| /* bitops.h: bit operations for the Fujitsu FR-V CPUs |
| * |
| * For an explanation of how atomic ops work in this arch, see: |
| * Documentation/fujitsu/frv/atomic-ops.txt |
| * |
| * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| #ifndef _ASM_BITOPS_H |
| #define _ASM_BITOPS_H |
| |
| #include <linux/config.h> |
| #include <linux/compiler.h> |
| #include <asm/byteorder.h> |
| #include <asm/system.h> |
| #include <asm/atomic.h> |
| |
| #ifdef __KERNEL__ |
| |
| /* |
| * ffz = Find First Zero in word. Undefined if no zero exists, |
| * so code should check against ~0UL first.. |
| */ |
| static inline unsigned long ffz(unsigned long word) |
| { |
| unsigned long result = 0; |
| |
| while (word & 1) { |
| result++; |
| word >>= 1; |
| } |
| return result; |
| } |
| |
| /* |
| * clear_bit() doesn't provide any barrier for the compiler. |
| */ |
| #define smp_mb__before_clear_bit() barrier() |
| #define smp_mb__after_clear_bit() barrier() |
| |
| static inline int test_and_clear_bit(int nr, volatile void *addr) |
| { |
| volatile unsigned long *ptr = addr; |
| unsigned long mask = 1UL << (nr & 31); |
| ptr += nr >> 5; |
| return (atomic_test_and_ANDNOT_mask(mask, ptr) & mask) != 0; |
| } |
| |
| static inline int test_and_set_bit(int nr, volatile void *addr) |
| { |
| volatile unsigned long *ptr = addr; |
| unsigned long mask = 1UL << (nr & 31); |
| ptr += nr >> 5; |
| return (atomic_test_and_OR_mask(mask, ptr) & mask) != 0; |
| } |
| |
| static inline int test_and_change_bit(int nr, volatile void *addr) |
| { |
| volatile unsigned long *ptr = addr; |
| unsigned long mask = 1UL << (nr & 31); |
| ptr += nr >> 5; |
| return (atomic_test_and_XOR_mask(mask, ptr) & mask) != 0; |
| } |
| |
| static inline void clear_bit(int nr, volatile void *addr) |
| { |
| test_and_clear_bit(nr, addr); |
| } |
| |
| static inline void set_bit(int nr, volatile void *addr) |
| { |
| test_and_set_bit(nr, addr); |
| } |
| |
| static inline void change_bit(int nr, volatile void * addr) |
| { |
| test_and_change_bit(nr, addr); |
| } |
| |
| static inline void __clear_bit(int nr, volatile void * addr) |
| { |
| volatile unsigned long *a = addr; |
| int mask; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 31); |
| *a &= ~mask; |
| } |
| |
| static inline void __set_bit(int nr, volatile void * addr) |
| { |
| volatile unsigned long *a = addr; |
| int mask; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 31); |
| *a |= mask; |
| } |
| |
| static inline void __change_bit(int nr, volatile void *addr) |
| { |
| volatile unsigned long *a = addr; |
| int mask; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 31); |
| *a ^= mask; |
| } |
| |
| static inline int __test_and_clear_bit(int nr, volatile void * addr) |
| { |
| volatile unsigned long *a = addr; |
| int mask, retval; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 31); |
| retval = (mask & *a) != 0; |
| *a &= ~mask; |
| return retval; |
| } |
| |
| static inline int __test_and_set_bit(int nr, volatile void * addr) |
| { |
| volatile unsigned long *a = addr; |
| int mask, retval; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 31); |
| retval = (mask & *a) != 0; |
| *a |= mask; |
| return retval; |
| } |
| |
| static inline int __test_and_change_bit(int nr, volatile void * addr) |
| { |
| volatile unsigned long *a = addr; |
| int mask, retval; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 31); |
| retval = (mask & *a) != 0; |
| *a ^= mask; |
| return retval; |
| } |
| |
| /* |
| * This routine doesn't need to be atomic. |
| */ |
| static inline int __constant_test_bit(int nr, const volatile void * addr) |
| { |
| return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0; |
| } |
| |
| static inline int __test_bit(int nr, const volatile void * addr) |
| { |
| int * a = (int *) addr; |
| int mask; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| return ((mask & *a) != 0); |
| } |
| |
| #define test_bit(nr,addr) \ |
| (__builtin_constant_p(nr) ? \ |
| __constant_test_bit((nr),(addr)) : \ |
| __test_bit((nr),(addr))) |
| |
| extern int find_next_bit(const unsigned long *addr, int size, int offset); |
| |
| #define find_first_bit(addr, size) find_next_bit(addr, size, 0) |
| |
| #define find_first_zero_bit(addr, size) \ |
| find_next_zero_bit((addr), (size), 0) |
| |
| static inline int find_next_zero_bit(const void *addr, int size, int offset) |
| { |
| const unsigned long *p = ((const unsigned long *) addr) + (offset >> 5); |
| unsigned long result = offset & ~31UL; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if (offset) { |
| tmp = *(p++); |
| tmp |= ~0UL >> (32-offset); |
| if (size < 32) |
| goto found_first; |
| if (~tmp) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while (size & ~31UL) { |
| if (~(tmp = *(p++))) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| tmp |= ~0UL << size; |
| found_middle: |
| return result + ffz(tmp); |
| } |
| |
| #define ffs(x) generic_ffs(x) |
| #define __ffs(x) (ffs(x) - 1) |
| |
| /* |
| * fls: find last bit set. |
| */ |
| #define fls(x) \ |
| ({ \ |
| int bit; \ |
| \ |
| asm("scan %1,gr0,%0" : "=r"(bit) : "r"(x)); \ |
| \ |
| bit ? 33 - bit : bit; \ |
| }) |
| #define fls64(x) generic_fls64(x) |
| |
| /* |
| * Every architecture must define this function. It's the fastest |
| * way of searching a 140-bit bitmap where the first 100 bits are |
| * unlikely to be set. It's guaranteed that at least one of the 140 |
| * bits is cleared. |
| */ |
| static inline int sched_find_first_bit(const unsigned long *b) |
| { |
| if (unlikely(b[0])) |
| return __ffs(b[0]); |
| if (unlikely(b[1])) |
| return __ffs(b[1]) + 32; |
| if (unlikely(b[2])) |
| return __ffs(b[2]) + 64; |
| if (b[3]) |
| return __ffs(b[3]) + 96; |
| return __ffs(b[4]) + 128; |
| } |
| |
| |
| /* |
| * hweightN: returns the hamming weight (i.e. the number |
| * of bits set) of a N-bit word |
| */ |
| |
| #define hweight32(x) generic_hweight32(x) |
| #define hweight16(x) generic_hweight16(x) |
| #define hweight8(x) generic_hweight8(x) |
| |
| #define ext2_set_bit(nr, addr) __test_and_set_bit ((nr) ^ 0x18, (addr)) |
| #define ext2_clear_bit(nr, addr) __test_and_clear_bit((nr) ^ 0x18, (addr)) |
| |
| #define ext2_set_bit_atomic(lock,nr,addr) test_and_set_bit ((nr) ^ 0x18, (addr)) |
| #define ext2_clear_bit_atomic(lock,nr,addr) test_and_clear_bit((nr) ^ 0x18, (addr)) |
| |
| static inline int ext2_test_bit(int nr, const volatile void * addr) |
| { |
| const volatile unsigned char *ADDR = (const unsigned char *) addr; |
| int mask; |
| |
| ADDR += nr >> 3; |
| mask = 1 << (nr & 0x07); |
| return ((mask & *ADDR) != 0); |
| } |
| |
| #define ext2_find_first_zero_bit(addr, size) \ |
| ext2_find_next_zero_bit((addr), (size), 0) |
| |
| static inline unsigned long ext2_find_next_zero_bit(const void *addr, |
| unsigned long size, |
| unsigned long offset) |
| { |
| const unsigned long *p = ((const unsigned long *) addr) + (offset >> 5); |
| unsigned long result = offset & ~31UL; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if(offset) { |
| /* We hold the little endian value in tmp, but then the |
| * shift is illegal. So we could keep a big endian value |
| * in tmp, like this: |
| * |
| * tmp = __swab32(*(p++)); |
| * tmp |= ~0UL >> (32-offset); |
| * |
| * but this would decrease preformance, so we change the |
| * shift: |
| */ |
| tmp = *(p++); |
| tmp |= __swab32(~0UL >> (32-offset)); |
| if(size < 32) |
| goto found_first; |
| if(~tmp) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while(size & ~31UL) { |
| if(~(tmp = *(p++))) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if(!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| /* tmp is little endian, so we would have to swab the shift, |
| * see above. But then we have to swab tmp below for ffz, so |
| * we might as well do this here. |
| */ |
| return result + ffz(__swab32(tmp) | (~0UL << size)); |
| found_middle: |
| return result + ffz(__swab32(tmp)); |
| } |
| |
| /* Bitmap functions for the minix filesystem. */ |
| #define minix_test_and_set_bit(nr,addr) __test_and_set_bit ((nr) ^ 0x18, (addr)) |
| #define minix_set_bit(nr,addr) __set_bit((nr) ^ 0x18, (addr)) |
| #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit((nr) ^ 0x18, (addr)) |
| #define minix_test_bit(nr,addr) ext2_test_bit(nr,addr) |
| #define minix_find_first_zero_bit(addr,size) ext2_find_first_zero_bit(addr,size) |
| |
| #endif /* __KERNEL__ */ |
| |
| #endif /* _ASM_BITOPS_H */ |