpmu->write_counter(idx, (u64)(-left) & 0xffffffff); |
| |
| perf_event_update_userpage(event); |
| |
| return ret; |
| } |
| |
| static u64 |
| armpmu_event_update(struct perf_event *event, |
| struct hw_perf_event *hwc, |
| int idx, int overflow) |
| { |
| u64 delta, prev_raw_count, new_raw_count; |
| |
| again: |
| prev_raw_count = local64_read(&hwc->prev_count); |
| new_raw_count = armpmu->read_counter(idx); |
| |
| if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, |
| new_raw_count) != prev_raw_count) |
| goto again; |
| |
| new_raw_count &= armpmu->max_period; |
| prev_raw_count &= armpmu->max_period; |
| |
| if (overflow) |
| delta = armpmu->max_period - prev_raw_count + new_raw_count + 1; |
| else |
| delta = new_raw_count - prev_raw_count; |
| |
| local64_add(delta, &event->count); |
| local64_sub(delta, &hwc->period_left); |
| |
| return new_raw_count; |
| } |
| |
| static void |
| armpmu_read(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| |
| /* Don't read disabled counters! */ |
| if (hwc->idx < 0) |
| return; |
| |
| armpmu_event_update(event, hwc, hwc->idx, 0); |
| } |
| |
| static void |
| armpmu_stop(struct perf_event *event, int flags) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| |
| if (!armpmu) |
| return; |
| |
| /* |
| * ARM pmu always has to update the counter, so ignore |
| * PERF_EF_UPDATE, see comments in armpmu_start(). |
| */ |
| if (!(hwc->state & PERF_HES_STOPPED)) { |
| armpmu->disable(hwc, hwc->idx); |
| barrier(); /* why? */ |
| armpmu_event_update(event, hwc, hwc->idx, 0); |
| hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; |
| } |
| } |
| |
| static void |
| armpmu_start(struct perf_event *event, int flags) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| |
| if (!armpmu) |
| return; |
| |
| /* |
| * ARM pmu always has to reprogram the period, so ignore |
| * PERF_EF_RELOAD, see the comment below. |
| */ |
| if (flags & PERF_EF_RELOAD) |
| WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); |
| |
| hwc->state = 0; |
| /* |
| * Set the period again. Some counters can't be stopped, so when we |
| * were stopped we simply disabled the IRQ source and the counter |
| * may have been left counting. If we don't do this step then we may |
| * get an interrupt too soon or *way* too late if the overflow has |
| * happened since disabling. |
| */ |
| armpmu_event_set_period(event, hwc, hwc->idx); |
| armpmu->enable(hwc, hwc->idx); |
| } |
| |
| static void |
| armpmu_del(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| int idx = hwc->idx; |
| |
| WARN_ON(idx < 0); |
| |
| clear_bit(idx, cpuc->active_mask); |
| armpmu_stop(event, PERF_EF_UPDATE); |
| cpuc->events[idx] = NULL; |
| clear_bit(idx, cpuc->used_mask); |
| |
| perf_event_update_userpage(event); |
| } |
| |
| static int |
| armpmu_add(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| int idx; |
| int err = 0; |
| |
| perf_pmu_disable(event->pmu); |
| |
| /* If we don't have a space for the counter then finish early. */ |
| idx = armpmu->get_event_idx(cpuc, hwc); |
| if (idx < 0) { |
| err = idx; |
| goto out; |
| } |
| |
| /* |
| * If there is an event in the counter we are going to use then make |
| * sure it is disabled. |
| */ |
| event->hw.idx = idx; |
| armpmu->disable(hwc, idx); |
| cpuc->events[idx] = event; |
| set_bit(idx, cpuc->active_mask); |
| |
| hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; |
| if (flags & PERF_EF_START) |
| armpmu_start(event, PERF_EF_RELOAD); |
| |
| /* Propagate our changes to the userspace mapping. */ |
| perf_event_update_userpage(event); |
| |
| out: |
| perf_pmu_enable(event->pmu); |
| return err; |
| } |
| |
| static struct pmu pmu; |
| |
| static int |
| validate_event(struct cpu_hw_events *cpuc, |
| struct perf_event *event) |
| { |
| struct hw_perf_event fake_event = event->hw; |
| |
| if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF) |
| return 1; |
| |
| return armpmu->get_event_idx(cpuc, &fake_event) >= 0; |
| } |
| |
| static int |
| validate_group(struct perf_event *event) |
| { |
| struct perf_event *sibling, *leader = event->group_leader; |
| struct cpu_hw_events fake_pmu; |
| |
| memset(&fake_pmu, 0, sizeof(fake_pmu)); |
| |
| if (!validate_event(&fake_pmu, leader)) |
| return -ENOSPC; |
| |
| list_for_each_entry(sibling, &leader->sibling_list, group_entry) { |
| if (!validate_event(&fake_pmu, sibling)) |
| return -ENOSPC; |
| } |
| |
| if (!validate_event(&fake_pmu, event)) |
| return -ENOSPC; |
| |
| return 0; |
| } |
| |
| static irqreturn_t armpmu_platform_irq(int irq, void *dev) |
| { |
| struct arm_pmu_platdata *plat = dev_get_platdata(&pmu_device->dev); |
| |
| return plat->handle_irq(irq, dev, armpmu->handle_irq); |
| } |
| |
| static int |
| armpmu_reserve_hardware(void) |
| { |
| struct arm_pmu_platdata *plat; |
| irq_handler_t handle_irq; |
| int i, err = -ENODEV, irq; |
| |
| pmu_device = reserve_pmu(ARM_PMU_DEVICE_CPU); |
| if (IS_ERR(pmu_device)) { |
| pr_warning("unable to reserve pmu\n"); |
| return PTR_ERR(pmu_device); |
| } |
| |
| init_pmu(ARM_PMU_DEVICE_CPU); |
| |
| plat = dev_get_platdata(&pmu_device->dev); |
| if (plat && plat->handle_irq) |
| handle_irq = armpmu_platform_irq; |
| else |
| handle_irq = armpmu->handle_irq; |
| |
| if (pmu_device->num_resources < 1) { |
| pr_err("no irqs for PMUs defined\n"); |
| return -ENODEV; |
| } |
| |
| for (i = 0; i < pmu_device->num_resources; ++i) { |
| irq = platform_get_irq(pmu_device, i); |
| if (irq < 0) |
| continue; |
| |
| err = request_irq(irq, handle_irq, |
| IRQF_DISABLED | IRQF_NOBALANCING, |
| "armpmu", NULL); |
| if (err) { |
| pr_warning("unable to request IRQ%d for ARM perf " |
| "counters\n", irq); |
| break; |
| } |
| } |
| |
| if (err) { |
| for (i = i - 1; i >= 0; --i) { |
| irq = platform_get_irq(pmu_device, i); |
| if (irq >= 0) |
| free_irq(irq, NULL); |
| } |
| release_pmu(pmu_device); |
| pmu_device = NULL; |
| } |
| |
| return err; |
| } |
| |
| static void |
| armpmu_release_hardware(void) |
| { |
| int i, irq; |
| |
| for (i = pmu_device->num_resources - 1; i >= 0; --i) { |
| irq = platform_get_irq(pmu_device, i); |
| if (irq >= 0) |
| free_irq(irq, NULL); |
| } |
| armpmu->stop(); |
| |
| release_pmu(pmu_device); |
| pmu_device = NULL; |
| } |
| |
| static atomic_t active_events = ATOMIC_INIT(0); |
| static DEFINE_MUTEX(pmu_reserve_mutex); |
| |
| static void |
| hw_perf_event_destroy(struct perf_event *event) |
| { |
| if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) { |
| armpmu_release_hardware(); |
| mutex_unlock(&pmu_reserve_mutex); |
| } |
| } |
| |
| static int |
| __hw_perf_event_init(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| int mapping, err; |
| |
| /* Decode the generic type into an ARM event identifier. */ |
| if (PERF_TYPE_HARDWARE == event->attr.type) { |
| mapping = armpmu_map_event(event->attr.config); |
| } else if (PERF_TYPE_HW_CACHE == event->attr.type) { |
| mapping = armpmu_map_cache_event(event->attr.config); |
| } else if (PERF_TYPE_RAW == event->attr.type) { |
| mapping = armpmu_map_raw_event(event->attr.config); |
| } else { |
| pr_debug("event type %x not supported\n", event->attr.type); |
| return -EOPNOTSUPP; |
| } |
| |
| if (mapping < 0) { |
| pr_debug("event %x:%llx not supported\n", event->attr.type, |
| event->attr.config); |
| return mapping; |
| } |
| |
| /* |
| * Check whether we need to exclude the counter from certain modes. |
| * The ARM performance counters are on all of the time so if someone |
| * has asked us for some excludes then we have to fail. |
| */ |
| if (event->attr.exclude_kernel || event->attr.exclude_user || |
| event->attr.exclude_hv || event->attr.exclude_idle) { |
| pr_debug("ARM performance counters do not support " |
| "mode exclusion\n"); |
| return -EPERM; |
| } |
| |
| /* |
| * We don't assign an index until we actually place the event onto |
| * hardware. Use -1 to signify that we haven't decided where to put it |
| * yet. For SMP systems, each core has it's own PMU so we can't do any |
| * clever allocation or constraints checking at this point. |
| */ |
| hwc->idx = -1; |
| |
| /* |
| * Store the event encoding into the config_base field. config and |
| * event_base are unused as the only 2 things we need to know are |
| * the event mapping and the counter to use. The counter to use is |
| * also the indx and the config_base is the event type. |
| */ |
| hwc->config_base = (unsigned long)mapping; |
| hwc->config = 0; |
| hwc->event_base = 0; |
| |
| if (!hwc->sample_period) { |
| hwc->sample_period = armpmu->max_period; |
| hwc->last_period = hwc->sample_period; |
| local64_set(&hwc->period_left, hwc->sample_period); |
| } |
| |
| err = 0; |
| if (event->group_leader != event) { |
| err = validate_group(event); |
| if (err) |
| return -EINVAL; |
| } |
| |
| return err; |
| } |
| |
| static int armpmu_event_init(struct perf_event *event) |
| { |
| int err = 0; |
| |
| switch (event->attr.type) { |
| case PERF_TYPE_RAW: |
| case PERF_TYPE_HARDWARE: |
| case PERF_TYPE_HW_CACHE: |
| break; |
| |
| default: |
| return -ENOENT; |
| } |
| |
| if (!armpmu) |
| return -ENODEV; |
| |
| event->destroy = hw_perf_event_destroy; |
| |
| if (!atomic_inc_not_zero(&active_events)) { |
| mutex_lock(&pmu_reserve_mutex); |
| if (atomic_read(&active_events) == 0) { |
| err = armpmu_reserve_hardware(); |
| } |
| |
| if (!err) |
| atomic_inc(&active_events); |
| mutex_unlock(&pmu_reserve_mutex); |
| } |
| |
| if (err) |
| return err; |
| |
| err = __hw_perf_event_init(event); |
| if (err) |
| hw_perf_event_destroy(event); |
| |
| return err; |
| } |
| |
| static void armpmu_enable(struct pmu *pmu) |
| { |
| /* Enable all of the perf events on hardware. */ |
| int idx, enabled = 0; |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| |
| if (!armpmu) |
| return; |
| |
| for (idx = 0; idx <= armpmu->num_events; ++idx) { |
| struct perf_event *event = cpuc->events[idx]; |
| |
| if (!event) |
| continue; |
| |
| armpmu->enable(&event->hw, idx); |
| enabled = 1; |
| } |
| |
| if (enabled) |
| armpmu->start(); |
| } |
| |
| static void armpmu_disable(struct pmu *pmu) |
| { |
| if (armpmu) |
| armpmu->stop(); |
| } |
| |
| static struct pmu pmu = { |
| .pmu_enable = armpmu_enable, |
| .pmu_disable = armpmu_disable, |
| .event_init = armpmu_event_init, |
| .add = armpmu_add, |
| .del = armpmu_del, |
| .start = armpmu_start, |
| .stop = armpmu_stop, |
| .read = armpmu_read, |
| }; |
| |
| /* Include the PMU-specific implementations. */ |
| #include "perf_event_xscale.c" |
| #include "perf_event_v6.c" |
| #include "perf_event_v7.c" |
| |
| /* |
| * Ensure the PMU has sane values out of reset. |
| * This requires SMP to be available, so exists as a separate initcall. |
| */ |
| static int __init |
| armpmu_reset(void) |
| { |
| if (armpmu && armpmu->reset) |
| return on_each_cpu(armpmu->reset, NULL, 1); |
| return 0; |
| } |
| arch_initcall(armpmu_reset); |
| |
| static int __init |
| init_hw_perf_events(void) |
| { |
| unsigned long cpuid = read_cpuid_id(); |
| unsigned long implementor = (cpuid & 0xFF000000) >> 24; |
| unsigned long part_number = (cpuid & 0xFFF0); |
| |
| /* ARM Ltd CPUs. */ |
| if (0x41 == implementor) { |
| switch (part_number) { |
| case 0xB360: /* ARM1136 */ |
| case 0xB560: /* ARM1156 */ |
| case 0xB760: /* ARM1176 */ |
| armpmu = armv6pmu_init(); |
| break; |
| case 0xB020: /* ARM11mpcore */ |
| armpmu = armv6mpcore_pmu_init(); |
| break; |
| case 0xC080: /* Cortex-A8 */ |
| armpmu = armv7_a8_pmu_init(); |
| break; |
| case 0xC090: /* Cortex-A9 */ |
| armpmu = armv7_a9_pmu_init(); |
| break; |
| } |
| /* Intel CPUs [xscale]. */ |
| } else if (0x69 == implementor) { |
| part_number = (cpuid >> 13) & 0x7; |
| switch (part_number) { |
| case 1: |
| armpmu = xscale1pmu_init(); |
| break; |
| case 2: |
| armpmu = xscale2pmu_init(); |
| break; |
| } |
| } |
| |
| if (armpmu) { |
| pr_info("enabled with %s PMU driver, %d counters available\n", |
| armpmu->name, armpmu->num_events); |
| } else { |
| pr_info("no hardware support available\n"); |
| } |
| |
| perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); |
| |
| return 0; |
| } |
| early_initcall(init_hw_perf_events); |
| |
| /* |
| * Callchain handling code. |
| */ |
| |
| /* |
| * The registers we're interested in are at the end of the variable |
| * length saved register structure. The fp points at the end of this |
| * structure so the address of this struct is: |
| * (struct frame_tail *)(xxx->fp)-1 |
| * |
| * This code has been adapted from the ARM OProfile support. |
| */ |
| struct frame_tail { |
| struct frame_tail __user *fp; |
| unsigned long sp; |
| unsigned long lr; |
| } __attribute__((packed)); |
| |
| /* |
| * Get the return address for a single stackframe and return a pointer to the |
| * next frame tail. |
| */ |
| static struct frame_tail __user * |
| user_backtrace(struct frame_tail __user *tail, |
| struct perf_callchain_entry *entry) |
| { |
| struct frame_tail buftail; |
| |
| /* Also check accessibility of one struct frame_tail beyond */ |
| if (!access_ok(VERIFY_READ, tail, sizeof(buftail))) |
| return NULL; |
| if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail))) |
| return NULL; |
| |
| perf_callchain_store(entry, buftail.lr); |
| |
| /* |
| * Frame pointers should strictly progress back up the stack |
| * (towards higher addresses). |
| */ |
| if (tail + 1 >= buftail.fp) |
| return NULL; |
| |
| return buftail.fp - 1; |
| } |
| |
| void |
| perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs) |
| { |
| struct frame_tail __user *tail; |
| |
| |
| tail = (struct frame_tail __user *)regs->ARM_fp - 1; |
| |
| while ((entry->nr < PERF_MAX_STACK_DEPTH) && |
| tail && !((unsigned long)tail & 0x3)) |
| tail = user_backtrace(tail, entry); |
| } |
| |
| /* |
| * Gets called by walk_stackframe() for every stackframe. This will be called |
| * whist unwinding the stackframe and is like a subroutine return so we use |
| * the PC. |
| */ |
| static int |
| callchain_trace(struct stackframe *fr, |
| void *data) |
| { |
| struct perf_callchain_entry *entry = data; |
| perf_callchain_store(entry, fr->pc); |
| return 0; |
| } |
| |
| void |
| perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs) |
| { |
| struct stackframe fr; |
| |
| fr.fp = regs->ARM_fp; |
| fr.sp = regs->ARM_sp; |
| fr.lr = regs->ARM_lr; |
| fr.pc = regs->ARM_pc; |
| walk_stackframe(&fr, callchain_trace, entry); |
| } |