| /* |
| * AMD Cryptographic Coprocessor (CCP) SHA crypto API support |
| * |
| * Copyright (C) 2013 Advanced Micro Devices, Inc. |
| * |
| * Author: Tom Lendacky <thomas.lendacky@amd.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/delay.h> |
| #include <linux/scatterlist.h> |
| #include <linux/crypto.h> |
| #include <crypto/algapi.h> |
| #include <crypto/hash.h> |
| #include <crypto/internal/hash.h> |
| #include <crypto/sha.h> |
| #include <crypto/scatterwalk.h> |
| |
| #include "ccp-crypto.h" |
| |
| static int ccp_sha_complete(struct crypto_async_request *async_req, int ret) |
| { |
| struct ahash_request *req = ahash_request_cast(async_req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); |
| unsigned int digest_size = crypto_ahash_digestsize(tfm); |
| |
| if (ret) |
| goto e_free; |
| |
| if (rctx->hash_rem) { |
| /* Save remaining data to buffer */ |
| unsigned int offset = rctx->nbytes - rctx->hash_rem; |
| |
| scatterwalk_map_and_copy(rctx->buf, rctx->src, |
| offset, rctx->hash_rem, 0); |
| rctx->buf_count = rctx->hash_rem; |
| } else { |
| rctx->buf_count = 0; |
| } |
| |
| /* Update result area if supplied */ |
| if (req->result) |
| memcpy(req->result, rctx->ctx, digest_size); |
| |
| e_free: |
| sg_free_table(&rctx->data_sg); |
| |
| return ret; |
| } |
| |
| static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes, |
| unsigned int final) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct ccp_ctx *ctx = crypto_ahash_ctx(tfm); |
| struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); |
| struct scatterlist *sg; |
| unsigned int block_size = |
| crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); |
| unsigned int sg_count; |
| gfp_t gfp; |
| u64 len; |
| int ret; |
| |
| len = (u64)rctx->buf_count + (u64)nbytes; |
| |
| if (!final && (len <= block_size)) { |
| scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src, |
| 0, nbytes, 0); |
| rctx->buf_count += nbytes; |
| |
| return 0; |
| } |
| |
| rctx->src = req->src; |
| rctx->nbytes = nbytes; |
| |
| rctx->final = final; |
| rctx->hash_rem = final ? 0 : len & (block_size - 1); |
| rctx->hash_cnt = len - rctx->hash_rem; |
| if (!final && !rctx->hash_rem) { |
| /* CCP can't do zero length final, so keep some data around */ |
| rctx->hash_cnt -= block_size; |
| rctx->hash_rem = block_size; |
| } |
| |
| /* Initialize the context scatterlist */ |
| sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx)); |
| |
| sg = NULL; |
| if (rctx->buf_count && nbytes) { |
| /* Build the data scatterlist table - allocate enough entries |
| * for both data pieces (buffer and input data) |
| */ |
| gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? |
| GFP_KERNEL : GFP_ATOMIC; |
| sg_count = sg_nents(req->src) + 1; |
| ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp); |
| if (ret) |
| return ret; |
| |
| sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count); |
| sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg); |
| if (!sg) { |
| ret = -EINVAL; |
| goto e_free; |
| } |
| sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src); |
| if (!sg) { |
| ret = -EINVAL; |
| goto e_free; |
| } |
| sg_mark_end(sg); |
| |
| sg = rctx->data_sg.sgl; |
| } else if (rctx->buf_count) { |
| sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count); |
| |
| sg = &rctx->buf_sg; |
| } else if (nbytes) { |
| sg = req->src; |
| } |
| |
| rctx->msg_bits += (rctx->hash_cnt << 3); /* Total in bits */ |
| |
| memset(&rctx->cmd, 0, sizeof(rctx->cmd)); |
| INIT_LIST_HEAD(&rctx->cmd.entry); |
| rctx->cmd.engine = CCP_ENGINE_SHA; |
| rctx->cmd.u.sha.type = rctx->type; |
| rctx->cmd.u.sha.ctx = &rctx->ctx_sg; |
| rctx->cmd.u.sha.ctx_len = sizeof(rctx->ctx); |
| rctx->cmd.u.sha.src = sg; |
| rctx->cmd.u.sha.src_len = rctx->hash_cnt; |
| rctx->cmd.u.sha.opad = ctx->u.sha.key_len ? |
| &ctx->u.sha.opad_sg : NULL; |
| rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ? |
| ctx->u.sha.opad_count : 0; |
| rctx->cmd.u.sha.first = rctx->first; |
| rctx->cmd.u.sha.final = rctx->final; |
| rctx->cmd.u.sha.msg_bits = rctx->msg_bits; |
| |
| rctx->first = 0; |
| |
| ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd); |
| |
| return ret; |
| |
| e_free: |
| sg_free_table(&rctx->data_sg); |
| |
| return ret; |
| } |
| |
| static int ccp_sha_init(struct ahash_request *req) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct ccp_ctx *ctx = crypto_ahash_ctx(tfm); |
| struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); |
| struct ccp_crypto_ahash_alg *alg = |
| ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm)); |
| unsigned int block_size = |
| crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); |
| |
| memset(rctx, 0, sizeof(*rctx)); |
| |
| rctx->type = alg->type; |
| rctx->first = 1; |
| |
| if (ctx->u.sha.key_len) { |
| /* Buffer the HMAC key for first update */ |
| memcpy(rctx->buf, ctx->u.sha.ipad, block_size); |
| rctx->buf_count = block_size; |
| } |
| |
| return 0; |
| } |
| |
| static int ccp_sha_update(struct ahash_request *req) |
| { |
| return ccp_do_sha_update(req, req->nbytes, 0); |
| } |
| |
| static int ccp_sha_final(struct ahash_request *req) |
| { |
| return ccp_do_sha_update(req, 0, 1); |
| } |
| |
| static int ccp_sha_finup(struct ahash_request *req) |
| { |
| return ccp_do_sha_update(req, req->nbytes, 1); |
| } |
| |
| static int ccp_sha_digest(struct ahash_request *req) |
| { |
| int ret; |
| |
| ret = ccp_sha_init(req); |
| if (ret) |
| return ret; |
| |
| return ccp_sha_finup(req); |
| } |
| |
| static int ccp_sha_export(struct ahash_request *req, void *out) |
| { |
| struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); |
| struct ccp_sha_exp_ctx state; |
| |
| state.type = rctx->type; |
| state.msg_bits = rctx->msg_bits; |
| state.first = rctx->first; |
| memcpy(state.ctx, rctx->ctx, sizeof(state.ctx)); |
| state.buf_count = rctx->buf_count; |
| memcpy(state.buf, rctx->buf, sizeof(state.buf)); |
| |
| /* 'out' may not be aligned so memcpy from local variable */ |
| memcpy(out, &state, sizeof(state)); |
| |
| return 0; |
| } |
| |
| static int ccp_sha_import(struct ahash_request *req, const void *in) |
| { |
| struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req); |
| struct ccp_sha_exp_ctx state; |
| |
| /* 'in' may not be aligned so memcpy to local variable */ |
| memcpy(&state, in, sizeof(state)); |
| |
| rctx->type = state.type; |
| rctx->msg_bits = state.msg_bits; |
| rctx->first = state.first; |
| memcpy(rctx->ctx, state.ctx, sizeof(rctx->ctx)); |
| rctx->buf_count = state.buf_count; |
| memcpy(rctx->buf, state.buf, sizeof(rctx->buf)); |
| |
| return 0; |
| } |
| |
| static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key, |
| unsigned int key_len) |
| { |
| struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); |
| struct crypto_shash *shash = ctx->u.sha.hmac_tfm; |
| |
| SHASH_DESC_ON_STACK(sdesc, shash); |
| |
| unsigned int block_size = crypto_shash_blocksize(shash); |
| unsigned int digest_size = crypto_shash_digestsize(shash); |
| int i, ret; |
| |
| /* Set to zero until complete */ |
| ctx->u.sha.key_len = 0; |
| |
| /* Clear key area to provide zero padding for keys smaller |
| * than the block size |
| */ |
| memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key)); |
| |
| if (key_len > block_size) { |
| /* Must hash the input key */ |
| sdesc->tfm = shash; |
| sdesc->flags = crypto_ahash_get_flags(tfm) & |
| CRYPTO_TFM_REQ_MAY_SLEEP; |
| |
| ret = crypto_shash_digest(sdesc, key, key_len, |
| ctx->u.sha.key); |
| if (ret) { |
| crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| |
| key_len = digest_size; |
| } else { |
| memcpy(ctx->u.sha.key, key, key_len); |
| } |
| |
| for (i = 0; i < block_size; i++) { |
| ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ 0x36; |
| ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c; |
| } |
| |
| sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size); |
| ctx->u.sha.opad_count = block_size; |
| |
| ctx->u.sha.key_len = key_len; |
| |
| return 0; |
| } |
| |
| static int ccp_sha_cra_init(struct crypto_tfm *tfm) |
| { |
| struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); |
| struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); |
| |
| ctx->complete = ccp_sha_complete; |
| ctx->u.sha.key_len = 0; |
| |
| crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx)); |
| |
| return 0; |
| } |
| |
| static void ccp_sha_cra_exit(struct crypto_tfm *tfm) |
| { |
| } |
| |
| static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm) |
| { |
| struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); |
| struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm); |
| struct crypto_shash *hmac_tfm; |
| |
| hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0); |
| if (IS_ERR(hmac_tfm)) { |
| pr_warn("could not load driver %s need for HMAC support\n", |
| alg->child_alg); |
| return PTR_ERR(hmac_tfm); |
| } |
| |
| ctx->u.sha.hmac_tfm = hmac_tfm; |
| |
| return ccp_sha_cra_init(tfm); |
| } |
| |
| static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm) |
| { |
| struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| if (ctx->u.sha.hmac_tfm) |
| crypto_free_shash(ctx->u.sha.hmac_tfm); |
| |
| ccp_sha_cra_exit(tfm); |
| } |
| |
| struct ccp_sha_def { |
| const char *name; |
| const char *drv_name; |
| enum ccp_sha_type type; |
| u32 digest_size; |
| u32 block_size; |
| }; |
| |
| static struct ccp_sha_def sha_algs[] = { |
| { |
| .name = "sha1", |
| .drv_name = "sha1-ccp", |
| .type = CCP_SHA_TYPE_1, |
| .digest_size = SHA1_DIGEST_SIZE, |
| .block_size = SHA1_BLOCK_SIZE, |
| }, |
| { |
| .name = "sha224", |
| .drv_name = "sha224-ccp", |
| .type = CCP_SHA_TYPE_224, |
| .digest_size = SHA224_DIGEST_SIZE, |
| .block_size = SHA224_BLOCK_SIZE, |
| }, |
| { |
| .name = "sha256", |
| .drv_name = "sha256-ccp", |
| .type = CCP_SHA_TYPE_256, |
| .digest_size = SHA256_DIGEST_SIZE, |
| .block_size = SHA256_BLOCK_SIZE, |
| }, |
| }; |
| |
| static int ccp_register_hmac_alg(struct list_head *head, |
| const struct ccp_sha_def *def, |
| const struct ccp_crypto_ahash_alg *base_alg) |
| { |
| struct ccp_crypto_ahash_alg *ccp_alg; |
| struct ahash_alg *alg; |
| struct hash_alg_common *halg; |
| struct crypto_alg *base; |
| int ret; |
| |
| ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL); |
| if (!ccp_alg) |
| return -ENOMEM; |
| |
| /* Copy the base algorithm and only change what's necessary */ |
| *ccp_alg = *base_alg; |
| INIT_LIST_HEAD(&ccp_alg->entry); |
| |
| strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME); |
| |
| alg = &ccp_alg->alg; |
| alg->setkey = ccp_sha_setkey; |
| |
| halg = &alg->halg; |
| |
| base = &halg->base; |
| snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name); |
| snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s", |
| def->drv_name); |
| base->cra_init = ccp_hmac_sha_cra_init; |
| base->cra_exit = ccp_hmac_sha_cra_exit; |
| |
| ret = crypto_register_ahash(alg); |
| if (ret) { |
| pr_err("%s ahash algorithm registration error (%d)\n", |
| base->cra_name, ret); |
| kfree(ccp_alg); |
| return ret; |
| } |
| |
| list_add(&ccp_alg->entry, head); |
| |
| return ret; |
| } |
| |
| static int ccp_register_sha_alg(struct list_head *head, |
| const struct ccp_sha_def *def) |
| { |
| struct ccp_crypto_ahash_alg *ccp_alg; |
| struct ahash_alg *alg; |
| struct hash_alg_common *halg; |
| struct crypto_alg *base; |
| int ret; |
| |
| ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL); |
| if (!ccp_alg) |
| return -ENOMEM; |
| |
| INIT_LIST_HEAD(&ccp_alg->entry); |
| |
| ccp_alg->type = def->type; |
| |
| alg = &ccp_alg->alg; |
| alg->init = ccp_sha_init; |
| alg->update = ccp_sha_update; |
| alg->final = ccp_sha_final; |
| alg->finup = ccp_sha_finup; |
| alg->digest = ccp_sha_digest; |
| alg->export = ccp_sha_export; |
| alg->import = ccp_sha_import; |
| |
| halg = &alg->halg; |
| halg->digestsize = def->digest_size; |
| halg->statesize = sizeof(struct ccp_sha_exp_ctx); |
| |
| base = &halg->base; |
| snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name); |
| snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", |
| def->drv_name); |
| base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_KERN_DRIVER_ONLY | |
| CRYPTO_ALG_NEED_FALLBACK; |
| base->cra_blocksize = def->block_size; |
| base->cra_ctxsize = sizeof(struct ccp_ctx); |
| base->cra_priority = CCP_CRA_PRIORITY; |
| base->cra_type = &crypto_ahash_type; |
| base->cra_init = ccp_sha_cra_init; |
| base->cra_exit = ccp_sha_cra_exit; |
| base->cra_module = THIS_MODULE; |
| |
| ret = crypto_register_ahash(alg); |
| if (ret) { |
| pr_err("%s ahash algorithm registration error (%d)\n", |
| base->cra_name, ret); |
| kfree(ccp_alg); |
| return ret; |
| } |
| |
| list_add(&ccp_alg->entry, head); |
| |
| ret = ccp_register_hmac_alg(head, def, ccp_alg); |
| |
| return ret; |
| } |
| |
| int ccp_register_sha_algs(struct list_head *head) |
| { |
| int i, ret; |
| |
| for (i = 0; i < ARRAY_SIZE(sha_algs); i++) { |
| ret = ccp_register_sha_alg(head, &sha_algs[i]); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |