| /* |
| * Procedures for interfacing to the Open Firmware PROM on |
| * Power Macintosh computers. |
| * |
| * In particular, we are interested in the device tree |
| * and in using some of its services (exit, write to stdout). |
| * |
| * Paul Mackerras August 1996. |
| * Copyright (C) 1996 Paul Mackerras. |
| */ |
| #include <stdarg.h> |
| #include <linux/config.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/version.h> |
| #include <linux/threads.h> |
| #include <linux/spinlock.h> |
| #include <linux/ioport.h> |
| #include <linux/pci.h> |
| #include <linux/slab.h> |
| #include <linux/bitops.h> |
| |
| #include <asm/sections.h> |
| #include <asm/prom.h> |
| #include <asm/page.h> |
| #include <asm/processor.h> |
| #include <asm/irq.h> |
| #include <asm/io.h> |
| #include <asm/smp.h> |
| #include <asm/bootx.h> |
| #include <asm/system.h> |
| #include <asm/mmu.h> |
| #include <asm/pgtable.h> |
| #include <asm/bootinfo.h> |
| #include <asm/btext.h> |
| #include <asm/pci-bridge.h> |
| #include <asm/open_pic.h> |
| |
| |
| struct pci_address { |
| unsigned a_hi; |
| unsigned a_mid; |
| unsigned a_lo; |
| }; |
| |
| struct pci_reg_property { |
| struct pci_address addr; |
| unsigned size_hi; |
| unsigned size_lo; |
| }; |
| |
| struct isa_reg_property { |
| unsigned space; |
| unsigned address; |
| unsigned size; |
| }; |
| |
| typedef unsigned long interpret_func(struct device_node *, unsigned long, |
| int, int); |
| static interpret_func interpret_pci_props; |
| static interpret_func interpret_dbdma_props; |
| static interpret_func interpret_isa_props; |
| static interpret_func interpret_macio_props; |
| static interpret_func interpret_root_props; |
| |
| extern char *klimit; |
| |
| /* Set for a newworld or CHRP machine */ |
| int use_of_interrupt_tree; |
| struct device_node *dflt_interrupt_controller; |
| int num_interrupt_controllers; |
| |
| int pmac_newworld; |
| |
| extern unsigned int rtas_entry; /* physical pointer */ |
| |
| extern struct device_node *allnodes; |
| |
| static unsigned long finish_node(struct device_node *, unsigned long, |
| interpret_func *, int, int); |
| static unsigned long finish_node_interrupts(struct device_node *, unsigned long); |
| static struct device_node *find_phandle(phandle); |
| |
| extern void enter_rtas(void *); |
| void phys_call_rtas(int, int, int, ...); |
| |
| extern char cmd_line[512]; /* XXX */ |
| extern boot_infos_t *boot_infos; |
| unsigned long dev_tree_size; |
| |
| void |
| phys_call_rtas(int service, int nargs, int nret, ...) |
| { |
| va_list list; |
| union { |
| unsigned long words[16]; |
| double align; |
| } u; |
| void (*rtas)(void *, unsigned long); |
| int i; |
| |
| u.words[0] = service; |
| u.words[1] = nargs; |
| u.words[2] = nret; |
| va_start(list, nret); |
| for (i = 0; i < nargs; ++i) |
| u.words[i+3] = va_arg(list, unsigned long); |
| va_end(list); |
| |
| rtas = (void (*)(void *, unsigned long)) rtas_entry; |
| rtas(&u, rtas_data); |
| } |
| |
| /* |
| * finish_device_tree is called once things are running normally |
| * (i.e. with text and data mapped to the address they were linked at). |
| * It traverses the device tree and fills in the name, type, |
| * {n_}addrs and {n_}intrs fields of each node. |
| */ |
| void __init |
| finish_device_tree(void) |
| { |
| unsigned long mem = (unsigned long) klimit; |
| struct device_node *np; |
| |
| /* All newworld pmac machines and CHRPs now use the interrupt tree */ |
| for (np = allnodes; np != NULL; np = np->allnext) { |
| if (get_property(np, "interrupt-parent", NULL)) { |
| use_of_interrupt_tree = 1; |
| break; |
| } |
| } |
| if (_machine == _MACH_Pmac && use_of_interrupt_tree) |
| pmac_newworld = 1; |
| |
| #ifdef CONFIG_BOOTX_TEXT |
| if (boot_infos && pmac_newworld) { |
| prom_print("WARNING ! BootX/miBoot booting is not supported on this machine\n"); |
| prom_print(" You should use an Open Firmware bootloader\n"); |
| } |
| #endif /* CONFIG_BOOTX_TEXT */ |
| |
| if (use_of_interrupt_tree) { |
| /* |
| * We want to find out here how many interrupt-controller |
| * nodes there are, and if we are booted from BootX, |
| * we need a pointer to the first (and hopefully only) |
| * such node. But we can't use find_devices here since |
| * np->name has not been set yet. -- paulus |
| */ |
| int n = 0; |
| char *name, *ic; |
| int iclen; |
| |
| for (np = allnodes; np != NULL; np = np->allnext) { |
| ic = get_property(np, "interrupt-controller", &iclen); |
| name = get_property(np, "name", NULL); |
| /* checking iclen makes sure we don't get a false |
| match on /chosen.interrupt_controller */ |
| if ((name != NULL |
| && strcmp(name, "interrupt-controller") == 0) |
| || (ic != NULL && iclen == 0 && strcmp(name, "AppleKiwi"))) { |
| if (n == 0) |
| dflt_interrupt_controller = np; |
| ++n; |
| } |
| } |
| num_interrupt_controllers = n; |
| } |
| |
| mem = finish_node(allnodes, mem, NULL, 1, 1); |
| dev_tree_size = mem - (unsigned long) allnodes; |
| klimit = (char *) mem; |
| } |
| |
| static unsigned long __init |
| finish_node(struct device_node *np, unsigned long mem_start, |
| interpret_func *ifunc, int naddrc, int nsizec) |
| { |
| struct device_node *child; |
| int *ip; |
| |
| np->name = get_property(np, "name", NULL); |
| np->type = get_property(np, "device_type", NULL); |
| |
| if (!np->name) |
| np->name = "<NULL>"; |
| if (!np->type) |
| np->type = "<NULL>"; |
| |
| /* get the device addresses and interrupts */ |
| if (ifunc != NULL) |
| mem_start = ifunc(np, mem_start, naddrc, nsizec); |
| |
| if (use_of_interrupt_tree) |
| mem_start = finish_node_interrupts(np, mem_start); |
| |
| /* Look for #address-cells and #size-cells properties. */ |
| ip = (int *) get_property(np, "#address-cells", NULL); |
| if (ip != NULL) |
| naddrc = *ip; |
| ip = (int *) get_property(np, "#size-cells", NULL); |
| if (ip != NULL) |
| nsizec = *ip; |
| |
| if (np->parent == NULL) |
| ifunc = interpret_root_props; |
| else if (np->type == 0) |
| ifunc = NULL; |
| else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci")) |
| ifunc = interpret_pci_props; |
| else if (!strcmp(np->type, "dbdma")) |
| ifunc = interpret_dbdma_props; |
| else if (!strcmp(np->type, "mac-io") |
| || ifunc == interpret_macio_props) |
| ifunc = interpret_macio_props; |
| else if (!strcmp(np->type, "isa")) |
| ifunc = interpret_isa_props; |
| else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3")) |
| ifunc = interpret_root_props; |
| else if (!((ifunc == interpret_dbdma_props |
| || ifunc == interpret_macio_props) |
| && (!strcmp(np->type, "escc") |
| || !strcmp(np->type, "media-bay")))) |
| ifunc = NULL; |
| |
| /* if we were booted from BootX, convert the full name */ |
| if (boot_infos |
| && strncmp(np->full_name, "Devices:device-tree", 19) == 0) { |
| if (np->full_name[19] == 0) { |
| strcpy(np->full_name, "/"); |
| } else if (np->full_name[19] == ':') { |
| char *p = np->full_name + 19; |
| np->full_name = p; |
| for (; *p; ++p) |
| if (*p == ':') |
| *p = '/'; |
| } |
| } |
| |
| for (child = np->child; child != NULL; child = child->sibling) |
| mem_start = finish_node(child, mem_start, ifunc, |
| naddrc, nsizec); |
| |
| return mem_start; |
| } |
| |
| /* |
| * Find the interrupt parent of a node. |
| */ |
| static struct device_node * __init |
| intr_parent(struct device_node *p) |
| { |
| phandle *parp; |
| |
| parp = (phandle *) get_property(p, "interrupt-parent", NULL); |
| if (parp == NULL) |
| return p->parent; |
| p = find_phandle(*parp); |
| if (p != NULL) |
| return p; |
| /* |
| * On a powermac booted with BootX, we don't get to know the |
| * phandles for any nodes, so find_phandle will return NULL. |
| * Fortunately these machines only have one interrupt controller |
| * so there isn't in fact any ambiguity. -- paulus |
| */ |
| if (num_interrupt_controllers == 1) |
| p = dflt_interrupt_controller; |
| return p; |
| } |
| |
| /* |
| * Find out the size of each entry of the interrupts property |
| * for a node. |
| */ |
| static int __init |
| prom_n_intr_cells(struct device_node *np) |
| { |
| struct device_node *p; |
| unsigned int *icp; |
| |
| for (p = np; (p = intr_parent(p)) != NULL; ) { |
| icp = (unsigned int *) |
| get_property(p, "#interrupt-cells", NULL); |
| if (icp != NULL) |
| return *icp; |
| if (get_property(p, "interrupt-controller", NULL) != NULL |
| || get_property(p, "interrupt-map", NULL) != NULL) { |
| printk("oops, node %s doesn't have #interrupt-cells\n", |
| p->full_name); |
| return 1; |
| } |
| } |
| printk("prom_n_intr_cells failed for %s\n", np->full_name); |
| return 1; |
| } |
| |
| /* |
| * Map an interrupt from a device up to the platform interrupt |
| * descriptor. |
| */ |
| static int __init |
| map_interrupt(unsigned int **irq, struct device_node **ictrler, |
| struct device_node *np, unsigned int *ints, int nintrc) |
| { |
| struct device_node *p, *ipar; |
| unsigned int *imap, *imask, *ip; |
| int i, imaplen, match; |
| int newintrc = 1, newaddrc = 1; |
| unsigned int *reg; |
| int naddrc; |
| |
| reg = (unsigned int *) get_property(np, "reg", NULL); |
| naddrc = prom_n_addr_cells(np); |
| p = intr_parent(np); |
| while (p != NULL) { |
| if (get_property(p, "interrupt-controller", NULL) != NULL) |
| /* this node is an interrupt controller, stop here */ |
| break; |
| imap = (unsigned int *) |
| get_property(p, "interrupt-map", &imaplen); |
| if (imap == NULL) { |
| p = intr_parent(p); |
| continue; |
| } |
| imask = (unsigned int *) |
| get_property(p, "interrupt-map-mask", NULL); |
| if (imask == NULL) { |
| printk("oops, %s has interrupt-map but no mask\n", |
| p->full_name); |
| return 0; |
| } |
| imaplen /= sizeof(unsigned int); |
| match = 0; |
| ipar = NULL; |
| while (imaplen > 0 && !match) { |
| /* check the child-interrupt field */ |
| match = 1; |
| for (i = 0; i < naddrc && match; ++i) |
| match = ((reg[i] ^ imap[i]) & imask[i]) == 0; |
| for (; i < naddrc + nintrc && match; ++i) |
| match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0; |
| imap += naddrc + nintrc; |
| imaplen -= naddrc + nintrc; |
| /* grab the interrupt parent */ |
| ipar = find_phandle((phandle) *imap++); |
| --imaplen; |
| if (ipar == NULL && num_interrupt_controllers == 1) |
| /* cope with BootX not giving us phandles */ |
| ipar = dflt_interrupt_controller; |
| if (ipar == NULL) { |
| printk("oops, no int parent %x in map of %s\n", |
| imap[-1], p->full_name); |
| return 0; |
| } |
| /* find the parent's # addr and intr cells */ |
| ip = (unsigned int *) |
| get_property(ipar, "#interrupt-cells", NULL); |
| if (ip == NULL) { |
| printk("oops, no #interrupt-cells on %s\n", |
| ipar->full_name); |
| return 0; |
| } |
| newintrc = *ip; |
| ip = (unsigned int *) |
| get_property(ipar, "#address-cells", NULL); |
| newaddrc = (ip == NULL)? 0: *ip; |
| imap += newaddrc + newintrc; |
| imaplen -= newaddrc + newintrc; |
| } |
| if (imaplen < 0) { |
| printk("oops, error decoding int-map on %s, len=%d\n", |
| p->full_name, imaplen); |
| return 0; |
| } |
| if (!match) { |
| printk("oops, no match in %s int-map for %s\n", |
| p->full_name, np->full_name); |
| return 0; |
| } |
| p = ipar; |
| naddrc = newaddrc; |
| nintrc = newintrc; |
| ints = imap - nintrc; |
| reg = ints - naddrc; |
| } |
| if (p == NULL) |
| printk("hmmm, int tree for %s doesn't have ctrler\n", |
| np->full_name); |
| *irq = ints; |
| *ictrler = p; |
| return nintrc; |
| } |
| |
| /* |
| * New version of finish_node_interrupts. |
| */ |
| static unsigned long __init |
| finish_node_interrupts(struct device_node *np, unsigned long mem_start) |
| { |
| unsigned int *ints; |
| int intlen, intrcells; |
| int i, j, n, offset; |
| unsigned int *irq; |
| struct device_node *ic; |
| |
| ints = (unsigned int *) get_property(np, "interrupts", &intlen); |
| if (ints == NULL) |
| return mem_start; |
| intrcells = prom_n_intr_cells(np); |
| intlen /= intrcells * sizeof(unsigned int); |
| np->n_intrs = intlen; |
| np->intrs = (struct interrupt_info *) mem_start; |
| mem_start += intlen * sizeof(struct interrupt_info); |
| |
| for (i = 0; i < intlen; ++i) { |
| np->intrs[i].line = 0; |
| np->intrs[i].sense = 1; |
| n = map_interrupt(&irq, &ic, np, ints, intrcells); |
| if (n <= 0) |
| continue; |
| offset = 0; |
| /* |
| * On a CHRP we have an 8259 which is subordinate to |
| * the openpic in the interrupt tree, but we want the |
| * openpic's interrupt numbers offsetted, not the 8259's. |
| * So we apply the offset if the controller is at the |
| * root of the interrupt tree, i.e. has no interrupt-parent. |
| * This doesn't cope with the general case of multiple |
| * cascaded interrupt controllers, but then neither will |
| * irq.c at the moment either. -- paulus |
| * The G5 triggers that code, I add a machine test. On |
| * those machines, we want to offset interrupts from the |
| * second openpic by 128 -- BenH |
| */ |
| if (_machine != _MACH_Pmac && num_interrupt_controllers > 1 |
| && ic != NULL |
| && get_property(ic, "interrupt-parent", NULL) == NULL) |
| offset = 16; |
| else if (_machine == _MACH_Pmac && num_interrupt_controllers > 1 |
| && ic != NULL && ic->parent != NULL) { |
| char *name = get_property(ic->parent, "name", NULL); |
| if (name && !strcmp(name, "u3")) |
| offset = 128; |
| } |
| |
| np->intrs[i].line = irq[0] + offset; |
| if (n > 1) |
| np->intrs[i].sense = irq[1]; |
| if (n > 2) { |
| printk("hmmm, got %d intr cells for %s:", n, |
| np->full_name); |
| for (j = 0; j < n; ++j) |
| printk(" %d", irq[j]); |
| printk("\n"); |
| } |
| ints += intrcells; |
| } |
| |
| return mem_start; |
| } |
| |
| /* |
| * When BootX makes a copy of the device tree from the MacOS |
| * Name Registry, it is in the format we use but all of the pointers |
| * are offsets from the start of the tree. |
| * This procedure updates the pointers. |
| */ |
| void __init |
| relocate_nodes(void) |
| { |
| unsigned long base; |
| struct device_node *np; |
| struct property *pp; |
| |
| #define ADDBASE(x) (x = (typeof (x))((x)? ((unsigned long)(x) + base): 0)) |
| |
| base = (unsigned long) boot_infos + boot_infos->deviceTreeOffset; |
| allnodes = (struct device_node *)(base + 4); |
| for (np = allnodes; np != 0; np = np->allnext) { |
| ADDBASE(np->full_name); |
| ADDBASE(np->properties); |
| ADDBASE(np->parent); |
| ADDBASE(np->child); |
| ADDBASE(np->sibling); |
| ADDBASE(np->allnext); |
| for (pp = np->properties; pp != 0; pp = pp->next) { |
| ADDBASE(pp->name); |
| ADDBASE(pp->value); |
| ADDBASE(pp->next); |
| } |
| } |
| } |
| |
| int |
| prom_n_addr_cells(struct device_node* np) |
| { |
| int* ip; |
| do { |
| if (np->parent) |
| np = np->parent; |
| ip = (int *) get_property(np, "#address-cells", NULL); |
| if (ip != NULL) |
| return *ip; |
| } while (np->parent); |
| /* No #address-cells property for the root node, default to 1 */ |
| return 1; |
| } |
| |
| int |
| prom_n_size_cells(struct device_node* np) |
| { |
| int* ip; |
| do { |
| if (np->parent) |
| np = np->parent; |
| ip = (int *) get_property(np, "#size-cells", NULL); |
| if (ip != NULL) |
| return *ip; |
| } while (np->parent); |
| /* No #size-cells property for the root node, default to 1 */ |
| return 1; |
| } |
| |
| static unsigned long __init |
| map_addr(struct device_node *np, unsigned long space, unsigned long addr) |
| { |
| int na; |
| unsigned int *ranges; |
| int rlen = 0; |
| unsigned int type; |
| |
| type = (space >> 24) & 3; |
| if (type == 0) |
| return addr; |
| |
| while ((np = np->parent) != NULL) { |
| if (strcmp(np->type, "pci") != 0) |
| continue; |
| /* PCI bridge: map the address through the ranges property */ |
| na = prom_n_addr_cells(np); |
| ranges = (unsigned int *) get_property(np, "ranges", &rlen); |
| while ((rlen -= (na + 5) * sizeof(unsigned int)) >= 0) { |
| if (((ranges[0] >> 24) & 3) == type |
| && ranges[2] <= addr |
| && addr - ranges[2] < ranges[na+4]) { |
| /* ok, this matches, translate it */ |
| addr += ranges[na+2] - ranges[2]; |
| break; |
| } |
| ranges += na + 5; |
| } |
| } |
| return addr; |
| } |
| |
| static unsigned long __init |
| interpret_pci_props(struct device_node *np, unsigned long mem_start, |
| int naddrc, int nsizec) |
| { |
| struct address_range *adr; |
| struct pci_reg_property *pci_addrs; |
| int i, l, *ip; |
| |
| pci_addrs = (struct pci_reg_property *) |
| get_property(np, "assigned-addresses", &l); |
| if (pci_addrs != 0 && l >= sizeof(struct pci_reg_property)) { |
| i = 0; |
| adr = (struct address_range *) mem_start; |
| while ((l -= sizeof(struct pci_reg_property)) >= 0) { |
| adr[i].space = pci_addrs[i].addr.a_hi; |
| adr[i].address = map_addr(np, pci_addrs[i].addr.a_hi, |
| pci_addrs[i].addr.a_lo); |
| adr[i].size = pci_addrs[i].size_lo; |
| ++i; |
| } |
| np->addrs = adr; |
| np->n_addrs = i; |
| mem_start += i * sizeof(struct address_range); |
| } |
| |
| if (use_of_interrupt_tree) |
| return mem_start; |
| |
| ip = (int *) get_property(np, "AAPL,interrupts", &l); |
| if (ip == 0 && np->parent) |
| ip = (int *) get_property(np->parent, "AAPL,interrupts", &l); |
| if (ip == 0) |
| ip = (int *) get_property(np, "interrupts", &l); |
| if (ip != 0) { |
| np->intrs = (struct interrupt_info *) mem_start; |
| np->n_intrs = l / sizeof(int); |
| mem_start += np->n_intrs * sizeof(struct interrupt_info); |
| for (i = 0; i < np->n_intrs; ++i) { |
| np->intrs[i].line = *ip++; |
| np->intrs[i].sense = 1; |
| } |
| } |
| |
| return mem_start; |
| } |
| |
| static unsigned long __init |
| interpret_dbdma_props(struct device_node *np, unsigned long mem_start, |
| int naddrc, int nsizec) |
| { |
| struct reg_property *rp; |
| struct address_range *adr; |
| unsigned long base_address; |
| int i, l, *ip; |
| struct device_node *db; |
| |
| base_address = 0; |
| for (db = np->parent; db != NULL; db = db->parent) { |
| if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) { |
| base_address = db->addrs[0].address; |
| break; |
| } |
| } |
| |
| rp = (struct reg_property *) get_property(np, "reg", &l); |
| if (rp != 0 && l >= sizeof(struct reg_property)) { |
| i = 0; |
| adr = (struct address_range *) mem_start; |
| while ((l -= sizeof(struct reg_property)) >= 0) { |
| adr[i].space = 2; |
| adr[i].address = rp[i].address + base_address; |
| adr[i].size = rp[i].size; |
| ++i; |
| } |
| np->addrs = adr; |
| np->n_addrs = i; |
| mem_start += i * sizeof(struct address_range); |
| } |
| |
| if (use_of_interrupt_tree) |
| return mem_start; |
| |
| ip = (int *) get_property(np, "AAPL,interrupts", &l); |
| if (ip == 0) |
| ip = (int *) get_property(np, "interrupts", &l); |
| if (ip != 0) { |
| np->intrs = (struct interrupt_info *) mem_start; |
| np->n_intrs = l / sizeof(int); |
| mem_start += np->n_intrs * sizeof(struct interrupt_info); |
| for (i = 0; i < np->n_intrs; ++i) { |
| np->intrs[i].line = *ip++; |
| np->intrs[i].sense = 1; |
| } |
| } |
| |
| return mem_start; |
| } |
| |
| static unsigned long __init |
| interpret_macio_props(struct device_node *np, unsigned long mem_start, |
| int naddrc, int nsizec) |
| { |
| struct reg_property *rp; |
| struct address_range *adr; |
| unsigned long base_address; |
| int i, l, *ip; |
| struct device_node *db; |
| |
| base_address = 0; |
| for (db = np->parent; db != NULL; db = db->parent) { |
| if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) { |
| base_address = db->addrs[0].address; |
| break; |
| } |
| } |
| |
| rp = (struct reg_property *) get_property(np, "reg", &l); |
| if (rp != 0 && l >= sizeof(struct reg_property)) { |
| i = 0; |
| adr = (struct address_range *) mem_start; |
| while ((l -= sizeof(struct reg_property)) >= 0) { |
| adr[i].space = 2; |
| adr[i].address = rp[i].address + base_address; |
| adr[i].size = rp[i].size; |
| ++i; |
| } |
| np->addrs = adr; |
| np->n_addrs = i; |
| mem_start += i * sizeof(struct address_range); |
| } |
| |
| if (use_of_interrupt_tree) |
| return mem_start; |
| |
| ip = (int *) get_property(np, "interrupts", &l); |
| if (ip == 0) |
| ip = (int *) get_property(np, "AAPL,interrupts", &l); |
| if (ip != 0) { |
| np->intrs = (struct interrupt_info *) mem_start; |
| np->n_intrs = l / sizeof(int); |
| for (i = 0; i < np->n_intrs; ++i) { |
| np->intrs[i].line = *ip++; |
| np->intrs[i].sense = 1; |
| } |
| mem_start += np->n_intrs * sizeof(struct interrupt_info); |
| } |
| |
| return mem_start; |
| } |
| |
| static unsigned long __init |
| interpret_isa_props(struct device_node *np, unsigned long mem_start, |
| int naddrc, int nsizec) |
| { |
| struct isa_reg_property *rp; |
| struct address_range *adr; |
| int i, l, *ip; |
| |
| rp = (struct isa_reg_property *) get_property(np, "reg", &l); |
| if (rp != 0 && l >= sizeof(struct isa_reg_property)) { |
| i = 0; |
| adr = (struct address_range *) mem_start; |
| while ((l -= sizeof(struct reg_property)) >= 0) { |
| adr[i].space = rp[i].space; |
| adr[i].address = rp[i].address |
| + (adr[i].space? 0: _ISA_MEM_BASE); |
| adr[i].size = rp[i].size; |
| ++i; |
| } |
| np->addrs = adr; |
| np->n_addrs = i; |
| mem_start += i * sizeof(struct address_range); |
| } |
| |
| if (use_of_interrupt_tree) |
| return mem_start; |
| |
| ip = (int *) get_property(np, "interrupts", &l); |
| if (ip != 0) { |
| np->intrs = (struct interrupt_info *) mem_start; |
| np->n_intrs = l / (2 * sizeof(int)); |
| mem_start += np->n_intrs * sizeof(struct interrupt_info); |
| for (i = 0; i < np->n_intrs; ++i) { |
| np->intrs[i].line = *ip++; |
| np->intrs[i].sense = *ip++; |
| } |
| } |
| |
| return mem_start; |
| } |
| |
| static unsigned long __init |
| interpret_root_props(struct device_node *np, unsigned long mem_start, |
| int naddrc, int nsizec) |
| { |
| struct address_range *adr; |
| int i, l, *ip; |
| unsigned int *rp; |
| int rpsize = (naddrc + nsizec) * sizeof(unsigned int); |
| |
| rp = (unsigned int *) get_property(np, "reg", &l); |
| if (rp != 0 && l >= rpsize) { |
| i = 0; |
| adr = (struct address_range *) mem_start; |
| while ((l -= rpsize) >= 0) { |
| adr[i].space = (naddrc >= 2? rp[naddrc-2]: 2); |
| adr[i].address = rp[naddrc - 1]; |
| adr[i].size = rp[naddrc + nsizec - 1]; |
| ++i; |
| rp += naddrc + nsizec; |
| } |
| np->addrs = adr; |
| np->n_addrs = i; |
| mem_start += i * sizeof(struct address_range); |
| } |
| |
| if (use_of_interrupt_tree) |
| return mem_start; |
| |
| ip = (int *) get_property(np, "AAPL,interrupts", &l); |
| if (ip == 0) |
| ip = (int *) get_property(np, "interrupts", &l); |
| if (ip != 0) { |
| np->intrs = (struct interrupt_info *) mem_start; |
| np->n_intrs = l / sizeof(int); |
| mem_start += np->n_intrs * sizeof(struct interrupt_info); |
| for (i = 0; i < np->n_intrs; ++i) { |
| np->intrs[i].line = *ip++; |
| np->intrs[i].sense = 1; |
| } |
| } |
| |
| return mem_start; |
| } |
| |
| /* |
| * Work out the sense (active-low level / active-high edge) |
| * of each interrupt from the device tree. |
| */ |
| void __init |
| prom_get_irq_senses(unsigned char *senses, int off, int max) |
| { |
| struct device_node *np; |
| int i, j; |
| |
| /* default to level-triggered */ |
| memset(senses, 1, max - off); |
| if (!use_of_interrupt_tree) |
| return; |
| |
| for (np = allnodes; np != 0; np = np->allnext) { |
| for (j = 0; j < np->n_intrs; j++) { |
| i = np->intrs[j].line; |
| if (i >= off && i < max) { |
| if (np->intrs[j].sense == 1) |
| senses[i-off] = (IRQ_SENSE_LEVEL |
| | IRQ_POLARITY_NEGATIVE); |
| else |
| senses[i-off] = (IRQ_SENSE_EDGE |
| | IRQ_POLARITY_POSITIVE); |
| } |
| } |
| } |
| } |
| |
| /* |
| * Construct and return a list of the device_nodes with a given name. |
| */ |
| struct device_node * |
| find_devices(const char *name) |
| { |
| struct device_node *head, **prevp, *np; |
| |
| prevp = &head; |
| for (np = allnodes; np != 0; np = np->allnext) { |
| if (np->name != 0 && strcasecmp(np->name, name) == 0) { |
| *prevp = np; |
| prevp = &np->next; |
| } |
| } |
| *prevp = NULL; |
| return head; |
| } |
| |
| /* |
| * Construct and return a list of the device_nodes with a given type. |
| */ |
| struct device_node * |
| find_type_devices(const char *type) |
| { |
| struct device_node *head, **prevp, *np; |
| |
| prevp = &head; |
| for (np = allnodes; np != 0; np = np->allnext) { |
| if (np->type != 0 && strcasecmp(np->type, type) == 0) { |
| *prevp = np; |
| prevp = &np->next; |
| } |
| } |
| *prevp = NULL; |
| return head; |
| } |
| |
| /* |
| * Returns all nodes linked together |
| */ |
| struct device_node * |
| find_all_nodes(void) |
| { |
| struct device_node *head, **prevp, *np; |
| |
| prevp = &head; |
| for (np = allnodes; np != 0; np = np->allnext) { |
| *prevp = np; |
| prevp = &np->next; |
| } |
| *prevp = NULL; |
| return head; |
| } |
| |
| /* Checks if the given "compat" string matches one of the strings in |
| * the device's "compatible" property |
| */ |
| int |
| device_is_compatible(struct device_node *device, const char *compat) |
| { |
| const char* cp; |
| int cplen, l; |
| |
| cp = (char *) get_property(device, "compatible", &cplen); |
| if (cp == NULL) |
| return 0; |
| while (cplen > 0) { |
| if (strncasecmp(cp, compat, strlen(compat)) == 0) |
| return 1; |
| l = strlen(cp) + 1; |
| cp += l; |
| cplen -= l; |
| } |
| |
| return 0; |
| } |
| |
| |
| /* |
| * Indicates whether the root node has a given value in its |
| * compatible property. |
| */ |
| int |
| machine_is_compatible(const char *compat) |
| { |
| struct device_node *root; |
| |
| root = find_path_device("/"); |
| if (root == 0) |
| return 0; |
| return device_is_compatible(root, compat); |
| } |
| |
| /* |
| * Construct and return a list of the device_nodes with a given type |
| * and compatible property. |
| */ |
| struct device_node * |
| find_compatible_devices(const char *type, const char *compat) |
| { |
| struct device_node *head, **prevp, *np; |
| |
| prevp = &head; |
| for (np = allnodes; np != 0; np = np->allnext) { |
| if (type != NULL |
| && !(np->type != 0 && strcasecmp(np->type, type) == 0)) |
| continue; |
| if (device_is_compatible(np, compat)) { |
| *prevp = np; |
| prevp = &np->next; |
| } |
| } |
| *prevp = NULL; |
| return head; |
| } |
| |
| /* |
| * Find the device_node with a given full_name. |
| */ |
| struct device_node * |
| find_path_device(const char *path) |
| { |
| struct device_node *np; |
| |
| for (np = allnodes; np != 0; np = np->allnext) |
| if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0) |
| return np; |
| return NULL; |
| } |
| |
| /******* |
| * |
| * New implementation of the OF "find" APIs, return a refcounted |
| * object, call of_node_put() when done. Currently, still lacks |
| * locking as old implementation, this is beeing done for ppc64. |
| * |
| * Note that property management will need some locking as well, |
| * this isn't dealt with yet |
| * |
| *******/ |
| |
| /** |
| * of_find_node_by_name - Find a node by it's "name" property |
| * @from: The node to start searching from or NULL, the node |
| * you pass will not be searched, only the next one |
| * will; typically, you pass what the previous call |
| * returned. of_node_put() will be called on it |
| * @name: The name string to match against |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_node_by_name(struct device_node *from, |
| const char *name) |
| { |
| struct device_node *np = from ? from->allnext : allnodes; |
| |
| for (; np != 0; np = np->allnext) |
| if (np->name != 0 && strcasecmp(np->name, name) == 0) |
| break; |
| if (from) |
| of_node_put(from); |
| return of_node_get(np); |
| } |
| |
| /** |
| * of_find_node_by_type - Find a node by it's "device_type" property |
| * @from: The node to start searching from or NULL, the node |
| * you pass will not be searched, only the next one |
| * will; typically, you pass what the previous call |
| * returned. of_node_put() will be called on it |
| * @name: The type string to match against |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_node_by_type(struct device_node *from, |
| const char *type) |
| { |
| struct device_node *np = from ? from->allnext : allnodes; |
| |
| for (; np != 0; np = np->allnext) |
| if (np->type != 0 && strcasecmp(np->type, type) == 0) |
| break; |
| if (from) |
| of_node_put(from); |
| return of_node_get(np); |
| } |
| |
| /** |
| * of_find_compatible_node - Find a node based on type and one of the |
| * tokens in it's "compatible" property |
| * @from: The node to start searching from or NULL, the node |
| * you pass will not be searched, only the next one |
| * will; typically, you pass what the previous call |
| * returned. of_node_put() will be called on it |
| * @type: The type string to match "device_type" or NULL to ignore |
| * @compatible: The string to match to one of the tokens in the device |
| * "compatible" list. |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_compatible_node(struct device_node *from, |
| const char *type, const char *compatible) |
| { |
| struct device_node *np = from ? from->allnext : allnodes; |
| |
| for (; np != 0; np = np->allnext) { |
| if (type != NULL |
| && !(np->type != 0 && strcasecmp(np->type, type) == 0)) |
| continue; |
| if (device_is_compatible(np, compatible)) |
| break; |
| } |
| if (from) |
| of_node_put(from); |
| return of_node_get(np); |
| } |
| |
| /** |
| * of_find_node_by_path - Find a node matching a full OF path |
| * @path: The full path to match |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_node_by_path(const char *path) |
| { |
| struct device_node *np = allnodes; |
| |
| for (; np != 0; np = np->allnext) |
| if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0) |
| break; |
| return of_node_get(np); |
| } |
| |
| /** |
| * of_find_all_nodes - Get next node in global list |
| * @prev: Previous node or NULL to start iteration |
| * of_node_put() will be called on it |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_all_nodes(struct device_node *prev) |
| { |
| return of_node_get(prev ? prev->allnext : allnodes); |
| } |
| |
| /** |
| * of_get_parent - Get a node's parent if any |
| * @node: Node to get parent |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_get_parent(const struct device_node *node) |
| { |
| return node ? of_node_get(node->parent) : NULL; |
| } |
| |
| /** |
| * of_get_next_child - Iterate a node childs |
| * @node: parent node |
| * @prev: previous child of the parent node, or NULL to get first |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_get_next_child(const struct device_node *node, |
| struct device_node *prev) |
| { |
| struct device_node *next = prev ? prev->sibling : node->child; |
| |
| for (; next != 0; next = next->sibling) |
| if (of_node_get(next)) |
| break; |
| if (prev) |
| of_node_put(prev); |
| return next; |
| } |
| |
| /** |
| * of_node_get - Increment refcount of a node |
| * @node: Node to inc refcount, NULL is supported to |
| * simplify writing of callers |
| * |
| * Returns the node itself or NULL if gone. Current implementation |
| * does nothing as we don't yet do dynamic node allocation on ppc32 |
| */ |
| struct device_node *of_node_get(struct device_node *node) |
| { |
| return node; |
| } |
| |
| /** |
| * of_node_put - Decrement refcount of a node |
| * @node: Node to dec refcount, NULL is supported to |
| * simplify writing of callers |
| * |
| * Current implementation does nothing as we don't yet do dynamic node |
| * allocation on ppc32 |
| */ |
| void of_node_put(struct device_node *node) |
| { |
| } |
| |
| /* |
| * Find the device_node with a given phandle. |
| */ |
| static struct device_node * __init |
| find_phandle(phandle ph) |
| { |
| struct device_node *np; |
| |
| for (np = allnodes; np != 0; np = np->allnext) |
| if (np->node == ph) |
| return np; |
| return NULL; |
| } |
| |
| /* |
| * Find a property with a given name for a given node |
| * and return the value. |
| */ |
| unsigned char * |
| get_property(struct device_node *np, const char *name, int *lenp) |
| { |
| struct property *pp; |
| |
| for (pp = np->properties; pp != 0; pp = pp->next) |
| if (pp->name != NULL && strcmp(pp->name, name) == 0) { |
| if (lenp != 0) |
| *lenp = pp->length; |
| return pp->value; |
| } |
| return NULL; |
| } |
| |
| /* |
| * Add a property to a node |
| */ |
| int |
| prom_add_property(struct device_node* np, struct property* prop) |
| { |
| struct property **next = &np->properties; |
| |
| prop->next = NULL; |
| while (*next) |
| next = &(*next)->next; |
| *next = prop; |
| |
| return 0; |
| } |
| |
| /* I quickly hacked that one, check against spec ! */ |
| static inline unsigned long |
| bus_space_to_resource_flags(unsigned int bus_space) |
| { |
| u8 space = (bus_space >> 24) & 0xf; |
| if (space == 0) |
| space = 0x02; |
| if (space == 0x02) |
| return IORESOURCE_MEM; |
| else if (space == 0x01) |
| return IORESOURCE_IO; |
| else { |
| printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n", |
| bus_space); |
| return 0; |
| } |
| } |
| |
| static struct resource* |
| find_parent_pci_resource(struct pci_dev* pdev, struct address_range *range) |
| { |
| unsigned long mask; |
| int i; |
| |
| /* Check this one */ |
| mask = bus_space_to_resource_flags(range->space); |
| for (i=0; i<DEVICE_COUNT_RESOURCE; i++) { |
| if ((pdev->resource[i].flags & mask) == mask && |
| pdev->resource[i].start <= range->address && |
| pdev->resource[i].end > range->address) { |
| if ((range->address + range->size - 1) > pdev->resource[i].end) { |
| /* Add better message */ |
| printk(KERN_WARNING "PCI/OF resource overlap !\n"); |
| return NULL; |
| } |
| break; |
| } |
| } |
| if (i == DEVICE_COUNT_RESOURCE) |
| return NULL; |
| return &pdev->resource[i]; |
| } |
| |
| /* |
| * Request an OF device resource. Currently handles child of PCI devices, |
| * or other nodes attached to the root node. Ultimately, put some |
| * link to resources in the OF node. |
| */ |
| struct resource* |
| request_OF_resource(struct device_node* node, int index, const char* name_postfix) |
| { |
| struct pci_dev* pcidev; |
| u8 pci_bus, pci_devfn; |
| unsigned long iomask; |
| struct device_node* nd; |
| struct resource* parent; |
| struct resource *res = NULL; |
| int nlen, plen; |
| |
| if (index >= node->n_addrs) |
| goto fail; |
| |
| /* Sanity check on bus space */ |
| iomask = bus_space_to_resource_flags(node->addrs[index].space); |
| if (iomask & IORESOURCE_MEM) |
| parent = &iomem_resource; |
| else if (iomask & IORESOURCE_IO) |
| parent = &ioport_resource; |
| else |
| goto fail; |
| |
| /* Find a PCI parent if any */ |
| nd = node; |
| pcidev = NULL; |
| while(nd) { |
| if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn)) |
| pcidev = pci_find_slot(pci_bus, pci_devfn); |
| if (pcidev) break; |
| nd = nd->parent; |
| } |
| if (pcidev) |
| parent = find_parent_pci_resource(pcidev, &node->addrs[index]); |
| if (!parent) { |
| printk(KERN_WARNING "request_OF_resource(%s), parent not found\n", |
| node->name); |
| goto fail; |
| } |
| |
| res = __request_region(parent, node->addrs[index].address, node->addrs[index].size, NULL); |
| if (!res) |
| goto fail; |
| nlen = strlen(node->name); |
| plen = name_postfix ? strlen(name_postfix) : 0; |
| res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL); |
| if (res->name) { |
| strcpy((char *)res->name, node->name); |
| if (plen) |
| strcpy((char *)res->name+nlen, name_postfix); |
| } |
| return res; |
| fail: |
| return NULL; |
| } |
| |
| int |
| release_OF_resource(struct device_node* node, int index) |
| { |
| struct pci_dev* pcidev; |
| u8 pci_bus, pci_devfn; |
| unsigned long iomask, start, end; |
| struct device_node* nd; |
| struct resource* parent; |
| struct resource *res = NULL; |
| |
| if (index >= node->n_addrs) |
| return -EINVAL; |
| |
| /* Sanity check on bus space */ |
| iomask = bus_space_to_resource_flags(node->addrs[index].space); |
| if (iomask & IORESOURCE_MEM) |
| parent = &iomem_resource; |
| else if (iomask & IORESOURCE_IO) |
| parent = &ioport_resource; |
| else |
| return -EINVAL; |
| |
| /* Find a PCI parent if any */ |
| nd = node; |
| pcidev = NULL; |
| while(nd) { |
| if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn)) |
| pcidev = pci_find_slot(pci_bus, pci_devfn); |
| if (pcidev) break; |
| nd = nd->parent; |
| } |
| if (pcidev) |
| parent = find_parent_pci_resource(pcidev, &node->addrs[index]); |
| if (!parent) { |
| printk(KERN_WARNING "release_OF_resource(%s), parent not found\n", |
| node->name); |
| return -ENODEV; |
| } |
| |
| /* Find us in the parent and its childs */ |
| res = parent->child; |
| start = node->addrs[index].address; |
| end = start + node->addrs[index].size - 1; |
| while (res) { |
| if (res->start == start && res->end == end && |
| (res->flags & IORESOURCE_BUSY)) |
| break; |
| if (res->start <= start && res->end >= end) |
| res = res->child; |
| else |
| res = res->sibling; |
| } |
| if (!res) |
| return -ENODEV; |
| |
| kfree(res->name); |
| res->name = NULL; |
| release_resource(res); |
| kfree(res); |
| |
| return 0; |
| } |
| |
| #if 0 |
| void |
| print_properties(struct device_node *np) |
| { |
| struct property *pp; |
| char *cp; |
| int i, n; |
| |
| for (pp = np->properties; pp != 0; pp = pp->next) { |
| printk(KERN_INFO "%s", pp->name); |
| for (i = strlen(pp->name); i < 16; ++i) |
| printk(" "); |
| cp = (char *) pp->value; |
| for (i = pp->length; i > 0; --i, ++cp) |
| if ((i > 1 && (*cp < 0x20 || *cp > 0x7e)) |
| || (i == 1 && *cp != 0)) |
| break; |
| if (i == 0 && pp->length > 1) { |
| /* looks like a string */ |
| printk(" %s\n", (char *) pp->value); |
| } else { |
| /* dump it in hex */ |
| n = pp->length; |
| if (n > 64) |
| n = 64; |
| if (pp->length % 4 == 0) { |
| unsigned int *p = (unsigned int *) pp->value; |
| |
| n /= 4; |
| for (i = 0; i < n; ++i) { |
| if (i != 0 && (i % 4) == 0) |
| printk("\n "); |
| printk(" %08x", *p++); |
| } |
| } else { |
| unsigned char *bp = pp->value; |
| |
| for (i = 0; i < n; ++i) { |
| if (i != 0 && (i % 16) == 0) |
| printk("\n "); |
| printk(" %02x", *bp++); |
| } |
| } |
| printk("\n"); |
| if (pp->length > 64) |
| printk(" ... (length = %d)\n", |
| pp->length); |
| } |
| } |
| } |
| #endif |
| |
| static DEFINE_SPINLOCK(rtas_lock); |
| |
| /* this can be called after setup -- Cort */ |
| int |
| call_rtas(const char *service, int nargs, int nret, |
| unsigned long *outputs, ...) |
| { |
| va_list list; |
| int i; |
| unsigned long s; |
| struct device_node *rtas; |
| int *tokp; |
| union { |
| unsigned long words[16]; |
| double align; |
| } u; |
| |
| rtas = find_devices("rtas"); |
| if (rtas == NULL) |
| return -1; |
| tokp = (int *) get_property(rtas, service, NULL); |
| if (tokp == NULL) { |
| printk(KERN_ERR "No RTAS service called %s\n", service); |
| return -1; |
| } |
| u.words[0] = *tokp; |
| u.words[1] = nargs; |
| u.words[2] = nret; |
| va_start(list, outputs); |
| for (i = 0; i < nargs; ++i) |
| u.words[i+3] = va_arg(list, unsigned long); |
| va_end(list); |
| |
| /* |
| * RTAS doesn't use floating point. |
| * Or at least, according to the CHRP spec we enter RTAS |
| * with FP disabled, and it doesn't change the FP registers. |
| * -- paulus. |
| */ |
| spin_lock_irqsave(&rtas_lock, s); |
| enter_rtas((void *)__pa(&u)); |
| spin_unlock_irqrestore(&rtas_lock, s); |
| |
| if (nret > 1 && outputs != NULL) |
| for (i = 0; i < nret-1; ++i) |
| outputs[i] = u.words[i+nargs+4]; |
| return u.words[nargs+3]; |
| } |