| #ifndef _LINUX_MM_H |
| #define _LINUX_MM_H |
| |
| #include <linux/errno.h> |
| |
| #ifdef __KERNEL__ |
| |
| #include <linux/mmdebug.h> |
| #include <linux/gfp.h> |
| #include <linux/bug.h> |
| #include <linux/list.h> |
| #include <linux/mmzone.h> |
| #include <linux/rbtree.h> |
| #include <linux/atomic.h> |
| #include <linux/debug_locks.h> |
| #include <linux/mm_types.h> |
| #include <linux/range.h> |
| #include <linux/pfn.h> |
| #include <linux/bit_spinlock.h> |
| #include <linux/shrinker.h> |
| #include <linux/resource.h> |
| |
| struct mempolicy; |
| struct anon_vma; |
| struct anon_vma_chain; |
| struct file_ra_state; |
| struct user_struct; |
| struct writeback_control; |
| |
| #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ |
| extern unsigned long max_mapnr; |
| |
| static inline void set_max_mapnr(unsigned long limit) |
| { |
| max_mapnr = limit; |
| } |
| #else |
| static inline void set_max_mapnr(unsigned long limit) { } |
| #endif |
| |
| extern unsigned long totalram_pages; |
| extern void * high_memory; |
| extern int page_cluster; |
| |
| #ifdef CONFIG_SYSCTL |
| extern int sysctl_legacy_va_layout; |
| #else |
| #define sysctl_legacy_va_layout 0 |
| #endif |
| |
| #include <asm/page.h> |
| #include <asm/pgtable.h> |
| #include <asm/processor.h> |
| |
| #ifndef __pa_symbol |
| #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) |
| #endif |
| |
| /* |
| * To prevent common memory management code establishing |
| * a zero page mapping on a read fault. |
| * This macro should be defined within <asm/pgtable.h>. |
| * s390 does this to prevent multiplexing of hardware bits |
| * related to the physical page in case of virtualization. |
| */ |
| #ifndef mm_forbids_zeropage |
| #define mm_forbids_zeropage(X) (0) |
| #endif |
| |
| extern unsigned long sysctl_user_reserve_kbytes; |
| extern unsigned long sysctl_admin_reserve_kbytes; |
| |
| extern int sysctl_overcommit_memory; |
| extern int sysctl_overcommit_ratio; |
| extern unsigned long sysctl_overcommit_kbytes; |
| |
| extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, |
| size_t *, loff_t *); |
| extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, |
| size_t *, loff_t *); |
| |
| #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) |
| |
| /* to align the pointer to the (next) page boundary */ |
| #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) |
| |
| /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ |
| #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) |
| |
| /* |
| * Linux kernel virtual memory manager primitives. |
| * The idea being to have a "virtual" mm in the same way |
| * we have a virtual fs - giving a cleaner interface to the |
| * mm details, and allowing different kinds of memory mappings |
| * (from shared memory to executable loading to arbitrary |
| * mmap() functions). |
| */ |
| |
| extern struct kmem_cache *vm_area_cachep; |
| |
| #ifndef CONFIG_MMU |
| extern struct rb_root nommu_region_tree; |
| extern struct rw_semaphore nommu_region_sem; |
| |
| extern unsigned int kobjsize(const void *objp); |
| #endif |
| |
| /* |
| * vm_flags in vm_area_struct, see mm_types.h. |
| */ |
| #define VM_NONE 0x00000000 |
| |
| #define VM_READ 0x00000001 /* currently active flags */ |
| #define VM_WRITE 0x00000002 |
| #define VM_EXEC 0x00000004 |
| #define VM_SHARED 0x00000008 |
| |
| /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ |
| #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ |
| #define VM_MAYWRITE 0x00000020 |
| #define VM_MAYEXEC 0x00000040 |
| #define VM_MAYSHARE 0x00000080 |
| |
| #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ |
| #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ |
| #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ |
| |
| #define VM_LOCKED 0x00002000 |
| #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ |
| |
| /* Used by sys_madvise() */ |
| #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ |
| #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ |
| |
| #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ |
| #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ |
| #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ |
| #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ |
| #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ |
| #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ |
| #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ |
| #define VM_ARCH_2 0x02000000 |
| #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ |
| |
| #ifdef CONFIG_MEM_SOFT_DIRTY |
| # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ |
| #else |
| # define VM_SOFTDIRTY 0 |
| #endif |
| |
| #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ |
| #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ |
| #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ |
| #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ |
| |
| #if defined(CONFIG_X86) |
| # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ |
| #elif defined(CONFIG_PPC) |
| # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ |
| #elif defined(CONFIG_PARISC) |
| # define VM_GROWSUP VM_ARCH_1 |
| #elif defined(CONFIG_METAG) |
| # define VM_GROWSUP VM_ARCH_1 |
| #elif defined(CONFIG_IA64) |
| # define VM_GROWSUP VM_ARCH_1 |
| #elif !defined(CONFIG_MMU) |
| # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ |
| #endif |
| |
| #if defined(CONFIG_X86) |
| /* MPX specific bounds table or bounds directory */ |
| # define VM_MPX VM_ARCH_2 |
| #endif |
| |
| #ifndef VM_GROWSUP |
| # define VM_GROWSUP VM_NONE |
| #endif |
| |
| /* Bits set in the VMA until the stack is in its final location */ |
| #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) |
| |
| #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ |
| #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS |
| #endif |
| |
| #ifdef CONFIG_STACK_GROWSUP |
| #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) |
| #else |
| #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) |
| #endif |
| |
| /* |
| * Special vmas that are non-mergable, non-mlock()able. |
| * Note: mm/huge_memory.c VM_NO_THP depends on this definition. |
| */ |
| #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) |
| |
| /* This mask defines which mm->def_flags a process can inherit its parent */ |
| #define VM_INIT_DEF_MASK VM_NOHUGEPAGE |
| |
| /* |
| * mapping from the currently active vm_flags protection bits (the |
| * low four bits) to a page protection mask.. |
| */ |
| extern pgprot_t protection_map[16]; |
| |
| #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ |
| #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ |
| #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ |
| #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ |
| #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ |
| #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ |
| #define FAULT_FLAG_TRIED 0x40 /* second try */ |
| #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */ |
| |
| /* |
| * vm_fault is filled by the the pagefault handler and passed to the vma's |
| * ->fault function. The vma's ->fault is responsible for returning a bitmask |
| * of VM_FAULT_xxx flags that give details about how the fault was handled. |
| * |
| * pgoff should be used in favour of virtual_address, if possible. If pgoff |
| * is used, one may implement ->remap_pages to get nonlinear mapping support. |
| */ |
| struct vm_fault { |
| unsigned int flags; /* FAULT_FLAG_xxx flags */ |
| pgoff_t pgoff; /* Logical page offset based on vma */ |
| void __user *virtual_address; /* Faulting virtual address */ |
| |
| struct page *page; /* ->fault handlers should return a |
| * page here, unless VM_FAULT_NOPAGE |
| * is set (which is also implied by |
| * VM_FAULT_ERROR). |
| */ |
| /* for ->map_pages() only */ |
| pgoff_t max_pgoff; /* map pages for offset from pgoff till |
| * max_pgoff inclusive */ |
| pte_t *pte; /* pte entry associated with ->pgoff */ |
| }; |
| |
| /* |
| * These are the virtual MM functions - opening of an area, closing and |
| * unmapping it (needed to keep files on disk up-to-date etc), pointer |
| * to the functions called when a no-page or a wp-page exception occurs. |
| */ |
| struct vm_operations_struct { |
| void (*open)(struct vm_area_struct * area); |
| void (*close)(struct vm_area_struct * area); |
| int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); |
| void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); |
| |
| /* notification that a previously read-only page is about to become |
| * writable, if an error is returned it will cause a SIGBUS */ |
| int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); |
| |
| /* called by access_process_vm when get_user_pages() fails, typically |
| * for use by special VMAs that can switch between memory and hardware |
| */ |
| int (*access)(struct vm_area_struct *vma, unsigned long addr, |
| void *buf, int len, int write); |
| |
| /* Called by the /proc/PID/maps code to ask the vma whether it |
| * has a special name. Returning non-NULL will also cause this |
| * vma to be dumped unconditionally. */ |
| const char *(*name)(struct vm_area_struct *vma); |
| |
| #ifdef CONFIG_NUMA |
| /* |
| * set_policy() op must add a reference to any non-NULL @new mempolicy |
| * to hold the policy upon return. Caller should pass NULL @new to |
| * remove a policy and fall back to surrounding context--i.e. do not |
| * install a MPOL_DEFAULT policy, nor the task or system default |
| * mempolicy. |
| */ |
| int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); |
| |
| /* |
| * get_policy() op must add reference [mpol_get()] to any policy at |
| * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure |
| * in mm/mempolicy.c will do this automatically. |
| * get_policy() must NOT add a ref if the policy at (vma,addr) is not |
| * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. |
| * If no [shared/vma] mempolicy exists at the addr, get_policy() op |
| * must return NULL--i.e., do not "fallback" to task or system default |
| * policy. |
| */ |
| struct mempolicy *(*get_policy)(struct vm_area_struct *vma, |
| unsigned long addr); |
| int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, |
| const nodemask_t *to, unsigned long flags); |
| #endif |
| /* called by sys_remap_file_pages() to populate non-linear mapping */ |
| int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr, |
| unsigned long size, pgoff_t pgoff); |
| }; |
| |
| struct mmu_gather; |
| struct inode; |
| |
| #define page_private(page) ((page)->private) |
| #define set_page_private(page, v) ((page)->private = (v)) |
| |
| /* It's valid only if the page is free path or free_list */ |
| static inline void set_freepage_migratetype(struct page *page, int migratetype) |
| { |
| page->index = migratetype; |
| } |
| |
| /* It's valid only if the page is free path or free_list */ |
| static inline int get_freepage_migratetype(struct page *page) |
| { |
| return page->index; |
| } |
| |
| /* |
| * FIXME: take this include out, include page-flags.h in |
| * files which need it (119 of them) |
| */ |
| #include <linux/page-flags.h> |
| #include <linux/huge_mm.h> |
| |
| /* |
| * Methods to modify the page usage count. |
| * |
| * What counts for a page usage: |
| * - cache mapping (page->mapping) |
| * - private data (page->private) |
| * - page mapped in a task's page tables, each mapping |
| * is counted separately |
| * |
| * Also, many kernel routines increase the page count before a critical |
| * routine so they can be sure the page doesn't go away from under them. |
| */ |
| |
| /* |
| * Drop a ref, return true if the refcount fell to zero (the page has no users) |
| */ |
| static inline int put_page_testzero(struct page *page) |
| { |
| VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page); |
| return atomic_dec_and_test(&page->_count); |
| } |
| |
| /* |
| * Try to grab a ref unless the page has a refcount of zero, return false if |
| * that is the case. |
| * This can be called when MMU is off so it must not access |
| * any of the virtual mappings. |
| */ |
| static inline int get_page_unless_zero(struct page *page) |
| { |
| return atomic_inc_not_zero(&page->_count); |
| } |
| |
| /* |
| * Try to drop a ref unless the page has a refcount of one, return false if |
| * that is the case. |
| * This is to make sure that the refcount won't become zero after this drop. |
| * This can be called when MMU is off so it must not access |
| * any of the virtual mappings. |
| */ |
| static inline int put_page_unless_one(struct page *page) |
| { |
| return atomic_add_unless(&page->_count, -1, 1); |
| } |
| |
| extern int page_is_ram(unsigned long pfn); |
| extern int region_is_ram(resource_size_t phys_addr, unsigned long size); |
| |
| /* Support for virtually mapped pages */ |
| struct page *vmalloc_to_page(const void *addr); |
| unsigned long vmalloc_to_pfn(const void *addr); |
| |
| /* |
| * Determine if an address is within the vmalloc range |
| * |
| * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there |
| * is no special casing required. |
| */ |
| static inline int is_vmalloc_addr(const void *x) |
| { |
| #ifdef CONFIG_MMU |
| unsigned long addr = (unsigned long)x; |
| |
| return addr >= VMALLOC_START && addr < VMALLOC_END; |
| #else |
| return 0; |
| #endif |
| } |
| #ifdef CONFIG_MMU |
| extern int is_vmalloc_or_module_addr(const void *x); |
| #else |
| static inline int is_vmalloc_or_module_addr(const void *x) |
| { |
| return 0; |
| } |
| #endif |
| |
| extern void kvfree(const void *addr); |
| |
| static inline void compound_lock(struct page *page) |
| { |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| VM_BUG_ON_PAGE(PageSlab(page), page); |
| bit_spin_lock(PG_compound_lock, &page->flags); |
| #endif |
| } |
| |
| static inline void compound_unlock(struct page *page) |
| { |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| VM_BUG_ON_PAGE(PageSlab(page), page); |
| bit_spin_unlock(PG_compound_lock, &page->flags); |
| #endif |
| } |
| |
| static inline unsigned long compound_lock_irqsave(struct page *page) |
| { |
| unsigned long uninitialized_var(flags); |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| local_irq_save(flags); |
| compound_lock(page); |
| #endif |
| return flags; |
| } |
| |
| static inline void compound_unlock_irqrestore(struct page *page, |
| unsigned long flags) |
| { |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| compound_unlock(page); |
| local_irq_restore(flags); |
| #endif |
| } |
| |
| static inline struct page *compound_head_by_tail(struct page *tail) |
| { |
| struct page *head = tail->first_page; |
| |
| /* |
| * page->first_page may be a dangling pointer to an old |
| * compound page, so recheck that it is still a tail |
| * page before returning. |
| */ |
| smp_rmb(); |
| if (likely(PageTail(tail))) |
| return head; |
| return tail; |
| } |
| |
| static inline struct page *compound_head(struct page *page) |
| { |
| if (unlikely(PageTail(page))) |
| return compound_head_by_tail(page); |
| return page; |
| } |
| |
| /* |
| * The atomic page->_mapcount, starts from -1: so that transitions |
| * both from it and to it can be tracked, using atomic_inc_and_test |
| * and atomic_add_negative(-1). |
| */ |
| static inline void page_mapcount_reset(struct page *page) |
| { |
| atomic_set(&(page)->_mapcount, -1); |
| } |
| |
| static inline int page_mapcount(struct page *page) |
| { |
| return atomic_read(&(page)->_mapcount) + 1; |
| } |
| |
| static inline int page_count(struct page *page) |
| { |
| return atomic_read(&compound_head(page)->_count); |
| } |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| extern int PageHeadHuge(struct page *page_head); |
| #else /* CONFIG_HUGETLB_PAGE */ |
| static inline int PageHeadHuge(struct page *page_head) |
| { |
| return 0; |
| } |
| #endif /* CONFIG_HUGETLB_PAGE */ |
| |
| static inline bool __compound_tail_refcounted(struct page *page) |
| { |
| return !PageSlab(page) && !PageHeadHuge(page); |
| } |
| |
| /* |
| * This takes a head page as parameter and tells if the |
| * tail page reference counting can be skipped. |
| * |
| * For this to be safe, PageSlab and PageHeadHuge must remain true on |
| * any given page where they return true here, until all tail pins |
| * have been released. |
| */ |
| static inline bool compound_tail_refcounted(struct page *page) |
| { |
| VM_BUG_ON_PAGE(!PageHead(page), page); |
| return __compound_tail_refcounted(page); |
| } |
| |
| static inline void get_huge_page_tail(struct page *page) |
| { |
| /* |
| * __split_huge_page_refcount() cannot run from under us. |
| */ |
| VM_BUG_ON_PAGE(!PageTail(page), page); |
| VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); |
| VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); |
| if (compound_tail_refcounted(page->first_page)) |
| atomic_inc(&page->_mapcount); |
| } |
| |
| extern bool __get_page_tail(struct page *page); |
| |
| static inline void get_page(struct page *page) |
| { |
| if (unlikely(PageTail(page))) |
| if (likely(__get_page_tail(page))) |
| return; |
| /* |
| * Getting a normal page or the head of a compound page |
| * requires to already have an elevated page->_count. |
| */ |
| VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); |
| atomic_inc(&page->_count); |
| } |
| |
| static inline struct page *virt_to_head_page(const void *x) |
| { |
| struct page *page = virt_to_page(x); |
| return compound_head(page); |
| } |
| |
| /* |
| * Setup the page count before being freed into the page allocator for |
| * the first time (boot or memory hotplug) |
| */ |
| static inline void init_page_count(struct page *page) |
| { |
| atomic_set(&page->_count, 1); |
| } |
| |
| /* |
| * PageBuddy() indicate that the page is free and in the buddy system |
| * (see mm/page_alloc.c). |
| * |
| * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to |
| * -2 so that an underflow of the page_mapcount() won't be mistaken |
| * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very |
| * efficiently by most CPU architectures. |
| */ |
| #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) |
| |
| static inline int PageBuddy(struct page *page) |
| { |
| return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; |
| } |
| |
| static inline void __SetPageBuddy(struct page *page) |
| { |
| VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); |
| atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); |
| } |
| |
| static inline void __ClearPageBuddy(struct page *page) |
| { |
| VM_BUG_ON_PAGE(!PageBuddy(page), page); |
| atomic_set(&page->_mapcount, -1); |
| } |
| |
| #define PAGE_BALLOON_MAPCOUNT_VALUE (-256) |
| |
| static inline int PageBalloon(struct page *page) |
| { |
| return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE; |
| } |
| |
| static inline void __SetPageBalloon(struct page *page) |
| { |
| VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); |
| atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE); |
| } |
| |
| static inline void __ClearPageBalloon(struct page *page) |
| { |
| VM_BUG_ON_PAGE(!PageBalloon(page), page); |
| atomic_set(&page->_mapcount, -1); |
| } |
| |
| void put_page(struct page *page); |
| void put_pages_list(struct list_head *pages); |
| |
| void split_page(struct page *page, unsigned int order); |
| int split_free_page(struct page *page); |
| |
| /* |
| * Compound pages have a destructor function. Provide a |
| * prototype for that function and accessor functions. |
| * These are _only_ valid on the head of a PG_compound page. |
| */ |
| typedef void compound_page_dtor(struct page *); |
| |
| static inline void set_compound_page_dtor(struct page *page, |
| compound_page_dtor *dtor) |
| { |
| page[1].lru.next = (void *)dtor; |
| } |
| |
| static inline compound_page_dtor *get_compound_page_dtor(struct page *page) |
| { |
| return (compound_page_dtor *)page[1].lru.next; |
| } |
| |
| static inline int compound_order(struct page *page) |
| { |
| if (!PageHead(page)) |
| return 0; |
| return (unsigned long)page[1].lru.prev; |
| } |
| |
| static inline void set_compound_order(struct page *page, unsigned long order) |
| { |
| page[1].lru.prev = (void *)order; |
| } |
| |
| #ifdef CONFIG_MMU |
| /* |
| * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when |
| * servicing faults for write access. In the normal case, do always want |
| * pte_mkwrite. But get_user_pages can cause write faults for mappings |
| * that do not have writing enabled, when used by access_process_vm. |
| */ |
| static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) |
| { |
| if (likely(vma->vm_flags & VM_WRITE)) |
| pte = pte_mkwrite(pte); |
| return pte; |
| } |
| |
| void do_set_pte(struct vm_area_struct *vma, unsigned long address, |
| struct page *page, pte_t *pte, bool write, bool anon); |
| #endif |
| |
| /* |
| * Multiple processes may "see" the same page. E.g. for untouched |
| * mappings of /dev/null, all processes see the same page full of |
| * zeroes, and text pages of executables and shared libraries have |
| * only one copy in memory, at most, normally. |
| * |
| * For the non-reserved pages, page_count(page) denotes a reference count. |
| * page_count() == 0 means the page is free. page->lru is then used for |
| * freelist management in the buddy allocator. |
| * page_count() > 0 means the page has been allocated. |
| * |
| * Pages are allocated by the slab allocator in order to provide memory |
| * to kmalloc and kmem_cache_alloc. In this case, the management of the |
| * page, and the fields in 'struct page' are the responsibility of mm/slab.c |
| * unless a particular usage is carefully commented. (the responsibility of |
| * freeing the kmalloc memory is the caller's, of course). |
| * |
| * A page may be used by anyone else who does a __get_free_page(). |
| * In this case, page_count still tracks the references, and should only |
| * be used through the normal accessor functions. The top bits of page->flags |
| * and page->virtual store page management information, but all other fields |
| * are unused and could be used privately, carefully. The management of this |
| * page is the responsibility of the one who allocated it, and those who have |
| * subsequently been given references to it. |
| * |
| * The other pages (we may call them "pagecache pages") are completely |
| * managed by the Linux memory manager: I/O, buffers, swapping etc. |
| * The following discussion applies only to them. |
| * |
| * A pagecache page contains an opaque `private' member, which belongs to the |
| * page's address_space. Usually, this is the address of a circular list of |
| * the page's disk buffers. PG_private must be set to tell the VM to call |
| * into the filesystem to release these pages. |
| * |
| * A page may belong to an inode's memory mapping. In this case, page->mapping |
| * is the pointer to the inode, and page->index is the file offset of the page, |
| * in units of PAGE_CACHE_SIZE. |
| * |
| * If pagecache pages are not associated with an inode, they are said to be |
| * anonymous pages. These may become associated with the swapcache, and in that |
| * case PG_swapcache is set, and page->private is an offset into the swapcache. |
| * |
| * In either case (swapcache or inode backed), the pagecache itself holds one |
| * reference to the page. Setting PG_private should also increment the |
| * refcount. The each user mapping also has a reference to the page. |
| * |
| * The pagecache pages are stored in a per-mapping radix tree, which is |
| * rooted at mapping->page_tree, and indexed by offset. |
| * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space |
| * lists, we instead now tag pages as dirty/writeback in the radix tree. |
| * |
| * All pagecache pages may be subject to I/O: |
| * - inode pages may need to be read from disk, |
| * - inode pages which have been modified and are MAP_SHARED may need |
| * to be written back to the inode on disk, |
| * - anonymous pages (including MAP_PRIVATE file mappings) which have been |
| * modified may need to be swapped out to swap space and (later) to be read |
| * back into memory. |
| */ |
| |
| /* |
| * The zone field is never updated after free_area_init_core() |
| * sets it, so none of the operations on it need to be atomic. |
| */ |
| |
| /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ |
| #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) |
| #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) |
| #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) |
| #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) |
| |
| /* |
| * Define the bit shifts to access each section. For non-existent |
| * sections we define the shift as 0; that plus a 0 mask ensures |
| * the compiler will optimise away reference to them. |
| */ |
| #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) |
| #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) |
| #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) |
| #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) |
| |
| /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ |
| #ifdef NODE_NOT_IN_PAGE_FLAGS |
| #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) |
| #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ |
| SECTIONS_PGOFF : ZONES_PGOFF) |
| #else |
| #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) |
| #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ |
| NODES_PGOFF : ZONES_PGOFF) |
| #endif |
| |
| #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) |
| |
| #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS |
| #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS |
| #endif |
| |
| #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) |
| #define NODES_MASK ((1UL << NODES_WIDTH) - 1) |
| #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) |
| #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) |
| #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) |
| |
| static inline enum zone_type page_zonenum(const struct page *page) |
| { |
| return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; |
| } |
| |
| #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) |
| #define SECTION_IN_PAGE_FLAGS |
| #endif |
| |
| /* |
| * The identification function is mainly used by the buddy allocator for |
| * determining if two pages could be buddies. We are not really identifying |
| * the zone since we could be using the section number id if we do not have |
| * node id available in page flags. |
| * We only guarantee that it will return the same value for two combinable |
| * pages in a zone. |
| */ |
| static inline int page_zone_id(struct page *page) |
| { |
| return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; |
| } |
| |
| static inline int zone_to_nid(struct zone *zone) |
| { |
| #ifdef CONFIG_NUMA |
| return zone->node; |
| #else |
| return 0; |
| #endif |
| } |
| |
| #ifdef NODE_NOT_IN_PAGE_FLAGS |
| extern int page_to_nid(const struct page *page); |
| #else |
| static inline int page_to_nid(const struct page *page) |
| { |
| return (page->flags >> NODES_PGSHIFT) & NODES_MASK; |
| } |
| #endif |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| static inline int cpu_pid_to_cpupid(int cpu, int pid) |
| { |
| return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); |
| } |
| |
| static inline int cpupid_to_pid(int cpupid) |
| { |
| return cpupid & LAST__PID_MASK; |
| } |
| |
| static inline int cpupid_to_cpu(int cpupid) |
| { |
| return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; |
| } |
| |
| static inline int cpupid_to_nid(int cpupid) |
| { |
| return cpu_to_node(cpupid_to_cpu(cpupid)); |
| } |
| |
| static inline bool cpupid_pid_unset(int cpupid) |
| { |
| return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); |
| } |
| |
| static inline bool cpupid_cpu_unset(int cpupid) |
| { |
| return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); |
| } |
| |
| static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) |
| { |
| return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); |
| } |
| |
| #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) |
| #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS |
| static inline int page_cpupid_xchg_last(struct page *page, int cpupid) |
| { |
| return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); |
| } |
| |
| static inline int page_cpupid_last(struct page *page) |
| { |
| return page->_last_cpupid; |
| } |
| static inline void page_cpupid_reset_last(struct page *page) |
| { |
| page->_last_cpupid = -1 & LAST_CPUPID_MASK; |
| } |
| #else |
| static inline int page_cpupid_last(struct page *page) |
| { |
| return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; |
| } |
| |
| extern int page_cpupid_xchg_last(struct page *page, int cpupid); |
| |
| static inline void page_cpupid_reset_last(struct page *page) |
| { |
| int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; |
| |
| page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); |
| page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; |
| } |
| #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ |
| #else /* !CONFIG_NUMA_BALANCING */ |
| static inline int page_cpupid_xchg_last(struct page *page, int cpupid) |
| { |
| return page_to_nid(page); /* XXX */ |
| } |
| |
| static inline int page_cpupid_last(struct page *page) |
| { |
| return page_to_nid(page); /* XXX */ |
| } |
| |
| static inline int cpupid_to_nid(int cpupid) |
| { |
| return -1; |
| } |
| |
| static inline int cpupid_to_pid(int cpupid) |
| { |
| return -1; |
| } |
| |
| static inline int cpupid_to_cpu(int cpupid) |
| { |
| return -1; |
| } |
| |
| static inline int cpu_pid_to_cpupid(int nid, int pid) |
| { |
| return -1; |
| } |
| |
| static inline bool cpupid_pid_unset(int cpupid) |
| { |
| return 1; |
| } |
| |
| static inline void page_cpupid_reset_last(struct page *page) |
| { |
| } |
| |
| static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) |
| { |
| return false; |
| } |
| #endif /* CONFIG_NUMA_BALANCING */ |
| |
| static inline struct zone *page_zone(const struct page *page) |
| { |
| return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; |
| } |
| |
| #ifdef SECTION_IN_PAGE_FLAGS |
| static inline void set_page_section(struct page *page, unsigned long section) |
| { |
| page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); |
| page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; |
| } |
| |
| static inline unsigned long page_to_section(const struct page *page) |
| { |
| return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; |
| } |
| #endif |
| |
| static inline void set_page_zone(struct page *page, enum zone_type zone) |
| { |
| page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); |
| page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; |
| } |
| |
| static inline void set_page_node(struct page *page, unsigned long node) |
| { |
| page->flags &= ~(NODES_MASK << NODES_PGSHIFT); |
| page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; |
| } |
| |
| static inline void set_page_links(struct page *page, enum zone_type zone, |
| unsigned long node, unsigned long pfn) |
| { |
| set_page_zone(page, zone); |
| set_page_node(page, node); |
| #ifdef SECTION_IN_PAGE_FLAGS |
| set_page_section(page, pfn_to_section_nr(pfn)); |
| #endif |
| } |
| |
| /* |
| * Some inline functions in vmstat.h depend on page_zone() |
| */ |
| #include <linux/vmstat.h> |
| |
| static __always_inline void *lowmem_page_address(const struct page *page) |
| { |
| return __va(PFN_PHYS(page_to_pfn(page))); |
| } |
| |
| #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) |
| #define HASHED_PAGE_VIRTUAL |
| #endif |
| |
| #if defined(WANT_PAGE_VIRTUAL) |
| static inline void *page_address(const struct page *page) |
| { |
| return page->virtual; |
| } |
| static inline void set_page_address(struct page *page, void *address) |
| { |
| page->virtual = address; |
| } |
| #define page_address_init() do { } while(0) |
| #endif |
| |
| #if defined(HASHED_PAGE_VIRTUAL) |
| void *page_address(const struct page *page); |
| void set_page_address(struct page *page, void *virtual); |
| void page_address_init(void); |
| #endif |
| |
| #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) |
| #define page_address(page) lowmem_page_address(page) |
| #define set_page_address(page, address) do { } while(0) |
| #define page_address_init() do { } while(0) |
| #endif |
| |
| /* |
| * On an anonymous page mapped into a user virtual memory area, |
| * page->mapping points to its anon_vma, not to a struct address_space; |
| * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. |
| * |
| * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, |
| * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; |
| * and then page->mapping points, not to an anon_vma, but to a private |
| * structure which KSM associates with that merged page. See ksm.h. |
| * |
| * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. |
| * |
| * Please note that, confusingly, "page_mapping" refers to the inode |
| * address_space which maps the page from disk; whereas "page_mapped" |
| * refers to user virtual address space into which the page is mapped. |
| */ |
| #define PAGE_MAPPING_ANON 1 |
| #define PAGE_MAPPING_KSM 2 |
| #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) |
| |
| extern struct address_space *page_mapping(struct page *page); |
| |
| /* Neutral page->mapping pointer to address_space or anon_vma or other */ |
| static inline void *page_rmapping(struct page *page) |
| { |
| return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); |
| } |
| |
| extern struct address_space *__page_file_mapping(struct page *); |
| |
| static inline |
| struct address_space *page_file_mapping(struct page *page) |
| { |
| if (unlikely(PageSwapCache(page))) |
| return __page_file_mapping(page); |
| |
| return page->mapping; |
| } |
| |
| static inline int PageAnon(struct page *page) |
| { |
| return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; |
| } |
| |
| /* |
| * Return the pagecache index of the passed page. Regular pagecache pages |
| * use ->index whereas swapcache pages use ->private |
| */ |
| static inline pgoff_t page_index(struct page *page) |
| { |
| if (unlikely(PageSwapCache(page))) |
| return page_private(page); |
| return page->index; |
| } |
| |
| extern pgoff_t __page_file_index(struct page *page); |
| |
| /* |
| * Return the file index of the page. Regular pagecache pages use ->index |
| * whereas swapcache pages use swp_offset(->private) |
| */ |
| static inline pgoff_t page_file_index(struct page *page) |
| { |
| if (unlikely(PageSwapCache(page))) |
| return __page_file_index(page); |
| |
| return page->index; |
| } |
| |
| /* |
| * Return true if this page is mapped into pagetables. |
| */ |
| static inline int page_mapped(struct page *page) |
| { |
| return atomic_read(&(page)->_mapcount) >= 0; |
| } |
| |
| /* |
| * Different kinds of faults, as returned by handle_mm_fault(). |
| * Used to decide whether a process gets delivered SIGBUS or |
| * just gets major/minor fault counters bumped up. |
| */ |
| |
| #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ |
| |
| #define VM_FAULT_OOM 0x0001 |
| #define VM_FAULT_SIGBUS 0x0002 |
| #define VM_FAULT_MAJOR 0x0004 |
| #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ |
| #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ |
| #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ |
| |
| #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ |
| #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ |
| #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ |
| #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ |
| |
| #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ |
| |
| #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ |
| VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE) |
| |
| /* Encode hstate index for a hwpoisoned large page */ |
| #define VM_FAULT_SET_HINDEX(x) ((x) << 12) |
| #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) |
| |
| /* |
| * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. |
| */ |
| extern void pagefault_out_of_memory(void); |
| |
| #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) |
| |
| /* |
| * Flags passed to show_mem() and show_free_areas() to suppress output in |
| * various contexts. |
| */ |
| #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ |
| |
| extern void show_free_areas(unsigned int flags); |
| extern bool skip_free_areas_node(unsigned int flags, int nid); |
| |
| int shmem_zero_setup(struct vm_area_struct *); |
| #ifdef CONFIG_SHMEM |
| bool shmem_mapping(struct address_space *mapping); |
| #else |
| static inline bool shmem_mapping(struct address_space *mapping) |
| { |
| return false; |
| } |
| #endif |
| |
| extern int can_do_mlock(void); |
| extern int user_shm_lock(size_t, struct user_struct *); |
| extern void user_shm_unlock(size_t, struct user_struct *); |
| |
| /* |
| * Parameter block passed down to zap_pte_range in exceptional cases. |
| */ |
| struct zap_details { |
| struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ |
| struct address_space *check_mapping; /* Check page->mapping if set */ |
| pgoff_t first_index; /* Lowest page->index to unmap */ |
| pgoff_t last_index; /* Highest page->index to unmap */ |
| }; |
| |
| struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, |
| pte_t pte); |
| |
| int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, |
| unsigned long size); |
| void zap_page_range(struct vm_area_struct *vma, unsigned long address, |
| unsigned long size, struct zap_details *); |
| void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, |
| unsigned long start, unsigned long end); |
| |
| /** |
| * mm_walk - callbacks for walk_page_range |
| * @pgd_entry: if set, called for each non-empty PGD (top-level) entry |
| * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry |
| * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry |
| * this handler is required to be able to handle |
| * pmd_trans_huge() pmds. They may simply choose to |
| * split_huge_page() instead of handling it explicitly. |
| * @pte_entry: if set, called for each non-empty PTE (4th-level) entry |
| * @pte_hole: if set, called for each hole at all levels |
| * @hugetlb_entry: if set, called for each hugetlb entry |
| * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry |
| * is used. |
| * |
| * (see walk_page_range for more details) |
| */ |
| struct mm_walk { |
| int (*pgd_entry)(pgd_t *pgd, unsigned long addr, |
| unsigned long next, struct mm_walk *walk); |
| int (*pud_entry)(pud_t *pud, unsigned long addr, |
| unsigned long next, struct mm_walk *walk); |
| int (*pmd_entry)(pmd_t *pmd, unsigned long addr, |
| unsigned long next, struct mm_walk *walk); |
| int (*pte_entry)(pte_t *pte, unsigned long addr, |
| unsigned long next, struct mm_walk *walk); |
| int (*pte_hole)(unsigned long addr, unsigned long next, |
| struct mm_walk *walk); |
| int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, |
| unsigned long addr, unsigned long next, |
| struct mm_walk *walk); |
| struct mm_struct *mm; |
| void *private; |
| }; |
| |
| int walk_page_range(unsigned long addr, unsigned long end, |
| struct mm_walk *walk); |
| void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, |
| unsigned long end, unsigned long floor, unsigned long ceiling); |
| int copy_page_range(struct mm_struct *dst, struct mm_struct *src, |
| struct vm_area_struct *vma); |
| void unmap_mapping_range(struct address_space *mapping, |
| loff_t const holebegin, loff_t const holelen, int even_cows); |
| int follow_pfn(struct vm_area_struct *vma, unsigned long address, |
| unsigned long *pfn); |
| int follow_phys(struct vm_area_struct *vma, unsigned long address, |
| unsigned int flags, unsigned long *prot, resource_size_t *phys); |
| int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, |
| void *buf, int len, int write); |
| |
| static inline void unmap_shared_mapping_range(struct address_space *mapping, |
| loff_t const holebegin, loff_t const holelen) |
| { |
| unmap_mapping_range(mapping, holebegin, holelen, 0); |
| } |
| |
| extern void truncate_pagecache(struct inode *inode, loff_t new); |
| extern void truncate_setsize(struct inode *inode, loff_t newsize); |
| void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); |
| void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); |
| int truncate_inode_page(struct address_space *mapping, struct page *page); |
| int generic_error_remove_page(struct address_space *mapping, struct page *page); |
| int invalidate_inode_page(struct page *page); |
| |
| #ifdef CONFIG_MMU |
| extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
| unsigned long address, unsigned int flags); |
| extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, |
| unsigned long address, unsigned int fault_flags); |
| #else |
| static inline int handle_mm_fault(struct mm_struct *mm, |
| struct vm_area_struct *vma, unsigned long address, |
| unsigned int flags) |
| { |
| /* should never happen if there's no MMU */ |
| BUG(); |
| return VM_FAULT_SIGBUS; |
| } |
| static inline int fixup_user_fault(struct task_struct *tsk, |
| struct mm_struct *mm, unsigned long address, |
| unsigned int fault_flags) |
| { |
| /* should never happen if there's no MMU */ |
| BUG(); |
| return -EFAULT; |
| } |
| #endif |
| |
| extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); |
| extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, |
| void *buf, int len, int write); |
| |
| long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
| unsigned long start, unsigned long nr_pages, |
| unsigned int foll_flags, struct page **pages, |
| struct vm_area_struct **vmas, int *nonblocking); |
| long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
| unsigned long start, unsigned long nr_pages, |
| int write, int force, struct page **pages, |
| struct vm_area_struct **vmas); |
| int get_user_pages_fast(unsigned long start, int nr_pages, int write, |
| struct page **pages); |
| struct kvec; |
| int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, |
| struct page **pages); |
| int get_kernel_page(unsigned long start, int write, struct page **pages); |
| struct page *get_dump_page(unsigned long addr); |
| |
| extern int try_to_release_page(struct page * page, gfp_t gfp_mask); |
| extern void do_invalidatepage(struct page *page, unsigned int offset, |
| unsigned int length); |
| |
| int __set_page_dirty_nobuffers(struct page *page); |
| int __set_page_dirty_no_writeback(struct page *page); |
| int redirty_page_for_writepage(struct writeback_control *wbc, |
| struct page *page); |
| void account_page_dirtied(struct page *page, struct address_space *mapping); |
| int set_page_dirty(struct page *page); |
| int set_page_dirty_lock(struct page *page); |
| int clear_page_dirty_for_io(struct page *page); |
| int get_cmdline(struct task_struct *task, char *buffer, int buflen); |
| |
| /* Is the vma a continuation of the stack vma above it? */ |
| static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) |
| { |
| return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); |
| } |
| |
| static inline int stack_guard_page_start(struct vm_area_struct *vma, |
| unsigned long addr) |
| { |
| return (vma->vm_flags & VM_GROWSDOWN) && |
| (vma->vm_start == addr) && |
| !vma_growsdown(vma->vm_prev, addr); |
| } |
| |
| /* Is the vma a continuation of the stack vma below it? */ |
| static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) |
| { |
| return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); |
| } |
| |
| static inline int stack_guard_page_end(struct vm_area_struct *vma, |
| unsigned long addr) |
| { |
| return (vma->vm_flags & VM_GROWSUP) && |
| (vma->vm_end == addr) && |
| !vma_growsup(vma->vm_next, addr); |
| } |
| |
| extern struct task_struct *task_of_stack(struct task_struct *task, |
| struct vm_area_struct *vma, bool in_group); |
| |
| extern unsigned long move_page_tables(struct vm_area_struct *vma, |
| unsigned long old_addr, struct vm_area_struct *new_vma, |
| unsigned long new_addr, unsigned long len, |
| bool need_rmap_locks); |
| extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end, pgprot_t newprot, |
| int dirty_accountable, int prot_numa); |
| extern int mprotect_fixup(struct vm_area_struct *vma, |
| struct vm_area_struct **pprev, unsigned long start, |
| unsigned long end, unsigned long newflags); |
| |
| /* |
| * doesn't attempt to fault and will return short. |
| */ |
| int __get_user_pages_fast(unsigned long start, int nr_pages, int write, |
| struct page **pages); |
| /* |
| * per-process(per-mm_struct) statistics. |
| */ |
| static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) |
| { |
| long val = atomic_long_read(&mm->rss_stat.count[member]); |
| |
| #ifdef SPLIT_RSS_COUNTING |
| /* |
| * counter is updated in asynchronous manner and may go to minus. |
| * But it's never be expected number for users. |
| */ |
| if (val < 0) |
| val = 0; |
| #endif |
| return (unsigned long)val; |
| } |
| |
| static inline void add_mm_counter(struct mm_struct *mm, int member, long value) |
| { |
| atomic_long_add(value, &mm->rss_stat.count[member]); |
| } |
| |
| static inline void inc_mm_counter(struct mm_struct *mm, int member) |
| { |
| atomic_long_inc(&mm->rss_stat.count[member]); |
| } |
| |
| static inline void dec_mm_counter(struct mm_struct *mm, int member) |
| { |
| atomic_long_dec(&mm->rss_stat.count[member]); |
| } |
| |
| static inline unsigned long get_mm_rss(struct mm_struct *mm) |
| { |
| return get_mm_counter(mm, MM_FILEPAGES) + |
| get_mm_counter(mm, MM_ANONPAGES); |
| } |
| |
| static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) |
| { |
| return max(mm->hiwater_rss, get_mm_rss(mm)); |
| } |
| |
| static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) |
| { |
| return max(mm->hiwater_vm, mm->total_vm); |
| } |
| |
| static inline void update_hiwater_rss(struct mm_struct *mm) |
| { |
| unsigned long _rss = get_mm_rss(mm); |
| |
| if ((mm)->hiwater_rss < _rss) |
| (mm)->hiwater_rss = _rss; |
| } |
| |
| static inline void update_hiwater_vm(struct mm_struct *mm) |
| { |
| if (mm->hiwater_vm < mm->total_vm) |
| mm->hiwater_vm = mm->total_vm; |
| } |
| |
| static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, |
| struct mm_struct *mm) |
| { |
| unsigned long hiwater_rss = get_mm_hiwater_rss(mm); |
| |
| if (*maxrss < hiwater_rss) |
| *maxrss = hiwater_rss; |
| } |
| |
| #if defined(SPLIT_RSS_COUNTING) |
| void sync_mm_rss(struct mm_struct *mm); |
| #else |
| static inline void sync_mm_rss(struct mm_struct *mm) |
| { |
| } |
| #endif |
| |
| int vma_wants_writenotify(struct vm_area_struct *vma); |
| |
| extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, |
| spinlock_t **ptl); |
| static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, |
| spinlock_t **ptl) |
| { |
| pte_t *ptep; |
| __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); |
| return ptep; |
| } |
| |
| #ifdef __PAGETABLE_PUD_FOLDED |
| static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, |
| unsigned long address) |
| { |
| return 0; |
| } |
| #else |
| int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); |
| #endif |
| |
| #ifdef __PAGETABLE_PMD_FOLDED |
| static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, |
| unsigned long address) |
| { |
| return 0; |
| } |
| #else |
| int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); |
| #endif |
| |
| int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, |
| pmd_t *pmd, unsigned long address); |
| int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); |
| |
| /* |
| * The following ifdef needed to get the 4level-fixup.h header to work. |
| * Remove it when 4level-fixup.h has been removed. |
| */ |
| #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) |
| static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) |
| { |
| return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? |
| NULL: pud_offset(pgd, address); |
| } |
| |
| static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
| { |
| return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? |
| NULL: pmd_offset(pud, address); |
| } |
| #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ |
| |
| #if USE_SPLIT_PTE_PTLOCKS |
| #if ALLOC_SPLIT_PTLOCKS |
| void __init ptlock_cache_init(void); |
| extern bool ptlock_alloc(struct page *page); |
| extern void ptlock_free(struct page *page); |
| |
| static inline spinlock_t *ptlock_ptr(struct page *page) |
| { |
| return page->ptl; |
| } |
| #else /* ALLOC_SPLIT_PTLOCKS */ |
| static inline void ptlock_cache_init(void) |
| { |
| } |
| |
| static inline bool ptlock_alloc(struct page *page) |
| { |
| return true; |
| } |
| |
| static inline void ptlock_free(struct page *page) |
| { |
| } |
| |
| static inline spinlock_t *ptlock_ptr(struct page *page) |
| { |
| return &page->ptl; |
| } |
| #endif /* ALLOC_SPLIT_PTLOCKS */ |
| |
| static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) |
| { |
| return ptlock_ptr(pmd_page(*pmd)); |
| } |
| |
| static inline bool ptlock_init(struct page *page) |
| { |
| /* |
| * prep_new_page() initialize page->private (and therefore page->ptl) |
| * with 0. Make sure nobody took it in use in between. |
| * |
| * It can happen if arch try to use slab for page table allocation: |
| * slab code uses page->slab_cache and page->first_page (for tail |
| * pages), which share storage with page->ptl. |
| */ |
| VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); |
| if (!ptlock_alloc(page)) |
| return false; |
| spin_lock_init(ptlock_ptr(page)); |
| return true; |
| } |
| |
| /* Reset page->mapping so free_pages_check won't complain. */ |
| static inline void pte_lock_deinit(struct page *page) |
| { |
| page->mapping = NULL; |
| ptlock_free(page); |
| } |
| |
| #else /* !USE_SPLIT_PTE_PTLOCKS */ |
| /* |
| * We use mm->page_table_lock to guard all pagetable pages of the mm. |
| */ |
| static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) |
| { |
| return &mm->page_table_lock; |
| } |
| static inline void ptlock_cache_init(void) {} |
| static inline bool ptlock_init(struct page *page) { return true; } |
| static inline void pte_lock_deinit(struct page *page) {} |
| #endif /* USE_SPLIT_PTE_PTLOCKS */ |
| |
| static inline void pgtable_init(void) |
| { |
| ptlock_cache_init(); |
| pgtable_cache_init(); |
| } |
| |
| static inline bool pgtable_page_ctor(struct page *page) |
| { |
| inc_zone_page_state(page, NR_PAGETABLE); |
| return ptlock_init(page); |
| } |
| |
| static inline void pgtable_page_dtor(struct page *page) |
| { |
| pte_lock_deinit(page); |
| dec_zone_page_state(page, NR_PAGETABLE); |
| } |
| |
| #define pte_offset_map_lock(mm, pmd, address, ptlp) \ |
| ({ \ |
| spinlock_t *__ptl = pte_lockptr(mm, pmd); \ |
| pte_t *__pte = pte_offset_map(pmd, address); \ |
| *(ptlp) = __ptl; \ |
| spin_lock(__ptl); \ |
| __pte; \ |
| }) |
| |
| #define pte_unmap_unlock(pte, ptl) do { \ |
| spin_unlock(ptl); \ |
| pte_unmap(pte); \ |
| } while (0) |
| |
| #define pte_alloc_map(mm, vma, pmd, address) \ |
| ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ |
| pmd, address))? \ |
| NULL: pte_offset_map(pmd, address)) |
| |
| #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ |
| ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ |
| pmd, address))? \ |
| NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) |
| |
| #define pte_alloc_kernel(pmd, address) \ |
| ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ |
| NULL: pte_offset_kernel(pmd, address)) |
| |
| #if USE_SPLIT_PMD_PTLOCKS |
| |
| static struct page *pmd_to_page(pmd_t *pmd) |
| { |
| unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); |
| return virt_to_page((void *)((unsigned long) pmd & mask)); |
| } |
| |
| static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) |
| { |
| return ptlock_ptr(pmd_to_page(pmd)); |
| } |
| |
| static inline bool pgtable_pmd_page_ctor(struct page *page) |
| { |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| page->pmd_huge_pte = NULL; |
| #endif |
| return ptlock_init(page); |
| } |
| |
| static inline void pgtable_pmd_page_dtor(struct page *page) |
| { |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| VM_BUG_ON_PAGE(page->pmd_huge_pte, page); |
| #endif |
| ptlock_free(page); |
| } |
| |
| #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) |
| |
| #else |
| |
| static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) |
| { |
| return &mm->page_table_lock; |
| } |
| |
| static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } |
| static inline void pgtable_pmd_page_dtor(struct page *page) {} |
| |
| #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) |
| |
| #endif |
| |
| static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) |
| { |
| spinlock_t *ptl = pmd_lockptr(mm, pmd); |
| spin_lock(ptl); |
| return ptl; |
| } |
| |
| extern void free_area_init(unsigned long * zones_size); |
| extern void free_area_init_node(int nid, unsigned long * zones_size, |
| unsigned long zone_start_pfn, unsigned long *zholes_size); |
| extern void free_initmem(void); |
| |
| /* |
| * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) |
| * into the buddy system. The freed pages will be poisoned with pattern |
| * "poison" if it's within range [0, UCHAR_MAX]. |
| * Return pages freed into the buddy system. |
| */ |
| extern unsigned long free_reserved_area(void *start, void *end, |
| int poison, char *s); |
| |
| #ifdef CONFIG_HIGHMEM |
| /* |
| * Free a highmem page into the buddy system, adjusting totalhigh_pages |
| * and totalram_pages. |
| */ |
| extern void free_highmem_page(struct page *page); |
| #endif |
| |
| extern void adjust_managed_page_count(struct page *page, long count); |
| extern void mem_init_print_info(const char *str); |
| |
| /* Free the reserved page into the buddy system, so it gets managed. */ |
| static inline void __free_reserved_page(struct page *page) |
| { |
| ClearPageReserved(page); |
| init_page_count(page); |
| __free_page(page); |
| } |
| |
| static inline void free_reserved_page(struct page *page) |
| { |
| __free_reserved_page(page); |
| adjust_managed_page_count(page, 1); |
| } |
| |
| static inline void mark_page_reserved(struct page *page) |
| { |
| SetPageReserved(page); |
| adjust_managed_page_count(page, -1); |
| } |
| |
| /* |
| * Default method to free all the __init memory into the buddy system. |
| * The freed pages will be poisoned with pattern "poison" if it's within |
| * range [0, UCHAR_MAX]. |
| * Return pages freed into the buddy system. |
| */ |
| static inline unsigned long free_initmem_default(int poison) |
| { |
| extern char __init_begin[], __init_end[]; |
| |
| return free_reserved_area(&__init_begin, &__init_end, |
| poison, "unused kernel"); |
| } |
| |
| static inline unsigned long get_num_physpages(void) |
| { |
| int nid; |
| unsigned long phys_pages = 0; |
| |
| for_each_online_node(nid) |
| phys_pages += node_present_pages(nid); |
| |
| return phys_pages; |
| } |
| |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
| /* |
| * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its |
| * zones, allocate the backing mem_map and account for memory holes in a more |
| * architecture independent manner. This is a substitute for creating the |
| * zone_sizes[] and zholes_size[] arrays and passing them to |
| * free_area_init_node() |
| * |
| * An architecture is expected to register range of page frames backed by |
| * physical memory with memblock_add[_node]() before calling |
| * free_area_init_nodes() passing in the PFN each zone ends at. At a basic |
| * usage, an architecture is expected to do something like |
| * |
| * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, |
| * max_highmem_pfn}; |
| * for_each_valid_physical_page_range() |
| * memblock_add_node(base, size, nid) |
| * free_area_init_nodes(max_zone_pfns); |
| * |
| * free_bootmem_with_active_regions() calls free_bootmem_node() for each |
| * registered physical page range. Similarly |
| * sparse_memory_present_with_active_regions() calls memory_present() for |
| * each range when SPARSEMEM is enabled. |
| * |
| * See mm/page_alloc.c for more information on each function exposed by |
| * CONFIG_HAVE_MEMBLOCK_NODE_MAP. |
| */ |
| extern void free_area_init_nodes(unsigned long *max_zone_pfn); |
| unsigned long node_map_pfn_alignment(void); |
| unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, |
| unsigned long end_pfn); |
| extern unsigned long absent_pages_in_range(unsigned long start_pfn, |
| unsigned long end_pfn); |
| extern void get_pfn_range_for_nid(unsigned int nid, |
| unsigned long *start_pfn, unsigned long *end_pfn); |
| extern unsigned long find_min_pfn_with_active_regions(void); |
| extern void free_bootmem_with_active_regions(int nid, |
| unsigned long max_low_pfn); |
| extern void sparse_memory_present_with_active_regions(int nid); |
| |
| #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
| |
| #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ |
| !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) |
| static inline int __early_pfn_to_nid(unsigned long pfn) |
| { |
| return 0; |
| } |
| #else |
| /* please see mm/page_alloc.c */ |
| extern int __meminit early_pfn_to_nid(unsigned long pfn); |
| /* there is a per-arch backend function. */ |
| extern int __meminit __early_pfn_to_nid(unsigned long pfn); |
| #endif |
| |
| extern void set_dma_reserve(unsigned long new_dma_reserve); |
| extern void memmap_init_zone(unsigned long, int, unsigned long, |
| unsigned long, enum memmap_context); |
| extern void setup_per_zone_wmarks(void); |
| extern int __meminit init_per_zone_wmark_min(void); |
| extern void mem_init(void); |
| extern void __init mmap_init(void); |
| extern void show_mem(unsigned int flags); |
| extern void si_meminfo(struct sysinfo * val); |
| extern void si_meminfo_node(struct sysinfo *val, int nid); |
| |
| extern __printf(3, 4) |
| void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); |
| |
| extern void setup_per_cpu_pageset(void); |
| |
| extern void zone_pcp_update(struct zone *zone); |
| extern void zone_pcp_reset(struct zone *zone); |
| |
| /* page_alloc.c */ |
| extern int min_free_kbytes; |
| |
| /* nommu.c */ |
| extern atomic_long_t mmap_pages_allocated; |
| extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); |
| |
| /* interval_tree.c */ |
| void vma_interval_tree_insert(struct vm_area_struct *node, |
| struct rb_root *root); |
| void vma_interval_tree_insert_after(struct vm_area_struct *node, |
| struct vm_area_struct *prev, |
| struct rb_root *root); |
| void vma_interval_tree_remove(struct vm_area_struct *node, |
| struct rb_root *root); |
| struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, |
| unsigned long start, unsigned long last); |
| struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, |
| unsigned long start, unsigned long last); |
| |
| #define vma_interval_tree_foreach(vma, root, start, last) \ |
| for (vma = vma_interval_tree_iter_first(root, start, last); \ |
| vma; vma = vma_interval_tree_iter_next(vma, start, last)) |
| |
| static inline void vma_nonlinear_insert(struct vm_area_struct *vma, |
| struct list_head *list) |
| { |
| list_add_tail(&vma->shared.nonlinear, list); |
| } |
| |
| void anon_vma_interval_tree_insert(struct anon_vma_chain *node, |
| struct rb_root *root); |
| void anon_vma_interval_tree_remove(struct anon_vma_chain *node, |
| struct rb_root *root); |
| struct anon_vma_chain *anon_vma_interval_tree_iter_first( |
| struct rb_root *root, unsigned long start, unsigned long last); |
| struct anon_vma_chain *anon_vma_interval_tree_iter_next( |
| struct anon_vma_chain *node, unsigned long start, unsigned long last); |
| #ifdef CONFIG_DEBUG_VM_RB |
| void anon_vma_interval_tree_verify(struct anon_vma_chain *node); |
| #endif |
| |
| #define anon_vma_interval_tree_foreach(avc, root, start, last) \ |
| for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ |
| avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) |
| |
| /* mmap.c */ |
| extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); |
| extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); |
| extern struct vm_area_struct *vma_merge(struct mm_struct *, |
| struct vm_area_struct *prev, unsigned long addr, unsigned long end, |
| unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, |
| struct mempolicy *); |
| extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); |
| extern int split_vma(struct mm_struct *, |
| struct vm_area_struct *, unsigned long addr, int new_below); |
| extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); |
| extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, |
| struct rb_node **, struct rb_node *); |
| extern void unlink_file_vma(struct vm_area_struct *); |
| extern struct vm_area_struct *copy_vma(struct vm_area_struct **, |
| unsigned long addr, unsigned long len, pgoff_t pgoff, |
| bool *need_rmap_locks); |
| extern void exit_mmap(struct mm_struct *); |
| |
| static inline int check_data_rlimit(unsigned long rlim, |
| unsigned long new, |
| unsigned long start, |
| unsigned long end_data, |
| unsigned long start_data) |
| { |
| if (rlim < RLIM_INFINITY) { |
| if (((new - start) + (end_data - start_data)) > rlim) |
| return -ENOSPC; |
| } |
| |
| return 0; |
| } |
| |
| extern int mm_take_all_locks(struct mm_struct *mm); |
| extern void mm_drop_all_locks(struct mm_struct *mm); |
| |
| extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); |
| extern struct file *get_mm_exe_file(struct mm_struct *mm); |
| |
| extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); |
| extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, |
| unsigned long addr, unsigned long len, |
| unsigned long flags, |
| const struct vm_special_mapping *spec); |
| /* This is an obsolete alternative to _install_special_mapping. */ |
| extern int install_special_mapping(struct mm_struct *mm, |
| unsigned long addr, unsigned long len, |
| unsigned long flags, struct page **pages); |
| |
| extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); |
| |
| extern unsigned long mmap_region(struct file *file, unsigned long addr, |
| unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); |
| extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, |
| unsigned long len, unsigned long prot, unsigned long flags, |
| unsigned long pgoff, unsigned long *populate); |
| extern int do_munmap(struct mm_struct *, unsigned long, size_t); |
| |
| #ifdef CONFIG_MMU |
| extern int __mm_populate(unsigned long addr, unsigned long len, |
| int ignore_errors); |
| static inline void mm_populate(unsigned long addr, unsigned long len) |
| { |
| /* Ignore errors */ |
| (void) __mm_populate(addr, len, 1); |
| } |
| #else |
| static inline void mm_populate(unsigned long addr, unsigned long len) {} |
| #endif |
| |
| /* These take the mm semaphore themselves */ |
| extern unsigned long vm_brk(unsigned long, unsigned long); |
| extern int vm_munmap(unsigned long, size_t); |
| extern unsigned long vm_mmap(struct file *, unsigned long, |
| unsigned long, unsigned long, |
| unsigned long, unsigned long); |
| |
| struct vm_unmapped_area_info { |
| #define VM_UNMAPPED_AREA_TOPDOWN 1 |
| unsigned long flags; |
| unsigned long length; |
| unsigned long low_limit; |
| unsigned long high_limit; |
| unsigned long align_mask; |
| unsigned long align_offset; |
| }; |
| |
| extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); |
| extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); |
| |
| /* |
| * Search for an unmapped address range. |
| * |
| * We are looking for a range that: |
| * - does not intersect with any VMA; |
| * - is contained within the [low_limit, high_limit) interval; |
| * - is at least the desired size. |
| * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) |
| */ |
| static inline unsigned long |
| vm_unmapped_area(struct vm_unmapped_area_info *info) |
| { |
| if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN)) |
| return unmapped_area(info); |
| else |
| return unmapped_area_topdown(info); |
| } |
| |
| /* truncate.c */ |
| extern void truncate_inode_pages(struct address_space *, loff_t); |
| extern void truncate_inode_pages_range(struct address_space *, |
| loff_t lstart, loff_t lend); |
| extern void truncate_inode_pages_final(struct address_space *); |
| |
| /* generic vm_area_ops exported for stackable file systems */ |
| extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); |
| extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); |
| extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); |
| |
| /* mm/page-writeback.c */ |
| int write_one_page(struct page *page, int wait); |
| void task_dirty_inc(struct task_struct *tsk); |
| |
| /* readahead.c */ |
| #define VM_MAX_READAHEAD 128 /* kbytes */ |
| #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ |
| |
| int force_page_cache_readahead(struct address_space *mapping, struct file *filp, |
| pgoff_t offset, unsigned long nr_to_read); |
| |
| void page_cache_sync_readahead(struct address_space *mapping, |
| struct file_ra_state *ra, |
| struct file *filp, |
| pgoff_t offset, |
| unsigned long size); |
| |
| void page_cache_async_readahead(struct address_space *mapping, |
| struct file_ra_state *ra, |
| struct file *filp, |
| struct page *pg, |
| pgoff_t offset, |
| unsigned long size); |
| |
| unsigned long max_sane_readahead(unsigned long nr); |
| |
| /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ |
| extern int expand_stack(struct vm_area_struct *vma, unsigned long address); |
| |
| /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ |
| extern int expand_downwards(struct vm_area_struct *vma, |
| unsigned long address); |
| #if VM_GROWSUP |
| extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); |
| #else |
| #define expand_upwards(vma, address) do { } while (0) |
| #endif |
| |
| /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ |
| extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); |
| extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, |
| struct vm_area_struct **pprev); |
| |
| /* Look up the first VMA which intersects the interval start_addr..end_addr-1, |
| NULL if none. Assume start_addr < end_addr. */ |
| static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) |
| { |
| struct vm_area_struct * vma = find_vma(mm,start_addr); |
| |
| if (vma && end_addr <= vma->vm_start) |
| vma = NULL; |
| return vma; |
| } |
| |
| static inline unsigned long vma_pages(struct vm_area_struct *vma) |
| { |
| return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; |
| } |
| |
| /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ |
| static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, |
| unsigned long vm_start, unsigned long vm_end) |
| { |
| struct vm_area_struct *vma = find_vma(mm, vm_start); |
| |
| if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) |
| vma = NULL; |
| |
| return vma; |
| } |
| |
| #ifdef CONFIG_MMU |
| pgprot_t vm_get_page_prot(unsigned long vm_flags); |
| void vma_set_page_prot(struct vm_area_struct *vma); |
| #else |
| static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) |
| { |
| return __pgprot(0); |
| } |
| static inline void vma_set_page_prot(struct vm_area_struct *vma) |
| { |
| vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); |
| } |
| #endif |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| unsigned long change_prot_numa(struct vm_area_struct *vma, |
| unsigned long start, unsigned long end); |
| #endif |
| |
| struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); |
| int remap_pfn_range(struct vm_area_struct *, unsigned long addr, |
| unsigned long pfn, unsigned long size, pgprot_t); |
| int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); |
| int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
| unsigned long pfn); |
| int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, |
| unsigned long pfn); |
| int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); |
| |
| |
| struct page *follow_page_mask(struct vm_area_struct *vma, |
| unsigned long address, unsigned int foll_flags, |
| unsigned int *page_mask); |
| |
| static inline struct page *follow_page(struct vm_area_struct *vma, |
| unsigned long address, unsigned int foll_flags) |
| { |
| unsigned int unused_page_mask; |
| return follow_page_mask(vma, address, foll_flags, &unused_page_mask); |
| } |
| |
| #define FOLL_WRITE 0x01 /* check pte is writable */ |
| #define FOLL_TOUCH 0x02 /* mark page accessed */ |
| #define FOLL_GET 0x04 /* do get_page on page */ |
| #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ |
| #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ |
| #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO |
| * and return without waiting upon it */ |
| #define FOLL_MLOCK 0x40 /* mark page as mlocked */ |
| #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ |
| #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ |
| #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ |
| #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ |
| #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ |
| |
| typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, |
| void *data); |
| extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, |
| unsigned long size, pte_fn_t fn, void *data); |
| |
| #ifdef CONFIG_PROC_FS |
| void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); |
| #else |
| static inline void vm_stat_account(struct mm_struct *mm, |
| unsigned long flags, struct file *file, long pages) |
| { |
| mm->total_vm += pages; |
| } |
| #endif /* CONFIG_PROC_FS */ |
| |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| extern void kernel_map_pages(struct page *page, int numpages, int enable); |
| #ifdef CONFIG_HIBERNATION |
| extern bool kernel_page_present(struct page *page); |
| #endif /* CONFIG_HIBERNATION */ |
| #else |
| static inline void |
| kernel_map_pages(struct page *page, int numpages, int enable) {} |
| #ifdef CONFIG_HIBERNATION |
| static inline bool kernel_page_present(struct page *page) { return true; } |
| #endif /* CONFIG_HIBERNATION */ |
| #endif |
| |
| #ifdef __HAVE_ARCH_GATE_AREA |
| extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); |
| extern int in_gate_area_no_mm(unsigned long addr); |
| extern int in_gate_area(struct mm_struct *mm, unsigned long addr); |
| #else |
| static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) |
| { |
| return NULL; |
| } |
| static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } |
| static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) |
| { |
| return 0; |
| } |
| #endif /* __HAVE_ARCH_GATE_AREA */ |
| |
| #ifdef CONFIG_SYSCTL |
| extern int sysctl_drop_caches; |
| int drop_caches_sysctl_handler(struct ctl_table *, int, |
| void __user *, size_t *, loff_t *); |
| #endif |
| |
| unsigned long shrink_slab(struct shrink_control *shrink, |
| unsigned long nr_pages_scanned, |
| unsigned long lru_pages); |
| |
| #ifndef CONFIG_MMU |
| #define randomize_va_space 0 |
| #else |
| extern int randomize_va_space; |
| #endif |
| |
| const char * arch_vma_name(struct vm_area_struct *vma); |
| void print_vma_addr(char *prefix, unsigned long rip); |
| |
| void sparse_mem_maps_populate_node(struct page **map_map, |
| unsigned long pnum_begin, |
| unsigned long pnum_end, |
| unsigned long map_count, |
| int nodeid); |
| |
| struct page *sparse_mem_map_populate(unsigned long pnum, int nid); |
| pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); |
| pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); |
| pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); |
| pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); |
| void *vmemmap_alloc_block(unsigned long size, int node); |
| void *vmemmap_alloc_block_buf(unsigned long size, int node); |
| void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); |
| int vmemmap_populate_basepages(unsigned long start, unsigned long end, |
| int node); |
| int vmemmap_populate(unsigned long start, unsigned long end, int node); |
| void vmemmap_populate_print_last(void); |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| void vmemmap_free(unsigned long start, unsigned long end); |
| #endif |
| void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, |
| unsigned long size); |
| |
| enum mf_flags { |
| MF_COUNT_INCREASED = 1 << 0, |
| MF_ACTION_REQUIRED = 1 << 1, |
| MF_MUST_KILL = 1 << 2, |
| MF_SOFT_OFFLINE = 1 << 3, |
| }; |
| extern int memory_failure(unsigned long pfn, int trapno, int flags); |
| extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); |
| extern int unpoison_memory(unsigned long pfn); |
| extern int sysctl_memory_failure_early_kill; |
| extern int sysctl_memory_failure_recovery; |
| extern void shake_page(struct page *p, int access); |
| extern atomic_long_t num_poisoned_pages; |
| extern int soft_offline_page(struct page *page, int flags); |
| |
| #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) |
| extern void clear_huge_page(struct page *page, |
| unsigned long addr, |
| unsigned int pages_per_huge_page); |
| extern void copy_user_huge_page(struct page *dst, struct page *src, |
| unsigned long addr, struct vm_area_struct *vma, |
| unsigned int pages_per_huge_page); |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ |
| |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| extern unsigned int _debug_guardpage_minorder; |
| |
| static inline unsigned int debug_guardpage_minorder(void) |
| { |
| return _debug_guardpage_minorder; |
| } |
| |
| static inline bool page_is_guard(struct page *page) |
| { |
| return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); |
| } |
| #else |
| static inline unsigned int debug_guardpage_minorder(void) { return 0; } |
| static inline bool page_is_guard(struct page *page) { return false; } |
| #endif /* CONFIG_DEBUG_PAGEALLOC */ |
| |
| #if MAX_NUMNODES > 1 |
| void __init setup_nr_node_ids(void); |
| #else |
| static inline void setup_nr_node_ids(void) {} |
| #endif |
| |
| #endif /* __KERNEL__ */ |
| #endif /* _LINUX_MM_H */ |