| /* |
| * linux/arch/i386/mm/pgtable.c |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/mm.h> |
| #include <linux/nmi.h> |
| #include <linux/swap.h> |
| #include <linux/smp.h> |
| #include <linux/highmem.h> |
| #include <linux/slab.h> |
| #include <linux/pagemap.h> |
| #include <linux/spinlock.h> |
| #include <linux/module.h> |
| #include <linux/quicklist.h> |
| |
| #include <asm/system.h> |
| #include <asm/pgtable.h> |
| #include <asm/pgalloc.h> |
| #include <asm/fixmap.h> |
| #include <asm/e820.h> |
| #include <asm/tlb.h> |
| #include <asm/tlbflush.h> |
| |
| void show_mem(void) |
| { |
| int total = 0, reserved = 0; |
| int shared = 0, cached = 0; |
| int highmem = 0; |
| struct page *page; |
| pg_data_t *pgdat; |
| unsigned long i; |
| unsigned long flags; |
| |
| printk(KERN_INFO "Mem-info:\n"); |
| show_free_areas(); |
| printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); |
| for_each_online_pgdat(pgdat) { |
| pgdat_resize_lock(pgdat, &flags); |
| for (i = 0; i < pgdat->node_spanned_pages; ++i) { |
| if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) |
| touch_nmi_watchdog(); |
| page = pgdat_page_nr(pgdat, i); |
| total++; |
| if (PageHighMem(page)) |
| highmem++; |
| if (PageReserved(page)) |
| reserved++; |
| else if (PageSwapCache(page)) |
| cached++; |
| else if (page_count(page)) |
| shared += page_count(page) - 1; |
| } |
| pgdat_resize_unlock(pgdat, &flags); |
| } |
| printk(KERN_INFO "%d pages of RAM\n", total); |
| printk(KERN_INFO "%d pages of HIGHMEM\n", highmem); |
| printk(KERN_INFO "%d reserved pages\n", reserved); |
| printk(KERN_INFO "%d pages shared\n", shared); |
| printk(KERN_INFO "%d pages swap cached\n", cached); |
| |
| printk(KERN_INFO "%lu pages dirty\n", global_page_state(NR_FILE_DIRTY)); |
| printk(KERN_INFO "%lu pages writeback\n", |
| global_page_state(NR_WRITEBACK)); |
| printk(KERN_INFO "%lu pages mapped\n", global_page_state(NR_FILE_MAPPED)); |
| printk(KERN_INFO "%lu pages slab\n", |
| global_page_state(NR_SLAB_RECLAIMABLE) + |
| global_page_state(NR_SLAB_UNRECLAIMABLE)); |
| printk(KERN_INFO "%lu pages pagetables\n", |
| global_page_state(NR_PAGETABLE)); |
| } |
| |
| /* |
| * Associate a virtual page frame with a given physical page frame |
| * and protection flags for that frame. |
| */ |
| static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| pgd = swapper_pg_dir + pgd_index(vaddr); |
| if (pgd_none(*pgd)) { |
| BUG(); |
| return; |
| } |
| pud = pud_offset(pgd, vaddr); |
| if (pud_none(*pud)) { |
| BUG(); |
| return; |
| } |
| pmd = pmd_offset(pud, vaddr); |
| if (pmd_none(*pmd)) { |
| BUG(); |
| return; |
| } |
| pte = pte_offset_kernel(pmd, vaddr); |
| if (pgprot_val(flags)) |
| set_pte_present(&init_mm, vaddr, pte, pfn_pte(pfn, flags)); |
| else |
| pte_clear(&init_mm, vaddr, pte); |
| |
| /* |
| * It's enough to flush this one mapping. |
| * (PGE mappings get flushed as well) |
| */ |
| __flush_tlb_one(vaddr); |
| } |
| |
| /* |
| * Associate a large virtual page frame with a given physical page frame |
| * and protection flags for that frame. pfn is for the base of the page, |
| * vaddr is what the page gets mapped to - both must be properly aligned. |
| * The pmd must already be instantiated. Assumes PAE mode. |
| */ |
| void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| if (vaddr & (PMD_SIZE-1)) { /* vaddr is misaligned */ |
| printk(KERN_WARNING "set_pmd_pfn: vaddr misaligned\n"); |
| return; /* BUG(); */ |
| } |
| if (pfn & (PTRS_PER_PTE-1)) { /* pfn is misaligned */ |
| printk(KERN_WARNING "set_pmd_pfn: pfn misaligned\n"); |
| return; /* BUG(); */ |
| } |
| pgd = swapper_pg_dir + pgd_index(vaddr); |
| if (pgd_none(*pgd)) { |
| printk(KERN_WARNING "set_pmd_pfn: pgd_none\n"); |
| return; /* BUG(); */ |
| } |
| pud = pud_offset(pgd, vaddr); |
| pmd = pmd_offset(pud, vaddr); |
| set_pmd(pmd, pfn_pmd(pfn, flags)); |
| /* |
| * It's enough to flush this one mapping. |
| * (PGE mappings get flushed as well) |
| */ |
| __flush_tlb_one(vaddr); |
| } |
| |
| static int fixmaps; |
| unsigned long __FIXADDR_TOP = 0xfffff000; |
| EXPORT_SYMBOL(__FIXADDR_TOP); |
| |
| void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t flags) |
| { |
| unsigned long address = __fix_to_virt(idx); |
| |
| if (idx >= __end_of_fixed_addresses) { |
| BUG(); |
| return; |
| } |
| set_pte_pfn(address, phys >> PAGE_SHIFT, flags); |
| fixmaps++; |
| } |
| |
| /** |
| * reserve_top_address - reserves a hole in the top of kernel address space |
| * @reserve - size of hole to reserve |
| * |
| * Can be used to relocate the fixmap area and poke a hole in the top |
| * of kernel address space to make room for a hypervisor. |
| */ |
| void reserve_top_address(unsigned long reserve) |
| { |
| BUG_ON(fixmaps > 0); |
| printk(KERN_INFO "Reserving virtual address space above 0x%08x\n", |
| (int)-reserve); |
| __FIXADDR_TOP = -reserve - PAGE_SIZE; |
| __VMALLOC_RESERVE += reserve; |
| } |
| |
| pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) |
| { |
| return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO); |
| } |
| |
| struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address) |
| { |
| struct page *pte; |
| |
| #ifdef CONFIG_HIGHPTE |
| pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0); |
| #else |
| pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0); |
| #endif |
| return pte; |
| } |
| |
| /* |
| * List of all pgd's needed for non-PAE so it can invalidate entries |
| * in both cached and uncached pgd's; not needed for PAE since the |
| * kernel pmd is shared. If PAE were not to share the pmd a similar |
| * tactic would be needed. This is essentially codepath-based locking |
| * against pageattr.c; it is the unique case in which a valid change |
| * of kernel pagetables can't be lazily synchronized by vmalloc faults. |
| * vmalloc faults work because attached pagetables are never freed. |
| * -- wli |
| */ |
| static inline void pgd_list_add(pgd_t *pgd) |
| { |
| struct page *page = virt_to_page(pgd); |
| |
| list_add(&page->lru, &pgd_list); |
| } |
| |
| static inline void pgd_list_del(pgd_t *pgd) |
| { |
| struct page *page = virt_to_page(pgd); |
| |
| list_del(&page->lru); |
| } |
| |
| |
| |
| #if (PTRS_PER_PMD == 1) |
| /* Non-PAE pgd constructor */ |
| static void pgd_ctor(void *pgd) |
| { |
| unsigned long flags; |
| |
| /* !PAE, no pagetable sharing */ |
| memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t)); |
| |
| spin_lock_irqsave(&pgd_lock, flags); |
| |
| /* must happen under lock */ |
| clone_pgd_range((pgd_t *)pgd + USER_PTRS_PER_PGD, |
| swapper_pg_dir + USER_PTRS_PER_PGD, |
| KERNEL_PGD_PTRS); |
| paravirt_alloc_pd_clone(__pa(pgd) >> PAGE_SHIFT, |
| __pa(swapper_pg_dir) >> PAGE_SHIFT, |
| USER_PTRS_PER_PGD, |
| KERNEL_PGD_PTRS); |
| pgd_list_add(pgd); |
| spin_unlock_irqrestore(&pgd_lock, flags); |
| } |
| #else /* PTRS_PER_PMD > 1 */ |
| /* PAE pgd constructor */ |
| static void pgd_ctor(void *pgd) |
| { |
| /* PAE, kernel PMD may be shared */ |
| |
| if (SHARED_KERNEL_PMD) { |
| clone_pgd_range((pgd_t *)pgd + USER_PTRS_PER_PGD, |
| swapper_pg_dir + USER_PTRS_PER_PGD, |
| KERNEL_PGD_PTRS); |
| } else { |
| unsigned long flags; |
| |
| memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t)); |
| spin_lock_irqsave(&pgd_lock, flags); |
| pgd_list_add(pgd); |
| spin_unlock_irqrestore(&pgd_lock, flags); |
| } |
| } |
| #endif /* PTRS_PER_PMD */ |
| |
| static void pgd_dtor(void *pgd) |
| { |
| unsigned long flags; /* can be called from interrupt context */ |
| |
| if (SHARED_KERNEL_PMD) |
| return; |
| |
| spin_lock_irqsave(&pgd_lock, flags); |
| pgd_list_del(pgd); |
| spin_unlock_irqrestore(&pgd_lock, flags); |
| } |
| |
| #define UNSHARED_PTRS_PER_PGD \ |
| (SHARED_KERNEL_PMD ? USER_PTRS_PER_PGD : PTRS_PER_PGD) |
| |
| #ifdef CONFIG_X86_PAE |
| /* |
| * Mop up any pmd pages which may still be attached to the pgd. |
| * Normally they will be freed by munmap/exit_mmap, but any pmd we |
| * preallocate which never got a corresponding vma will need to be |
| * freed manually. |
| */ |
| static void pgd_mop_up_pmds(pgd_t *pgdp) |
| { |
| int i; |
| |
| for(i = 0; i < UNSHARED_PTRS_PER_PGD; i++) { |
| pgd_t pgd = pgdp[i]; |
| |
| if (pgd_val(pgd) != 0) { |
| pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd); |
| |
| pgdp[i] = native_make_pgd(0); |
| |
| paravirt_release_pd(pgd_val(pgd) >> PAGE_SHIFT); |
| pmd_free(pmd); |
| } |
| } |
| } |
| |
| /* |
| * In PAE mode, we need to do a cr3 reload (=tlb flush) when |
| * updating the top-level pagetable entries to guarantee the |
| * processor notices the update. Since this is expensive, and |
| * all 4 top-level entries are used almost immediately in a |
| * new process's life, we just pre-populate them here. |
| * |
| * Also, if we're in a paravirt environment where the kernel pmd is |
| * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate |
| * and initialize the kernel pmds here. |
| */ |
| static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd) |
| { |
| pud_t *pud; |
| unsigned long addr; |
| int i; |
| |
| pud = pud_offset(pgd, 0); |
| for (addr = i = 0; i < UNSHARED_PTRS_PER_PGD; |
| i++, pud++, addr += PUD_SIZE) { |
| pmd_t *pmd = pmd_alloc_one(mm, addr); |
| |
| if (!pmd) { |
| pgd_mop_up_pmds(pgd); |
| return 0; |
| } |
| |
| if (i >= USER_PTRS_PER_PGD) |
| memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]), |
| sizeof(pmd_t) * PTRS_PER_PMD); |
| |
| pud_populate(mm, pud, pmd); |
| } |
| |
| return 1; |
| } |
| #else /* !CONFIG_X86_PAE */ |
| /* No need to prepopulate any pagetable entries in non-PAE modes. */ |
| static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd) |
| { |
| return 1; |
| } |
| |
| static void pgd_mop_up_pmds(pgd_t *pgd) |
| { |
| } |
| #endif /* CONFIG_X86_PAE */ |
| |
| pgd_t *pgd_alloc(struct mm_struct *mm) |
| { |
| pgd_t *pgd = quicklist_alloc(0, GFP_KERNEL, pgd_ctor); |
| |
| mm->pgd = pgd; /* so that alloc_pd can use it */ |
| |
| if (pgd && !pgd_prepopulate_pmd(mm, pgd)) { |
| quicklist_free(0, pgd_dtor, pgd); |
| pgd = NULL; |
| } |
| |
| return pgd; |
| } |
| |
| void pgd_free(pgd_t *pgd) |
| { |
| pgd_mop_up_pmds(pgd); |
| quicklist_free(0, pgd_dtor, pgd); |
| } |
| |
| void check_pgt_cache(void) |
| { |
| quicklist_trim(0, pgd_dtor, 25, 16); |
| } |
| |
| void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte) |
| { |
| paravirt_release_pt(page_to_pfn(pte)); |
| tlb_remove_page(tlb, pte); |
| } |
| |
| #ifdef CONFIG_X86_PAE |
| |
| void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd) |
| { |
| /* This is called just after the pmd has been detached from |
| the pgd, which requires a full tlb flush to be recognized |
| by the CPU. Rather than incurring multiple tlb flushes |
| while the address space is being pulled down, make the tlb |
| gathering machinery do a full flush when we're done. */ |
| tlb->fullmm = 1; |
| |
| paravirt_release_pd(__pa(pmd) >> PAGE_SHIFT); |
| tlb_remove_page(tlb, virt_to_page(pmd)); |
| } |
| |
| #endif |