| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 1994, 1995 Waldorf GmbH |
| * Copyright (C) 1994 - 2000 Ralf Baechle |
| * Copyright (C) 1999, 2000 Silicon Graphics, Inc. |
| * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved. |
| * Author: Maciej W. Rozycki <macro@mips.com> |
| */ |
| #ifndef _ASM_IO_H |
| #define _ASM_IO_H |
| |
| #include <linux/config.h> |
| #include <linux/compiler.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| |
| #include <asm/addrspace.h> |
| #include <asm/byteorder.h> |
| #include <asm/cpu.h> |
| #include <asm/cpu-features.h> |
| #include <asm/page.h> |
| #include <asm/pgtable-bits.h> |
| #include <asm/processor.h> |
| #include <asm/string.h> |
| |
| #include <ioremap.h> |
| #include <mangle-port.h> |
| |
| /* |
| * Slowdown I/O port space accesses for antique hardware. |
| */ |
| #undef CONF_SLOWDOWN_IO |
| |
| /* |
| * Raw operations are never swapped in software. OTOH values that raw |
| * operations are working on may or may not have been swapped by the bus |
| * hardware. An example use would be for flash memory that's used for |
| * execute in place. |
| */ |
| # define __raw_ioswabb(x) (x) |
| # define __raw_ioswabw(x) (x) |
| # define __raw_ioswabl(x) (x) |
| # define __raw_ioswabq(x) (x) |
| # define ____raw_ioswabq(x) (x) |
| |
| /* |
| * Sane hardware offers swapping of PCI/ISA I/O space accesses in hardware; |
| * less sane hardware forces software to fiddle with this... |
| * |
| * Regardless, if the host bus endianness mismatches that of PCI/ISA, then |
| * you can't have the numerical value of data and byte addresses within |
| * multibyte quantities both preserved at the same time. Hence two |
| * variations of functions: non-prefixed ones that preserve the value |
| * and prefixed ones that preserve byte addresses. The latters are |
| * typically used for moving raw data between a peripheral and memory (cf. |
| * string I/O functions), hence the "mem_" prefix. |
| */ |
| #if defined(CONFIG_SWAP_IO_SPACE) |
| |
| # define ioswabb(x) (x) |
| # define mem_ioswabb(x) (x) |
| # ifdef CONFIG_SGI_IP22 |
| /* |
| * IP22 seems braindead enough to swap 16bits values in hardware, but |
| * not 32bits. Go figure... Can't tell without documentation. |
| */ |
| # define ioswabw(x) (x) |
| # define mem_ioswabw(x) le16_to_cpu(x) |
| # else |
| # define ioswabw(x) le16_to_cpu(x) |
| # define mem_ioswabw(x) (x) |
| # endif |
| # define ioswabl(x) le32_to_cpu(x) |
| # define mem_ioswabl(x) (x) |
| # define ioswabq(x) le64_to_cpu(x) |
| # define mem_ioswabq(x) (x) |
| |
| #else |
| |
| # define ioswabb(x) (x) |
| # define mem_ioswabb(x) (x) |
| # define ioswabw(x) (x) |
| # define mem_ioswabw(x) cpu_to_le16(x) |
| # define ioswabl(x) (x) |
| # define mem_ioswabl(x) cpu_to_le32(x) |
| # define ioswabq(x) (x) |
| # define mem_ioswabq(x) cpu_to_le32(x) |
| |
| #endif |
| |
| #define IO_SPACE_LIMIT 0xffff |
| |
| /* |
| * On MIPS I/O ports are memory mapped, so we access them using normal |
| * load/store instructions. mips_io_port_base is the virtual address to |
| * which all ports are being mapped. For sake of efficiency some code |
| * assumes that this is an address that can be loaded with a single lui |
| * instruction, so the lower 16 bits must be zero. Should be true on |
| * on any sane architecture; generic code does not use this assumption. |
| */ |
| extern const unsigned long mips_io_port_base; |
| |
| #define set_io_port_base(base) \ |
| do { * (unsigned long *) &mips_io_port_base = (base); } while (0) |
| |
| /* |
| * Thanks to James van Artsdalen for a better timing-fix than |
| * the two short jumps: using outb's to a nonexistent port seems |
| * to guarantee better timings even on fast machines. |
| * |
| * On the other hand, I'd like to be sure of a non-existent port: |
| * I feel a bit unsafe about using 0x80 (should be safe, though) |
| * |
| * Linus |
| * |
| */ |
| |
| #define __SLOW_DOWN_IO \ |
| __asm__ __volatile__( \ |
| "sb\t$0,0x80(%0)" \ |
| : : "r" (mips_io_port_base)); |
| |
| #ifdef CONF_SLOWDOWN_IO |
| #ifdef REALLY_SLOW_IO |
| #define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; } |
| #else |
| #define SLOW_DOWN_IO __SLOW_DOWN_IO |
| #endif |
| #else |
| #define SLOW_DOWN_IO |
| #endif |
| |
| /* |
| * virt_to_phys - map virtual addresses to physical |
| * @address: address to remap |
| * |
| * The returned physical address is the physical (CPU) mapping for |
| * the memory address given. It is only valid to use this function on |
| * addresses directly mapped or allocated via kmalloc. |
| * |
| * This function does not give bus mappings for DMA transfers. In |
| * almost all conceivable cases a device driver should not be using |
| * this function |
| */ |
| static inline unsigned long virt_to_phys(volatile void * address) |
| { |
| return (unsigned long)address - PAGE_OFFSET; |
| } |
| |
| /* |
| * phys_to_virt - map physical address to virtual |
| * @address: address to remap |
| * |
| * The returned virtual address is a current CPU mapping for |
| * the memory address given. It is only valid to use this function on |
| * addresses that have a kernel mapping |
| * |
| * This function does not handle bus mappings for DMA transfers. In |
| * almost all conceivable cases a device driver should not be using |
| * this function |
| */ |
| static inline void * phys_to_virt(unsigned long address) |
| { |
| return (void *)(address + PAGE_OFFSET); |
| } |
| |
| /* |
| * ISA I/O bus memory addresses are 1:1 with the physical address. |
| */ |
| static inline unsigned long isa_virt_to_bus(volatile void * address) |
| { |
| return (unsigned long)address - PAGE_OFFSET; |
| } |
| |
| static inline void * isa_bus_to_virt(unsigned long address) |
| { |
| return (void *)(address + PAGE_OFFSET); |
| } |
| |
| #define isa_page_to_bus page_to_phys |
| |
| /* |
| * However PCI ones are not necessarily 1:1 and therefore these interfaces |
| * are forbidden in portable PCI drivers. |
| * |
| * Allow them for x86 for legacy drivers, though. |
| */ |
| #define virt_to_bus virt_to_phys |
| #define bus_to_virt phys_to_virt |
| |
| /* |
| * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped |
| * for the processor. This implies the assumption that there is only |
| * one of these busses. |
| */ |
| extern unsigned long isa_slot_offset; |
| |
| /* |
| * Change "struct page" to physical address. |
| */ |
| #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT) |
| |
| extern void __iomem * __ioremap(phys_t offset, phys_t size, unsigned long flags); |
| extern void __iounmap(volatile void __iomem *addr); |
| |
| static inline void __iomem * __ioremap_mode(phys_t offset, unsigned long size, |
| unsigned long flags) |
| { |
| #define __IS_LOW512(addr) (!((phys_t)(addr) & (phys_t) ~0x1fffffffULL)) |
| |
| if (cpu_has_64bit_addresses) { |
| u64 base = UNCAC_BASE; |
| |
| /* |
| * R10000 supports a 2 bit uncached attribute therefore |
| * UNCAC_BASE may not equal IO_BASE. |
| */ |
| if (flags == _CACHE_UNCACHED) |
| base = (u64) IO_BASE; |
| return (void __iomem *) (unsigned long) (base + offset); |
| } else if (__builtin_constant_p(offset) && |
| __builtin_constant_p(size) && __builtin_constant_p(flags)) { |
| phys_t phys_addr, last_addr; |
| |
| phys_addr = fixup_bigphys_addr(offset, size); |
| |
| /* Don't allow wraparound or zero size. */ |
| last_addr = phys_addr + size - 1; |
| if (!size || last_addr < phys_addr) |
| return NULL; |
| |
| /* |
| * Map uncached objects in the low 512MB of address |
| * space using KSEG1. |
| */ |
| if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) && |
| flags == _CACHE_UNCACHED) |
| return (void __iomem *)CKSEG1ADDR(phys_addr); |
| } |
| |
| return __ioremap(offset, size, flags); |
| |
| #undef __IS_LOW512 |
| } |
| |
| /* |
| * ioremap - map bus memory into CPU space |
| * @offset: bus address of the memory |
| * @size: size of the resource to map |
| * |
| * ioremap performs a platform specific sequence of operations to |
| * make bus memory CPU accessible via the readb/readw/readl/writeb/ |
| * writew/writel functions and the other mmio helpers. The returned |
| * address is not guaranteed to be usable directly as a virtual |
| * address. |
| */ |
| #define ioremap(offset, size) \ |
| __ioremap_mode((offset), (size), _CACHE_UNCACHED) |
| |
| /* |
| * ioremap_nocache - map bus memory into CPU space |
| * @offset: bus address of the memory |
| * @size: size of the resource to map |
| * |
| * ioremap_nocache performs a platform specific sequence of operations to |
| * make bus memory CPU accessible via the readb/readw/readl/writeb/ |
| * writew/writel functions and the other mmio helpers. The returned |
| * address is not guaranteed to be usable directly as a virtual |
| * address. |
| * |
| * This version of ioremap ensures that the memory is marked uncachable |
| * on the CPU as well as honouring existing caching rules from things like |
| * the PCI bus. Note that there are other caches and buffers on many |
| * busses. In paticular driver authors should read up on PCI writes |
| * |
| * It's useful if some control registers are in such an area and |
| * write combining or read caching is not desirable: |
| */ |
| #define ioremap_nocache(offset, size) \ |
| __ioremap_mode((offset), (size), _CACHE_UNCACHED) |
| |
| /* |
| * These two are MIPS specific ioremap variant. ioremap_cacheable_cow |
| * requests a cachable mapping, ioremap_uncached_accelerated requests a |
| * mapping using the uncached accelerated mode which isn't supported on |
| * all processors. |
| */ |
| #define ioremap_cacheable_cow(offset, size) \ |
| __ioremap_mode((offset), (size), _CACHE_CACHABLE_COW) |
| #define ioremap_uncached_accelerated(offset, size) \ |
| __ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED) |
| |
| static inline void iounmap(volatile void __iomem *addr) |
| { |
| #define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1) |
| |
| if (cpu_has_64bit_addresses || |
| (__builtin_constant_p(addr) && __IS_KSEG1(addr))) |
| return; |
| |
| __iounmap(addr); |
| |
| #undef __IS_KSEG1 |
| } |
| |
| #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq) \ |
| \ |
| static inline void pfx##write##bwlq(type val, \ |
| volatile void __iomem *mem) \ |
| { \ |
| volatile type *__mem; \ |
| type __val; \ |
| \ |
| __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \ |
| \ |
| __val = pfx##ioswab##bwlq(val); \ |
| \ |
| if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \ |
| *__mem = __val; \ |
| else if (cpu_has_64bits) { \ |
| unsigned long __flags; \ |
| type __tmp; \ |
| \ |
| if (irq) \ |
| local_irq_save(__flags); \ |
| __asm__ __volatile__( \ |
| ".set mips3" "\t\t# __writeq""\n\t" \ |
| "dsll32 %L0, %L0, 0" "\n\t" \ |
| "dsrl32 %L0, %L0, 0" "\n\t" \ |
| "dsll32 %M0, %M0, 0" "\n\t" \ |
| "or %L0, %L0, %M0" "\n\t" \ |
| "sd %L0, %2" "\n\t" \ |
| ".set mips0" "\n" \ |
| : "=r" (__tmp) \ |
| : "0" (__val), "m" (*__mem)); \ |
| if (irq) \ |
| local_irq_restore(__flags); \ |
| } else \ |
| BUG(); \ |
| } \ |
| \ |
| static inline type pfx##read##bwlq(const volatile void __iomem *mem) \ |
| { \ |
| volatile type *__mem; \ |
| type __val; \ |
| \ |
| __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \ |
| \ |
| if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \ |
| __val = *__mem; \ |
| else if (cpu_has_64bits) { \ |
| unsigned long __flags; \ |
| \ |
| if (irq) \ |
| local_irq_save(__flags); \ |
| __asm__ __volatile__( \ |
| ".set mips3" "\t\t# __readq" "\n\t" \ |
| "ld %L0, %1" "\n\t" \ |
| "dsra32 %M0, %L0, 0" "\n\t" \ |
| "sll %L0, %L0, 0" "\n\t" \ |
| ".set mips0" "\n" \ |
| : "=r" (__val) \ |
| : "m" (*__mem)); \ |
| if (irq) \ |
| local_irq_restore(__flags); \ |
| } else { \ |
| __val = 0; \ |
| BUG(); \ |
| } \ |
| \ |
| return pfx##ioswab##bwlq(__val); \ |
| } |
| |
| #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \ |
| \ |
| static inline void pfx##out##bwlq##p(type val, unsigned long port) \ |
| { \ |
| volatile type *__addr; \ |
| type __val; \ |
| \ |
| port = __swizzle_addr_##bwlq(port); \ |
| __addr = (void *)(mips_io_port_base + port); \ |
| \ |
| __val = pfx##ioswab##bwlq(val); \ |
| \ |
| /* Really, we want this to be atomic */ \ |
| BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ |
| \ |
| *__addr = __val; \ |
| slow; \ |
| } \ |
| \ |
| static inline type pfx##in##bwlq##p(unsigned long port) \ |
| { \ |
| volatile type *__addr; \ |
| type __val; \ |
| \ |
| port = __swizzle_addr_##bwlq(port); \ |
| __addr = (void *)(mips_io_port_base + port); \ |
| \ |
| BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ |
| \ |
| __val = *__addr; \ |
| slow; \ |
| \ |
| return pfx##ioswab##bwlq(__val); \ |
| } |
| |
| #define __BUILD_MEMORY_PFX(bus, bwlq, type) \ |
| \ |
| __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1) |
| |
| #define BUILDIO_MEM(bwlq, type) \ |
| \ |
| __BUILD_MEMORY_PFX(__raw_, bwlq, type) \ |
| __BUILD_MEMORY_PFX(, bwlq, type) \ |
| __BUILD_MEMORY_PFX(mem_, bwlq, type) \ |
| |
| BUILDIO_MEM(b, u8) |
| BUILDIO_MEM(w, u16) |
| BUILDIO_MEM(l, u32) |
| BUILDIO_MEM(q, u64) |
| |
| #define __BUILD_IOPORT_PFX(bus, bwlq, type) \ |
| __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \ |
| __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO) |
| |
| #define BUILDIO_IOPORT(bwlq, type) \ |
| __BUILD_IOPORT_PFX(, bwlq, type) \ |
| __BUILD_IOPORT_PFX(mem_, bwlq, type) |
| |
| BUILDIO_IOPORT(b, u8) |
| BUILDIO_IOPORT(w, u16) |
| BUILDIO_IOPORT(l, u32) |
| #ifdef CONFIG_64BIT |
| BUILDIO_IOPORT(q, u64) |
| #endif |
| |
| #define __BUILDIO(bwlq, type) \ |
| \ |
| __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0) |
| |
| __BUILDIO(q, u64) |
| |
| #define readb_relaxed readb |
| #define readw_relaxed readw |
| #define readl_relaxed readl |
| #define readq_relaxed readq |
| |
| /* |
| * Some code tests for these symbols |
| */ |
| #define readq readq |
| #define writeq writeq |
| |
| #define __BUILD_MEMORY_STRING(bwlq, type) \ |
| \ |
| static inline void writes##bwlq(volatile void __iomem *mem, \ |
| const void *addr, unsigned int count) \ |
| { \ |
| const volatile type *__addr = addr; \ |
| \ |
| while (count--) { \ |
| mem_write##bwlq(*__addr, mem); \ |
| __addr++; \ |
| } \ |
| } \ |
| \ |
| static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \ |
| unsigned int count) \ |
| { \ |
| volatile type *__addr = addr; \ |
| \ |
| while (count--) { \ |
| *__addr = mem_read##bwlq(mem); \ |
| __addr++; \ |
| } \ |
| } |
| |
| #define __BUILD_IOPORT_STRING(bwlq, type) \ |
| \ |
| static inline void outs##bwlq(unsigned long port, const void *addr, \ |
| unsigned int count) \ |
| { \ |
| const volatile type *__addr = addr; \ |
| \ |
| while (count--) { \ |
| mem_out##bwlq(*__addr, port); \ |
| __addr++; \ |
| } \ |
| } \ |
| \ |
| static inline void ins##bwlq(unsigned long port, void *addr, \ |
| unsigned int count) \ |
| { \ |
| volatile type *__addr = addr; \ |
| \ |
| while (count--) { \ |
| *__addr = mem_in##bwlq(port); \ |
| __addr++; \ |
| } \ |
| } |
| |
| #define BUILDSTRING(bwlq, type) \ |
| \ |
| __BUILD_MEMORY_STRING(bwlq, type) \ |
| __BUILD_IOPORT_STRING(bwlq, type) |
| |
| BUILDSTRING(b, u8) |
| BUILDSTRING(w, u16) |
| BUILDSTRING(l, u32) |
| #ifdef CONFIG_64BIT |
| BUILDSTRING(q, u64) |
| #endif |
| |
| |
| /* Depends on MIPS II instruction set */ |
| #define mmiowb() asm volatile ("sync" ::: "memory") |
| |
| static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count) |
| { |
| memset((void __force *) addr, val, count); |
| } |
| static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count) |
| { |
| memcpy(dst, (void __force *) src, count); |
| } |
| static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count) |
| { |
| memcpy((void __force *) dst, src, count); |
| } |
| |
| /* |
| * Memory Mapped I/O |
| */ |
| #define ioread8(addr) readb(addr) |
| #define ioread16(addr) readw(addr) |
| #define ioread32(addr) readl(addr) |
| |
| #define iowrite8(b,addr) writeb(b,addr) |
| #define iowrite16(w,addr) writew(w,addr) |
| #define iowrite32(l,addr) writel(l,addr) |
| |
| #define ioread8_rep(a,b,c) readsb(a,b,c) |
| #define ioread16_rep(a,b,c) readsw(a,b,c) |
| #define ioread32_rep(a,b,c) readsl(a,b,c) |
| |
| #define iowrite8_rep(a,b,c) writesb(a,b,c) |
| #define iowrite16_rep(a,b,c) writesw(a,b,c) |
| #define iowrite32_rep(a,b,c) writesl(a,b,c) |
| |
| /* Create a virtual mapping cookie for an IO port range */ |
| extern void __iomem *ioport_map(unsigned long port, unsigned int nr); |
| extern void ioport_unmap(void __iomem *); |
| |
| /* Create a virtual mapping cookie for a PCI BAR (memory or IO) */ |
| struct pci_dev; |
| extern void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max); |
| extern void pci_iounmap(struct pci_dev *dev, void __iomem *); |
| |
| /* |
| * ISA space is 'always mapped' on currently supported MIPS systems, no need |
| * to explicitly ioremap() it. The fact that the ISA IO space is mapped |
| * to PAGE_OFFSET is pure coincidence - it does not mean ISA values |
| * are physical addresses. The following constant pointer can be |
| * used as the IO-area pointer (it can be iounmapped as well, so the |
| * analogy with PCI is quite large): |
| */ |
| #define __ISA_IO_base ((char *)(isa_slot_offset)) |
| |
| #define isa_readb(a) readb(__ISA_IO_base + (a)) |
| #define isa_readw(a) readw(__ISA_IO_base + (a)) |
| #define isa_readl(a) readl(__ISA_IO_base + (a)) |
| #define isa_readq(a) readq(__ISA_IO_base + (a)) |
| #define isa_writeb(b,a) writeb(b,__ISA_IO_base + (a)) |
| #define isa_writew(w,a) writew(w,__ISA_IO_base + (a)) |
| #define isa_writel(l,a) writel(l,__ISA_IO_base + (a)) |
| #define isa_writeq(q,a) writeq(q,__ISA_IO_base + (a)) |
| #define isa_memset_io(a,b,c) memset_io(__ISA_IO_base + (a),(b),(c)) |
| #define isa_memcpy_fromio(a,b,c) memcpy_fromio((a),__ISA_IO_base + (b),(c)) |
| #define isa_memcpy_toio(a,b,c) memcpy_toio(__ISA_IO_base + (a),(b),(c)) |
| |
| /* |
| * We don't have csum_partial_copy_fromio() yet, so we cheat here and |
| * just copy it. The net code will then do the checksum later. |
| */ |
| #define eth_io_copy_and_sum(skb,src,len,unused) memcpy_fromio((skb)->data,(src),(len)) |
| #define isa_eth_io_copy_and_sum(a,b,c,d) eth_copy_and_sum((a),(b),(c),(d)) |
| |
| /* |
| * check_signature - find BIOS signatures |
| * @io_addr: mmio address to check |
| * @signature: signature block |
| * @length: length of signature |
| * |
| * Perform a signature comparison with the mmio address io_addr. This |
| * address should have been obtained by ioremap. |
| * Returns 1 on a match. |
| */ |
| static inline int check_signature(char __iomem *io_addr, |
| const unsigned char *signature, int length) |
| { |
| int retval = 0; |
| do { |
| if (readb(io_addr) != *signature) |
| goto out; |
| io_addr++; |
| signature++; |
| length--; |
| } while (length); |
| retval = 1; |
| out: |
| return retval; |
| } |
| |
| /* |
| * The caches on some architectures aren't dma-coherent and have need to |
| * handle this in software. There are three types of operations that |
| * can be applied to dma buffers. |
| * |
| * - dma_cache_wback_inv(start, size) makes caches and coherent by |
| * writing the content of the caches back to memory, if necessary. |
| * The function also invalidates the affected part of the caches as |
| * necessary before DMA transfers from outside to memory. |
| * - dma_cache_wback(start, size) makes caches and coherent by |
| * writing the content of the caches back to memory, if necessary. |
| * The function also invalidates the affected part of the caches as |
| * necessary before DMA transfers from outside to memory. |
| * - dma_cache_inv(start, size) invalidates the affected parts of the |
| * caches. Dirty lines of the caches may be written back or simply |
| * be discarded. This operation is necessary before dma operations |
| * to the memory. |
| */ |
| #ifdef CONFIG_DMA_NONCOHERENT |
| |
| extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size); |
| extern void (*_dma_cache_wback)(unsigned long start, unsigned long size); |
| extern void (*_dma_cache_inv)(unsigned long start, unsigned long size); |
| |
| #define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start,size) |
| #define dma_cache_wback(start, size) _dma_cache_wback(start,size) |
| #define dma_cache_inv(start, size) _dma_cache_inv(start,size) |
| |
| #else /* Sane hardware */ |
| |
| #define dma_cache_wback_inv(start,size) \ |
| do { (void) (start); (void) (size); } while (0) |
| #define dma_cache_wback(start,size) \ |
| do { (void) (start); (void) (size); } while (0) |
| #define dma_cache_inv(start,size) \ |
| do { (void) (start); (void) (size); } while (0) |
| |
| #endif /* CONFIG_DMA_NONCOHERENT */ |
| |
| /* |
| * Read a 32-bit register that requires a 64-bit read cycle on the bus. |
| * Avoid interrupt mucking, just adjust the address for 4-byte access. |
| * Assume the addresses are 8-byte aligned. |
| */ |
| #ifdef __MIPSEB__ |
| #define __CSR_32_ADJUST 4 |
| #else |
| #define __CSR_32_ADJUST 0 |
| #endif |
| |
| #define csr_out32(v,a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v)) |
| #define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST)) |
| |
| /* |
| * Convert a physical pointer to a virtual kernel pointer for /dev/mem |
| * access |
| */ |
| #define xlate_dev_mem_ptr(p) __va(p) |
| |
| /* |
| * Convert a virtual cached pointer to an uncached pointer |
| */ |
| #define xlate_dev_kmem_ptr(p) p |
| |
| #endif /* _ASM_IO_H */ |