| /* arch/sparc64/mm/tsb.c |
| * |
| * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net> |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/preempt.h> |
| #include <linux/slab.h> |
| #include <asm/page.h> |
| #include <asm/pgtable.h> |
| #include <asm/mmu_context.h> |
| #include <asm/setup.h> |
| #include <asm/tsb.h> |
| #include <asm/tlb.h> |
| #include <asm/oplib.h> |
| |
| extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES]; |
| |
| static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries) |
| { |
| vaddr >>= hash_shift; |
| return vaddr & (nentries - 1); |
| } |
| |
| static inline int tag_compare(unsigned long tag, unsigned long vaddr) |
| { |
| return (tag == (vaddr >> 22)); |
| } |
| |
| static void flush_tsb_kernel_range_scan(unsigned long start, unsigned long end) |
| { |
| unsigned long idx; |
| |
| for (idx = 0; idx < KERNEL_TSB_NENTRIES; idx++) { |
| struct tsb *ent = &swapper_tsb[idx]; |
| unsigned long match = idx << 13; |
| |
| match |= (ent->tag << 22); |
| if (match >= start && match < end) |
| ent->tag = (1UL << TSB_TAG_INVALID_BIT); |
| } |
| } |
| |
| /* TSB flushes need only occur on the processor initiating the address |
| * space modification, not on each cpu the address space has run on. |
| * Only the TLB flush needs that treatment. |
| */ |
| |
| void flush_tsb_kernel_range(unsigned long start, unsigned long end) |
| { |
| unsigned long v; |
| |
| if ((end - start) >> PAGE_SHIFT >= 2 * KERNEL_TSB_NENTRIES) |
| return flush_tsb_kernel_range_scan(start, end); |
| |
| for (v = start; v < end; v += PAGE_SIZE) { |
| unsigned long hash = tsb_hash(v, PAGE_SHIFT, |
| KERNEL_TSB_NENTRIES); |
| struct tsb *ent = &swapper_tsb[hash]; |
| |
| if (tag_compare(ent->tag, v)) |
| ent->tag = (1UL << TSB_TAG_INVALID_BIT); |
| } |
| } |
| |
| static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v, |
| unsigned long hash_shift, |
| unsigned long nentries) |
| { |
| unsigned long tag, ent, hash; |
| |
| v &= ~0x1UL; |
| hash = tsb_hash(v, hash_shift, nentries); |
| ent = tsb + (hash * sizeof(struct tsb)); |
| tag = (v >> 22UL); |
| |
| tsb_flush(ent, tag); |
| } |
| |
| static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift, |
| unsigned long tsb, unsigned long nentries) |
| { |
| unsigned long i; |
| |
| for (i = 0; i < tb->tlb_nr; i++) |
| __flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries); |
| } |
| |
| void flush_tsb_user(struct tlb_batch *tb) |
| { |
| struct mm_struct *mm = tb->mm; |
| unsigned long nentries, base, flags; |
| |
| spin_lock_irqsave(&mm->context.lock, flags); |
| |
| if (!tb->huge) { |
| base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb; |
| nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries; |
| if (tlb_type == cheetah_plus || tlb_type == hypervisor) |
| base = __pa(base); |
| __flush_tsb_one(tb, PAGE_SHIFT, base, nentries); |
| } |
| #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) |
| if (tb->huge && mm->context.tsb_block[MM_TSB_HUGE].tsb) { |
| base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb; |
| nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries; |
| if (tlb_type == cheetah_plus || tlb_type == hypervisor) |
| base = __pa(base); |
| __flush_tsb_one(tb, REAL_HPAGE_SHIFT, base, nentries); |
| } |
| #endif |
| spin_unlock_irqrestore(&mm->context.lock, flags); |
| } |
| |
| void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr, bool huge) |
| { |
| unsigned long nentries, base, flags; |
| |
| spin_lock_irqsave(&mm->context.lock, flags); |
| |
| if (!huge) { |
| base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb; |
| nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries; |
| if (tlb_type == cheetah_plus || tlb_type == hypervisor) |
| base = __pa(base); |
| __flush_tsb_one_entry(base, vaddr, PAGE_SHIFT, nentries); |
| } |
| #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) |
| if (huge && mm->context.tsb_block[MM_TSB_HUGE].tsb) { |
| base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb; |
| nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries; |
| if (tlb_type == cheetah_plus || tlb_type == hypervisor) |
| base = __pa(base); |
| __flush_tsb_one_entry(base, vaddr, REAL_HPAGE_SHIFT, nentries); |
| } |
| #endif |
| spin_unlock_irqrestore(&mm->context.lock, flags); |
| } |
| |
| #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K |
| #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K |
| |
| #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) |
| #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB |
| #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB |
| #endif |
| |
| static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes) |
| { |
| unsigned long tsb_reg, base, tsb_paddr; |
| unsigned long page_sz, tte; |
| |
| mm->context.tsb_block[tsb_idx].tsb_nentries = |
| tsb_bytes / sizeof(struct tsb); |
| |
| switch (tsb_idx) { |
| case MM_TSB_BASE: |
| base = TSBMAP_8K_BASE; |
| break; |
| #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) |
| case MM_TSB_HUGE: |
| base = TSBMAP_4M_BASE; |
| break; |
| #endif |
| default: |
| BUG(); |
| } |
| |
| tte = pgprot_val(PAGE_KERNEL_LOCKED); |
| tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb); |
| BUG_ON(tsb_paddr & (tsb_bytes - 1UL)); |
| |
| /* Use the smallest page size that can map the whole TSB |
| * in one TLB entry. |
| */ |
| switch (tsb_bytes) { |
| case 8192 << 0: |
| tsb_reg = 0x0UL; |
| #ifdef DCACHE_ALIASING_POSSIBLE |
| base += (tsb_paddr & 8192); |
| #endif |
| page_sz = 8192; |
| break; |
| |
| case 8192 << 1: |
| tsb_reg = 0x1UL; |
| page_sz = 64 * 1024; |
| break; |
| |
| case 8192 << 2: |
| tsb_reg = 0x2UL; |
| page_sz = 64 * 1024; |
| break; |
| |
| case 8192 << 3: |
| tsb_reg = 0x3UL; |
| page_sz = 64 * 1024; |
| break; |
| |
| case 8192 << 4: |
| tsb_reg = 0x4UL; |
| page_sz = 512 * 1024; |
| break; |
| |
| case 8192 << 5: |
| tsb_reg = 0x5UL; |
| page_sz = 512 * 1024; |
| break; |
| |
| case 8192 << 6: |
| tsb_reg = 0x6UL; |
| page_sz = 512 * 1024; |
| break; |
| |
| case 8192 << 7: |
| tsb_reg = 0x7UL; |
| page_sz = 4 * 1024 * 1024; |
| break; |
| |
| default: |
| printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n", |
| current->comm, current->pid, tsb_bytes); |
| do_exit(SIGSEGV); |
| } |
| tte |= pte_sz_bits(page_sz); |
| |
| if (tlb_type == cheetah_plus || tlb_type == hypervisor) { |
| /* Physical mapping, no locked TLB entry for TSB. */ |
| tsb_reg |= tsb_paddr; |
| |
| mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg; |
| mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0; |
| mm->context.tsb_block[tsb_idx].tsb_map_pte = 0; |
| } else { |
| tsb_reg |= base; |
| tsb_reg |= (tsb_paddr & (page_sz - 1UL)); |
| tte |= (tsb_paddr & ~(page_sz - 1UL)); |
| |
| mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg; |
| mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base; |
| mm->context.tsb_block[tsb_idx].tsb_map_pte = tte; |
| } |
| |
| /* Setup the Hypervisor TSB descriptor. */ |
| if (tlb_type == hypervisor) { |
| struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx]; |
| |
| switch (tsb_idx) { |
| case MM_TSB_BASE: |
| hp->pgsz_idx = HV_PGSZ_IDX_BASE; |
| break; |
| #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) |
| case MM_TSB_HUGE: |
| hp->pgsz_idx = HV_PGSZ_IDX_HUGE; |
| break; |
| #endif |
| default: |
| BUG(); |
| } |
| hp->assoc = 1; |
| hp->num_ttes = tsb_bytes / 16; |
| hp->ctx_idx = 0; |
| switch (tsb_idx) { |
| case MM_TSB_BASE: |
| hp->pgsz_mask = HV_PGSZ_MASK_BASE; |
| break; |
| #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) |
| case MM_TSB_HUGE: |
| hp->pgsz_mask = HV_PGSZ_MASK_HUGE; |
| break; |
| #endif |
| default: |
| BUG(); |
| } |
| hp->tsb_base = tsb_paddr; |
| hp->resv = 0; |
| } |
| } |
| |
| struct kmem_cache *pgtable_cache __read_mostly; |
| |
| static struct kmem_cache *tsb_caches[8] __read_mostly; |
| |
| static const char *tsb_cache_names[8] = { |
| "tsb_8KB", |
| "tsb_16KB", |
| "tsb_32KB", |
| "tsb_64KB", |
| "tsb_128KB", |
| "tsb_256KB", |
| "tsb_512KB", |
| "tsb_1MB", |
| }; |
| |
| void __init pgtable_cache_init(void) |
| { |
| unsigned long i; |
| |
| pgtable_cache = kmem_cache_create("pgtable_cache", |
| PAGE_SIZE, PAGE_SIZE, |
| 0, |
| _clear_page); |
| if (!pgtable_cache) { |
| prom_printf("pgtable_cache_init(): Could not create!\n"); |
| prom_halt(); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(tsb_cache_names); i++) { |
| unsigned long size = 8192 << i; |
| const char *name = tsb_cache_names[i]; |
| |
| tsb_caches[i] = kmem_cache_create(name, |
| size, size, |
| 0, NULL); |
| if (!tsb_caches[i]) { |
| prom_printf("Could not create %s cache\n", name); |
| prom_halt(); |
| } |
| } |
| } |
| |
| int sysctl_tsb_ratio = -2; |
| |
| static unsigned long tsb_size_to_rss_limit(unsigned long new_size) |
| { |
| unsigned long num_ents = (new_size / sizeof(struct tsb)); |
| |
| if (sysctl_tsb_ratio < 0) |
| return num_ents - (num_ents >> -sysctl_tsb_ratio); |
| else |
| return num_ents + (num_ents >> sysctl_tsb_ratio); |
| } |
| |
| /* When the RSS of an address space exceeds tsb_rss_limit for a TSB, |
| * do_sparc64_fault() invokes this routine to try and grow it. |
| * |
| * When we reach the maximum TSB size supported, we stick ~0UL into |
| * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault() |
| * will not trigger any longer. |
| * |
| * The TSB can be anywhere from 8K to 1MB in size, in increasing powers |
| * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB |
| * must be 512K aligned. It also must be physically contiguous, so we |
| * cannot use vmalloc(). |
| * |
| * The idea here is to grow the TSB when the RSS of the process approaches |
| * the number of entries that the current TSB can hold at once. Currently, |
| * we trigger when the RSS hits 3/4 of the TSB capacity. |
| */ |
| void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss) |
| { |
| unsigned long max_tsb_size = 1 * 1024 * 1024; |
| unsigned long new_size, old_size, flags; |
| struct tsb *old_tsb, *new_tsb; |
| unsigned long new_cache_index, old_cache_index; |
| unsigned long new_rss_limit; |
| gfp_t gfp_flags; |
| |
| if (max_tsb_size > (PAGE_SIZE << MAX_ORDER)) |
| max_tsb_size = (PAGE_SIZE << MAX_ORDER); |
| |
| new_cache_index = 0; |
| for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) { |
| new_rss_limit = tsb_size_to_rss_limit(new_size); |
| if (new_rss_limit > rss) |
| break; |
| new_cache_index++; |
| } |
| |
| if (new_size == max_tsb_size) |
| new_rss_limit = ~0UL; |
| |
| retry_tsb_alloc: |
| gfp_flags = GFP_KERNEL; |
| if (new_size > (PAGE_SIZE * 2)) |
| gfp_flags |= __GFP_NOWARN | __GFP_NORETRY; |
| |
| new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index], |
| gfp_flags, numa_node_id()); |
| if (unlikely(!new_tsb)) { |
| /* Not being able to fork due to a high-order TSB |
| * allocation failure is very bad behavior. Just back |
| * down to a 0-order allocation and force no TSB |
| * growing for this address space. |
| */ |
| if (mm->context.tsb_block[tsb_index].tsb == NULL && |
| new_cache_index > 0) { |
| new_cache_index = 0; |
| new_size = 8192; |
| new_rss_limit = ~0UL; |
| goto retry_tsb_alloc; |
| } |
| |
| /* If we failed on a TSB grow, we are under serious |
| * memory pressure so don't try to grow any more. |
| */ |
| if (mm->context.tsb_block[tsb_index].tsb != NULL) |
| mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL; |
| return; |
| } |
| |
| /* Mark all tags as invalid. */ |
| tsb_init(new_tsb, new_size); |
| |
| /* Ok, we are about to commit the changes. If we are |
| * growing an existing TSB the locking is very tricky, |
| * so WATCH OUT! |
| * |
| * We have to hold mm->context.lock while committing to the |
| * new TSB, this synchronizes us with processors in |
| * flush_tsb_user() and switch_mm() for this address space. |
| * |
| * But even with that lock held, processors run asynchronously |
| * accessing the old TSB via TLB miss handling. This is OK |
| * because those actions are just propagating state from the |
| * Linux page tables into the TSB, page table mappings are not |
| * being changed. If a real fault occurs, the processor will |
| * synchronize with us when it hits flush_tsb_user(), this is |
| * also true for the case where vmscan is modifying the page |
| * tables. The only thing we need to be careful with is to |
| * skip any locked TSB entries during copy_tsb(). |
| * |
| * When we finish committing to the new TSB, we have to drop |
| * the lock and ask all other cpus running this address space |
| * to run tsb_context_switch() to see the new TSB table. |
| */ |
| spin_lock_irqsave(&mm->context.lock, flags); |
| |
| old_tsb = mm->context.tsb_block[tsb_index].tsb; |
| old_cache_index = |
| (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL); |
| old_size = (mm->context.tsb_block[tsb_index].tsb_nentries * |
| sizeof(struct tsb)); |
| |
| |
| /* Handle multiple threads trying to grow the TSB at the same time. |
| * One will get in here first, and bump the size and the RSS limit. |
| * The others will get in here next and hit this check. |
| */ |
| if (unlikely(old_tsb && |
| (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) { |
| spin_unlock_irqrestore(&mm->context.lock, flags); |
| |
| kmem_cache_free(tsb_caches[new_cache_index], new_tsb); |
| return; |
| } |
| |
| mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit; |
| |
| if (old_tsb) { |
| extern void copy_tsb(unsigned long old_tsb_base, |
| unsigned long old_tsb_size, |
| unsigned long new_tsb_base, |
| unsigned long new_tsb_size); |
| unsigned long old_tsb_base = (unsigned long) old_tsb; |
| unsigned long new_tsb_base = (unsigned long) new_tsb; |
| |
| if (tlb_type == cheetah_plus || tlb_type == hypervisor) { |
| old_tsb_base = __pa(old_tsb_base); |
| new_tsb_base = __pa(new_tsb_base); |
| } |
| copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size); |
| } |
| |
| mm->context.tsb_block[tsb_index].tsb = new_tsb; |
| setup_tsb_params(mm, tsb_index, new_size); |
| |
| spin_unlock_irqrestore(&mm->context.lock, flags); |
| |
| /* If old_tsb is NULL, we're being invoked for the first time |
| * from init_new_context(). |
| */ |
| if (old_tsb) { |
| /* Reload it on the local cpu. */ |
| tsb_context_switch(mm); |
| |
| /* Now force other processors to do the same. */ |
| preempt_disable(); |
| smp_tsb_sync(mm); |
| preempt_enable(); |
| |
| /* Now it is safe to free the old tsb. */ |
| kmem_cache_free(tsb_caches[old_cache_index], old_tsb); |
| } |
| } |
| |
| int init_new_context(struct task_struct *tsk, struct mm_struct *mm) |
| { |
| unsigned long mm_rss = get_mm_rss(mm); |
| #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) |
| unsigned long saved_hugetlb_pte_count; |
| unsigned long saved_thp_pte_count; |
| #endif |
| unsigned int i; |
| |
| spin_lock_init(&mm->context.lock); |
| |
| mm->context.sparc64_ctx_val = 0UL; |
| |
| #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) |
| /* We reset them to zero because the fork() page copying |
| * will re-increment the counters as the parent PTEs are |
| * copied into the child address space. |
| */ |
| saved_hugetlb_pte_count = mm->context.hugetlb_pte_count; |
| saved_thp_pte_count = mm->context.thp_pte_count; |
| mm->context.hugetlb_pte_count = 0; |
| mm->context.thp_pte_count = 0; |
| |
| mm_rss -= saved_thp_pte_count * (HPAGE_SIZE / PAGE_SIZE); |
| #endif |
| |
| /* copy_mm() copies over the parent's mm_struct before calling |
| * us, so we need to zero out the TSB pointer or else tsb_grow() |
| * will be confused and think there is an older TSB to free up. |
| */ |
| for (i = 0; i < MM_NUM_TSBS; i++) |
| mm->context.tsb_block[i].tsb = NULL; |
| |
| /* If this is fork, inherit the parent's TSB size. We would |
| * grow it to that size on the first page fault anyways. |
| */ |
| tsb_grow(mm, MM_TSB_BASE, mm_rss); |
| |
| #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) |
| if (unlikely(saved_hugetlb_pte_count + saved_thp_pte_count)) |
| tsb_grow(mm, MM_TSB_HUGE, |
| (saved_hugetlb_pte_count + saved_thp_pte_count) * |
| REAL_HPAGE_PER_HPAGE); |
| #endif |
| |
| if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb)) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static void tsb_destroy_one(struct tsb_config *tp) |
| { |
| unsigned long cache_index; |
| |
| if (!tp->tsb) |
| return; |
| cache_index = tp->tsb_reg_val & 0x7UL; |
| kmem_cache_free(tsb_caches[cache_index], tp->tsb); |
| tp->tsb = NULL; |
| tp->tsb_reg_val = 0UL; |
| } |
| |
| void destroy_context(struct mm_struct *mm) |
| { |
| unsigned long flags, i; |
| |
| for (i = 0; i < MM_NUM_TSBS; i++) |
| tsb_destroy_one(&mm->context.tsb_block[i]); |
| |
| spin_lock_irqsave(&ctx_alloc_lock, flags); |
| |
| if (CTX_VALID(mm->context)) { |
| unsigned long nr = CTX_NRBITS(mm->context); |
| mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63)); |
| } |
| |
| spin_unlock_irqrestore(&ctx_alloc_lock, flags); |
| } |