| /* |
| * drivers/cpufreq/cpufreq_conservative.c |
| * |
| * Copyright (C) 2001 Russell King |
| * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. |
| * Jun Nakajima <jun.nakajima@intel.com> |
| * (C) 2004 Alexander Clouter <alex-kernel@digriz.org.uk> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/smp.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/ctype.h> |
| #include <linux/cpufreq.h> |
| #include <linux/sysctl.h> |
| #include <linux/types.h> |
| #include <linux/fs.h> |
| #include <linux/sysfs.h> |
| #include <linux/sched.h> |
| #include <linux/kmod.h> |
| #include <linux/workqueue.h> |
| #include <linux/jiffies.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/percpu.h> |
| |
| /* |
| * dbs is used in this file as a shortform for demandbased switching |
| * It helps to keep variable names smaller, simpler |
| */ |
| |
| #define DEF_FREQUENCY_UP_THRESHOLD (80) |
| #define MIN_FREQUENCY_UP_THRESHOLD (0) |
| #define MAX_FREQUENCY_UP_THRESHOLD (100) |
| |
| #define DEF_FREQUENCY_DOWN_THRESHOLD (20) |
| #define MIN_FREQUENCY_DOWN_THRESHOLD (0) |
| #define MAX_FREQUENCY_DOWN_THRESHOLD (100) |
| |
| /* |
| * The polling frequency of this governor depends on the capability of |
| * the processor. Default polling frequency is 1000 times the transition |
| * latency of the processor. The governor will work on any processor with |
| * transition latency <= 10mS, using appropriate sampling |
| * rate. |
| * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL) |
| * this governor will not work. |
| * All times here are in uS. |
| */ |
| static unsigned int def_sampling_rate; |
| #define MIN_SAMPLING_RATE (def_sampling_rate / 2) |
| #define MAX_SAMPLING_RATE (500 * def_sampling_rate) |
| #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (100000) |
| #define DEF_SAMPLING_DOWN_FACTOR (5) |
| #define TRANSITION_LATENCY_LIMIT (10 * 1000) |
| |
| static void do_dbs_timer(void *data); |
| |
| struct cpu_dbs_info_s { |
| struct cpufreq_policy *cur_policy; |
| unsigned int prev_cpu_idle_up; |
| unsigned int prev_cpu_idle_down; |
| unsigned int enable; |
| }; |
| static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info); |
| |
| static unsigned int dbs_enable; /* number of CPUs using this policy */ |
| |
| static DECLARE_MUTEX (dbs_sem); |
| static DECLARE_WORK (dbs_work, do_dbs_timer, NULL); |
| |
| struct dbs_tuners { |
| unsigned int sampling_rate; |
| unsigned int sampling_down_factor; |
| unsigned int up_threshold; |
| unsigned int down_threshold; |
| unsigned int ignore_nice; |
| unsigned int freq_step; |
| }; |
| |
| static struct dbs_tuners dbs_tuners_ins = { |
| .up_threshold = DEF_FREQUENCY_UP_THRESHOLD, |
| .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD, |
| .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR, |
| }; |
| |
| /************************** sysfs interface ************************/ |
| static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf) |
| { |
| return sprintf (buf, "%u\n", MAX_SAMPLING_RATE); |
| } |
| |
| static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf) |
| { |
| return sprintf (buf, "%u\n", MIN_SAMPLING_RATE); |
| } |
| |
| #define define_one_ro(_name) \ |
| static struct freq_attr _name = \ |
| __ATTR(_name, 0444, show_##_name, NULL) |
| |
| define_one_ro(sampling_rate_max); |
| define_one_ro(sampling_rate_min); |
| |
| /* cpufreq_conservative Governor Tunables */ |
| #define show_one(file_name, object) \ |
| static ssize_t show_##file_name \ |
| (struct cpufreq_policy *unused, char *buf) \ |
| { \ |
| return sprintf(buf, "%u\n", dbs_tuners_ins.object); \ |
| } |
| show_one(sampling_rate, sampling_rate); |
| show_one(sampling_down_factor, sampling_down_factor); |
| show_one(up_threshold, up_threshold); |
| show_one(down_threshold, down_threshold); |
| show_one(ignore_nice, ignore_nice); |
| show_one(freq_step, freq_step); |
| |
| static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused, |
| const char *buf, size_t count) |
| { |
| unsigned int input; |
| int ret; |
| ret = sscanf (buf, "%u", &input); |
| if (ret != 1 ) |
| return -EINVAL; |
| |
| down(&dbs_sem); |
| dbs_tuners_ins.sampling_down_factor = input; |
| up(&dbs_sem); |
| |
| return count; |
| } |
| |
| static ssize_t store_sampling_rate(struct cpufreq_policy *unused, |
| const char *buf, size_t count) |
| { |
| unsigned int input; |
| int ret; |
| ret = sscanf (buf, "%u", &input); |
| |
| down(&dbs_sem); |
| if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) { |
| up(&dbs_sem); |
| return -EINVAL; |
| } |
| |
| dbs_tuners_ins.sampling_rate = input; |
| up(&dbs_sem); |
| |
| return count; |
| } |
| |
| static ssize_t store_up_threshold(struct cpufreq_policy *unused, |
| const char *buf, size_t count) |
| { |
| unsigned int input; |
| int ret; |
| ret = sscanf (buf, "%u", &input); |
| |
| down(&dbs_sem); |
| if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || |
| input < MIN_FREQUENCY_UP_THRESHOLD || |
| input <= dbs_tuners_ins.down_threshold) { |
| up(&dbs_sem); |
| return -EINVAL; |
| } |
| |
| dbs_tuners_ins.up_threshold = input; |
| up(&dbs_sem); |
| |
| return count; |
| } |
| |
| static ssize_t store_down_threshold(struct cpufreq_policy *unused, |
| const char *buf, size_t count) |
| { |
| unsigned int input; |
| int ret; |
| ret = sscanf (buf, "%u", &input); |
| |
| down(&dbs_sem); |
| if (ret != 1 || input > MAX_FREQUENCY_DOWN_THRESHOLD || |
| input < MIN_FREQUENCY_DOWN_THRESHOLD || |
| input >= dbs_tuners_ins.up_threshold) { |
| up(&dbs_sem); |
| return -EINVAL; |
| } |
| |
| dbs_tuners_ins.down_threshold = input; |
| up(&dbs_sem); |
| |
| return count; |
| } |
| |
| static ssize_t store_ignore_nice(struct cpufreq_policy *policy, |
| const char *buf, size_t count) |
| { |
| unsigned int input; |
| int ret; |
| |
| unsigned int j; |
| |
| ret = sscanf (buf, "%u", &input); |
| if ( ret != 1 ) |
| return -EINVAL; |
| |
| if ( input > 1 ) |
| input = 1; |
| |
| down(&dbs_sem); |
| if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */ |
| up(&dbs_sem); |
| return count; |
| } |
| dbs_tuners_ins.ignore_nice = input; |
| |
| /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */ |
| for_each_cpu_mask(j, policy->cpus) { |
| struct cpu_dbs_info_s *j_dbs_info; |
| j_dbs_info = &per_cpu(cpu_dbs_info, j); |
| j_dbs_info->cur_policy = policy; |
| |
| j_dbs_info->prev_cpu_idle_up = |
| kstat_cpu(j).cpustat.idle + |
| kstat_cpu(j).cpustat.iowait + |
| ( !dbs_tuners_ins.ignore_nice |
| ? kstat_cpu(j).cpustat.nice : 0 ); |
| j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up; |
| } |
| up(&dbs_sem); |
| |
| return count; |
| } |
| |
| static ssize_t store_freq_step(struct cpufreq_policy *policy, |
| const char *buf, size_t count) |
| { |
| unsigned int input; |
| int ret; |
| |
| ret = sscanf (buf, "%u", &input); |
| |
| if ( ret != 1 ) |
| return -EINVAL; |
| |
| if ( input > 100 ) |
| input = 100; |
| |
| /* no need to test here if freq_step is zero as the user might actually |
| * want this, they would be crazy though :) */ |
| down(&dbs_sem); |
| dbs_tuners_ins.freq_step = input; |
| up(&dbs_sem); |
| |
| return count; |
| } |
| |
| #define define_one_rw(_name) \ |
| static struct freq_attr _name = \ |
| __ATTR(_name, 0644, show_##_name, store_##_name) |
| |
| define_one_rw(sampling_rate); |
| define_one_rw(sampling_down_factor); |
| define_one_rw(up_threshold); |
| define_one_rw(down_threshold); |
| define_one_rw(ignore_nice); |
| define_one_rw(freq_step); |
| |
| static struct attribute * dbs_attributes[] = { |
| &sampling_rate_max.attr, |
| &sampling_rate_min.attr, |
| &sampling_rate.attr, |
| &sampling_down_factor.attr, |
| &up_threshold.attr, |
| &down_threshold.attr, |
| &ignore_nice.attr, |
| &freq_step.attr, |
| NULL |
| }; |
| |
| static struct attribute_group dbs_attr_group = { |
| .attrs = dbs_attributes, |
| .name = "conservative", |
| }; |
| |
| /************************** sysfs end ************************/ |
| |
| static void dbs_check_cpu(int cpu) |
| { |
| unsigned int idle_ticks, up_idle_ticks, down_idle_ticks; |
| unsigned int total_idle_ticks; |
| unsigned int freq_step; |
| unsigned int freq_down_sampling_rate; |
| static int down_skip[NR_CPUS]; |
| static int requested_freq[NR_CPUS]; |
| static unsigned short init_flag = 0; |
| struct cpu_dbs_info_s *this_dbs_info; |
| struct cpu_dbs_info_s *dbs_info; |
| |
| struct cpufreq_policy *policy; |
| unsigned int j; |
| |
| this_dbs_info = &per_cpu(cpu_dbs_info, cpu); |
| if (!this_dbs_info->enable) |
| return; |
| |
| policy = this_dbs_info->cur_policy; |
| |
| if ( init_flag == 0 ) { |
| for ( /* NULL */; init_flag < NR_CPUS; init_flag++ ) { |
| dbs_info = &per_cpu(cpu_dbs_info, init_flag); |
| requested_freq[cpu] = dbs_info->cur_policy->cur; |
| } |
| init_flag = 1; |
| } |
| |
| /* |
| * The default safe range is 20% to 80% |
| * Every sampling_rate, we check |
| * - If current idle time is less than 20%, then we try to |
| * increase frequency |
| * Every sampling_rate*sampling_down_factor, we check |
| * - If current idle time is more than 80%, then we try to |
| * decrease frequency |
| * |
| * Any frequency increase takes it to the maximum frequency. |
| * Frequency reduction happens at minimum steps of |
| * 5% (default) of max_frequency |
| */ |
| |
| /* Check for frequency increase */ |
| total_idle_ticks = kstat_cpu(cpu).cpustat.idle + |
| kstat_cpu(cpu).cpustat.iowait; |
| /* consider 'nice' tasks as 'idle' time too if required */ |
| if (dbs_tuners_ins.ignore_nice == 0) |
| total_idle_ticks += kstat_cpu(cpu).cpustat.nice; |
| idle_ticks = total_idle_ticks - |
| this_dbs_info->prev_cpu_idle_up; |
| this_dbs_info->prev_cpu_idle_up = total_idle_ticks; |
| |
| |
| for_each_cpu_mask(j, policy->cpus) { |
| unsigned int tmp_idle_ticks; |
| struct cpu_dbs_info_s *j_dbs_info; |
| |
| if (j == cpu) |
| continue; |
| |
| j_dbs_info = &per_cpu(cpu_dbs_info, j); |
| /* Check for frequency increase */ |
| total_idle_ticks = kstat_cpu(j).cpustat.idle + |
| kstat_cpu(j).cpustat.iowait; |
| /* consider 'nice' too? */ |
| if (dbs_tuners_ins.ignore_nice == 0) |
| total_idle_ticks += kstat_cpu(j).cpustat.nice; |
| tmp_idle_ticks = total_idle_ticks - |
| j_dbs_info->prev_cpu_idle_up; |
| j_dbs_info->prev_cpu_idle_up = total_idle_ticks; |
| |
| if (tmp_idle_ticks < idle_ticks) |
| idle_ticks = tmp_idle_ticks; |
| } |
| |
| /* Scale idle ticks by 100 and compare with up and down ticks */ |
| idle_ticks *= 100; |
| up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) * |
| usecs_to_jiffies(dbs_tuners_ins.sampling_rate); |
| |
| if (idle_ticks < up_idle_ticks) { |
| /* if we are already at full speed then break out early */ |
| if (requested_freq[cpu] == policy->max) |
| return; |
| |
| freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100; |
| |
| /* max freq cannot be less than 100. But who knows.... */ |
| if (unlikely(freq_step == 0)) |
| freq_step = 5; |
| |
| requested_freq[cpu] += freq_step; |
| if (requested_freq[cpu] > policy->max) |
| requested_freq[cpu] = policy->max; |
| |
| __cpufreq_driver_target(policy, requested_freq[cpu], |
| CPUFREQ_RELATION_H); |
| down_skip[cpu] = 0; |
| this_dbs_info->prev_cpu_idle_down = total_idle_ticks; |
| return; |
| } |
| |
| /* Check for frequency decrease */ |
| down_skip[cpu]++; |
| if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor) |
| return; |
| |
| total_idle_ticks = kstat_cpu(cpu).cpustat.idle + |
| kstat_cpu(cpu).cpustat.iowait; |
| /* consider 'nice' too? */ |
| if (dbs_tuners_ins.ignore_nice == 0) |
| total_idle_ticks += kstat_cpu(cpu).cpustat.nice; |
| idle_ticks = total_idle_ticks - |
| this_dbs_info->prev_cpu_idle_down; |
| this_dbs_info->prev_cpu_idle_down = total_idle_ticks; |
| |
| for_each_cpu_mask(j, policy->cpus) { |
| unsigned int tmp_idle_ticks; |
| struct cpu_dbs_info_s *j_dbs_info; |
| |
| if (j == cpu) |
| continue; |
| |
| j_dbs_info = &per_cpu(cpu_dbs_info, j); |
| /* Check for frequency increase */ |
| total_idle_ticks = kstat_cpu(j).cpustat.idle + |
| kstat_cpu(j).cpustat.iowait; |
| /* consider 'nice' too? */ |
| if (dbs_tuners_ins.ignore_nice == 0) |
| total_idle_ticks += kstat_cpu(j).cpustat.nice; |
| tmp_idle_ticks = total_idle_ticks - |
| j_dbs_info->prev_cpu_idle_down; |
| j_dbs_info->prev_cpu_idle_down = total_idle_ticks; |
| |
| if (tmp_idle_ticks < idle_ticks) |
| idle_ticks = tmp_idle_ticks; |
| } |
| |
| /* Scale idle ticks by 100 and compare with up and down ticks */ |
| idle_ticks *= 100; |
| down_skip[cpu] = 0; |
| |
| freq_down_sampling_rate = dbs_tuners_ins.sampling_rate * |
| dbs_tuners_ins.sampling_down_factor; |
| down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) * |
| usecs_to_jiffies(freq_down_sampling_rate); |
| |
| if (idle_ticks > down_idle_ticks ) { |
| /* if we are already at the lowest speed then break out early |
| * or if we 'cannot' reduce the speed as the user might want |
| * freq_step to be zero */ |
| if (requested_freq[cpu] == policy->min |
| || dbs_tuners_ins.freq_step == 0) |
| return; |
| |
| freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100; |
| |
| /* max freq cannot be less than 100. But who knows.... */ |
| if (unlikely(freq_step == 0)) |
| freq_step = 5; |
| |
| requested_freq[cpu] -= freq_step; |
| if (requested_freq[cpu] < policy->min) |
| requested_freq[cpu] = policy->min; |
| |
| __cpufreq_driver_target(policy, |
| requested_freq[cpu], |
| CPUFREQ_RELATION_H); |
| return; |
| } |
| } |
| |
| static void do_dbs_timer(void *data) |
| { |
| int i; |
| down(&dbs_sem); |
| for_each_online_cpu(i) |
| dbs_check_cpu(i); |
| schedule_delayed_work(&dbs_work, |
| usecs_to_jiffies(dbs_tuners_ins.sampling_rate)); |
| up(&dbs_sem); |
| } |
| |
| static inline void dbs_timer_init(void) |
| { |
| INIT_WORK(&dbs_work, do_dbs_timer, NULL); |
| schedule_delayed_work(&dbs_work, |
| usecs_to_jiffies(dbs_tuners_ins.sampling_rate)); |
| return; |
| } |
| |
| static inline void dbs_timer_exit(void) |
| { |
| cancel_delayed_work(&dbs_work); |
| return; |
| } |
| |
| static int cpufreq_governor_dbs(struct cpufreq_policy *policy, |
| unsigned int event) |
| { |
| unsigned int cpu = policy->cpu; |
| struct cpu_dbs_info_s *this_dbs_info; |
| unsigned int j; |
| |
| this_dbs_info = &per_cpu(cpu_dbs_info, cpu); |
| |
| switch (event) { |
| case CPUFREQ_GOV_START: |
| if ((!cpu_online(cpu)) || |
| (!policy->cur)) |
| return -EINVAL; |
| |
| if (policy->cpuinfo.transition_latency > |
| (TRANSITION_LATENCY_LIMIT * 1000)) |
| return -EINVAL; |
| if (this_dbs_info->enable) /* Already enabled */ |
| break; |
| |
| down(&dbs_sem); |
| for_each_cpu_mask(j, policy->cpus) { |
| struct cpu_dbs_info_s *j_dbs_info; |
| j_dbs_info = &per_cpu(cpu_dbs_info, j); |
| j_dbs_info->cur_policy = policy; |
| |
| j_dbs_info->prev_cpu_idle_up = |
| kstat_cpu(j).cpustat.idle + |
| kstat_cpu(j).cpustat.iowait + |
| ( !dbs_tuners_ins.ignore_nice |
| ? kstat_cpu(j).cpustat.nice : 0 ); |
| j_dbs_info->prev_cpu_idle_down |
| = j_dbs_info->prev_cpu_idle_up; |
| } |
| this_dbs_info->enable = 1; |
| sysfs_create_group(&policy->kobj, &dbs_attr_group); |
| dbs_enable++; |
| /* |
| * Start the timerschedule work, when this governor |
| * is used for first time |
| */ |
| if (dbs_enable == 1) { |
| unsigned int latency; |
| /* policy latency is in nS. Convert it to uS first */ |
| |
| latency = policy->cpuinfo.transition_latency; |
| if (latency < 1000) |
| latency = 1000; |
| |
| def_sampling_rate = (latency / 1000) * |
| DEF_SAMPLING_RATE_LATENCY_MULTIPLIER; |
| dbs_tuners_ins.sampling_rate = def_sampling_rate; |
| dbs_tuners_ins.ignore_nice = 0; |
| dbs_tuners_ins.freq_step = 5; |
| |
| dbs_timer_init(); |
| } |
| |
| up(&dbs_sem); |
| break; |
| |
| case CPUFREQ_GOV_STOP: |
| down(&dbs_sem); |
| this_dbs_info->enable = 0; |
| sysfs_remove_group(&policy->kobj, &dbs_attr_group); |
| dbs_enable--; |
| /* |
| * Stop the timerschedule work, when this governor |
| * is used for first time |
| */ |
| if (dbs_enable == 0) |
| dbs_timer_exit(); |
| |
| up(&dbs_sem); |
| |
| break; |
| |
| case CPUFREQ_GOV_LIMITS: |
| down(&dbs_sem); |
| if (policy->max < this_dbs_info->cur_policy->cur) |
| __cpufreq_driver_target( |
| this_dbs_info->cur_policy, |
| policy->max, CPUFREQ_RELATION_H); |
| else if (policy->min > this_dbs_info->cur_policy->cur) |
| __cpufreq_driver_target( |
| this_dbs_info->cur_policy, |
| policy->min, CPUFREQ_RELATION_L); |
| up(&dbs_sem); |
| break; |
| } |
| return 0; |
| } |
| |
| static struct cpufreq_governor cpufreq_gov_dbs = { |
| .name = "conservative", |
| .governor = cpufreq_governor_dbs, |
| .owner = THIS_MODULE, |
| }; |
| |
| static int __init cpufreq_gov_dbs_init(void) |
| { |
| return cpufreq_register_governor(&cpufreq_gov_dbs); |
| } |
| |
| static void __exit cpufreq_gov_dbs_exit(void) |
| { |
| /* Make sure that the scheduled work is indeed not running */ |
| flush_scheduled_work(); |
| |
| cpufreq_unregister_governor(&cpufreq_gov_dbs); |
| } |
| |
| |
| MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>"); |
| MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for " |
| "Low Latency Frequency Transition capable processors " |
| "optimised for use in a battery environment"); |
| MODULE_LICENSE ("GPL"); |
| |
| module_init(cpufreq_gov_dbs_init); |
| module_exit(cpufreq_gov_dbs_exit); |