| /* |
| * Implement CPU time clocks for the POSIX clock interface. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/posix-timers.h> |
| #include <asm/uaccess.h> |
| #include <linux/errno.h> |
| |
| static int check_clock(clockid_t which_clock) |
| { |
| int error = 0; |
| struct task_struct *p; |
| const pid_t pid = CPUCLOCK_PID(which_clock); |
| |
| if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) |
| return -EINVAL; |
| |
| if (pid == 0) |
| return 0; |
| |
| read_lock(&tasklist_lock); |
| p = find_task_by_pid(pid); |
| if (!p || (CPUCLOCK_PERTHREAD(which_clock) ? |
| p->tgid != current->tgid : p->tgid != pid)) { |
| error = -EINVAL; |
| } |
| read_unlock(&tasklist_lock); |
| |
| return error; |
| } |
| |
| static inline union cpu_time_count |
| timespec_to_sample(clockid_t which_clock, const struct timespec *tp) |
| { |
| union cpu_time_count ret; |
| ret.sched = 0; /* high half always zero when .cpu used */ |
| if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
| ret.sched = tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec; |
| } else { |
| ret.cpu = timespec_to_cputime(tp); |
| } |
| return ret; |
| } |
| |
| static void sample_to_timespec(clockid_t which_clock, |
| union cpu_time_count cpu, |
| struct timespec *tp) |
| { |
| if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
| tp->tv_sec = div_long_long_rem(cpu.sched, |
| NSEC_PER_SEC, &tp->tv_nsec); |
| } else { |
| cputime_to_timespec(cpu.cpu, tp); |
| } |
| } |
| |
| static inline int cpu_time_before(clockid_t which_clock, |
| union cpu_time_count now, |
| union cpu_time_count then) |
| { |
| if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
| return now.sched < then.sched; |
| } else { |
| return cputime_lt(now.cpu, then.cpu); |
| } |
| } |
| static inline void cpu_time_add(clockid_t which_clock, |
| union cpu_time_count *acc, |
| union cpu_time_count val) |
| { |
| if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
| acc->sched += val.sched; |
| } else { |
| acc->cpu = cputime_add(acc->cpu, val.cpu); |
| } |
| } |
| static inline union cpu_time_count cpu_time_sub(clockid_t which_clock, |
| union cpu_time_count a, |
| union cpu_time_count b) |
| { |
| if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
| a.sched -= b.sched; |
| } else { |
| a.cpu = cputime_sub(a.cpu, b.cpu); |
| } |
| return a; |
| } |
| |
| /* |
| * Update expiry time from increment, and increase overrun count, |
| * given the current clock sample. |
| */ |
| static inline void bump_cpu_timer(struct k_itimer *timer, |
| union cpu_time_count now) |
| { |
| int i; |
| |
| if (timer->it.cpu.incr.sched == 0) |
| return; |
| |
| if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) { |
| unsigned long long delta, incr; |
| |
| if (now.sched < timer->it.cpu.expires.sched) |
| return; |
| incr = timer->it.cpu.incr.sched; |
| delta = now.sched + incr - timer->it.cpu.expires.sched; |
| /* Don't use (incr*2 < delta), incr*2 might overflow. */ |
| for (i = 0; incr < delta - incr; i++) |
| incr = incr << 1; |
| for (; i >= 0; incr >>= 1, i--) { |
| if (delta <= incr) |
| continue; |
| timer->it.cpu.expires.sched += incr; |
| timer->it_overrun += 1 << i; |
| delta -= incr; |
| } |
| } else { |
| cputime_t delta, incr; |
| |
| if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu)) |
| return; |
| incr = timer->it.cpu.incr.cpu; |
| delta = cputime_sub(cputime_add(now.cpu, incr), |
| timer->it.cpu.expires.cpu); |
| /* Don't use (incr*2 < delta), incr*2 might overflow. */ |
| for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++) |
| incr = cputime_add(incr, incr); |
| for (; i >= 0; incr = cputime_halve(incr), i--) { |
| if (cputime_le(delta, incr)) |
| continue; |
| timer->it.cpu.expires.cpu = |
| cputime_add(timer->it.cpu.expires.cpu, incr); |
| timer->it_overrun += 1 << i; |
| delta = cputime_sub(delta, incr); |
| } |
| } |
| } |
| |
| static inline cputime_t prof_ticks(struct task_struct *p) |
| { |
| return cputime_add(p->utime, p->stime); |
| } |
| static inline cputime_t virt_ticks(struct task_struct *p) |
| { |
| return p->utime; |
| } |
| static inline unsigned long long sched_ns(struct task_struct *p) |
| { |
| return (p == current) ? current_sched_time(p) : p->sched_time; |
| } |
| |
| int posix_cpu_clock_getres(clockid_t which_clock, struct timespec *tp) |
| { |
| int error = check_clock(which_clock); |
| if (!error) { |
| tp->tv_sec = 0; |
| tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); |
| if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
| /* |
| * If sched_clock is using a cycle counter, we |
| * don't have any idea of its true resolution |
| * exported, but it is much more than 1s/HZ. |
| */ |
| tp->tv_nsec = 1; |
| } |
| } |
| return error; |
| } |
| |
| int posix_cpu_clock_set(clockid_t which_clock, const struct timespec *tp) |
| { |
| /* |
| * You can never reset a CPU clock, but we check for other errors |
| * in the call before failing with EPERM. |
| */ |
| int error = check_clock(which_clock); |
| if (error == 0) { |
| error = -EPERM; |
| } |
| return error; |
| } |
| |
| |
| /* |
| * Sample a per-thread clock for the given task. |
| */ |
| static int cpu_clock_sample(clockid_t which_clock, struct task_struct *p, |
| union cpu_time_count *cpu) |
| { |
| switch (CPUCLOCK_WHICH(which_clock)) { |
| default: |
| return -EINVAL; |
| case CPUCLOCK_PROF: |
| cpu->cpu = prof_ticks(p); |
| break; |
| case CPUCLOCK_VIRT: |
| cpu->cpu = virt_ticks(p); |
| break; |
| case CPUCLOCK_SCHED: |
| cpu->sched = sched_ns(p); |
| break; |
| } |
| return 0; |
| } |
| |
| /* |
| * Sample a process (thread group) clock for the given group_leader task. |
| * Must be called with tasklist_lock held for reading. |
| * Must be called with tasklist_lock held for reading, and p->sighand->siglock. |
| */ |
| static int cpu_clock_sample_group_locked(unsigned int clock_idx, |
| struct task_struct *p, |
| union cpu_time_count *cpu) |
| { |
| struct task_struct *t = p; |
| switch (clock_idx) { |
| default: |
| return -EINVAL; |
| case CPUCLOCK_PROF: |
| cpu->cpu = cputime_add(p->signal->utime, p->signal->stime); |
| do { |
| cpu->cpu = cputime_add(cpu->cpu, prof_ticks(t)); |
| t = next_thread(t); |
| } while (t != p); |
| break; |
| case CPUCLOCK_VIRT: |
| cpu->cpu = p->signal->utime; |
| do { |
| cpu->cpu = cputime_add(cpu->cpu, virt_ticks(t)); |
| t = next_thread(t); |
| } while (t != p); |
| break; |
| case CPUCLOCK_SCHED: |
| cpu->sched = p->signal->sched_time; |
| /* Add in each other live thread. */ |
| while ((t = next_thread(t)) != p) { |
| cpu->sched += t->sched_time; |
| } |
| if (p->tgid == current->tgid) { |
| /* |
| * We're sampling ourselves, so include the |
| * cycles not yet banked. We still omit |
| * other threads running on other CPUs, |
| * so the total can always be behind as |
| * much as max(nthreads-1,ncpus) * (NSEC_PER_SEC/HZ). |
| */ |
| cpu->sched += current_sched_time(current); |
| } else { |
| cpu->sched += p->sched_time; |
| } |
| break; |
| } |
| return 0; |
| } |
| |
| /* |
| * Sample a process (thread group) clock for the given group_leader task. |
| * Must be called with tasklist_lock held for reading. |
| */ |
| static int cpu_clock_sample_group(clockid_t which_clock, |
| struct task_struct *p, |
| union cpu_time_count *cpu) |
| { |
| int ret; |
| unsigned long flags; |
| spin_lock_irqsave(&p->sighand->siglock, flags); |
| ret = cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock), p, |
| cpu); |
| spin_unlock_irqrestore(&p->sighand->siglock, flags); |
| return ret; |
| } |
| |
| |
| int posix_cpu_clock_get(clockid_t which_clock, struct timespec *tp) |
| { |
| const pid_t pid = CPUCLOCK_PID(which_clock); |
| int error = -EINVAL; |
| union cpu_time_count rtn; |
| |
| if (pid == 0) { |
| /* |
| * Special case constant value for our own clocks. |
| * We don't have to do any lookup to find ourselves. |
| */ |
| if (CPUCLOCK_PERTHREAD(which_clock)) { |
| /* |
| * Sampling just ourselves we can do with no locking. |
| */ |
| error = cpu_clock_sample(which_clock, |
| current, &rtn); |
| } else { |
| read_lock(&tasklist_lock); |
| error = cpu_clock_sample_group(which_clock, |
| current, &rtn); |
| read_unlock(&tasklist_lock); |
| } |
| } else { |
| /* |
| * Find the given PID, and validate that the caller |
| * should be able to see it. |
| */ |
| struct task_struct *p; |
| read_lock(&tasklist_lock); |
| p = find_task_by_pid(pid); |
| if (p) { |
| if (CPUCLOCK_PERTHREAD(which_clock)) { |
| if (p->tgid == current->tgid) { |
| error = cpu_clock_sample(which_clock, |
| p, &rtn); |
| } |
| } else if (p->tgid == pid && p->signal) { |
| error = cpu_clock_sample_group(which_clock, |
| p, &rtn); |
| } |
| } |
| read_unlock(&tasklist_lock); |
| } |
| |
| if (error) |
| return error; |
| sample_to_timespec(which_clock, rtn, tp); |
| return 0; |
| } |
| |
| |
| /* |
| * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. |
| * This is called from sys_timer_create with the new timer already locked. |
| */ |
| int posix_cpu_timer_create(struct k_itimer *new_timer) |
| { |
| int ret = 0; |
| const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); |
| struct task_struct *p; |
| |
| if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) |
| return -EINVAL; |
| |
| INIT_LIST_HEAD(&new_timer->it.cpu.entry); |
| new_timer->it.cpu.incr.sched = 0; |
| new_timer->it.cpu.expires.sched = 0; |
| |
| read_lock(&tasklist_lock); |
| if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { |
| if (pid == 0) { |
| p = current; |
| } else { |
| p = find_task_by_pid(pid); |
| if (p && p->tgid != current->tgid) |
| p = NULL; |
| } |
| } else { |
| if (pid == 0) { |
| p = current->group_leader; |
| } else { |
| p = find_task_by_pid(pid); |
| if (p && p->tgid != pid) |
| p = NULL; |
| } |
| } |
| new_timer->it.cpu.task = p; |
| if (p) { |
| get_task_struct(p); |
| } else { |
| ret = -EINVAL; |
| } |
| read_unlock(&tasklist_lock); |
| |
| return ret; |
| } |
| |
| /* |
| * Clean up a CPU-clock timer that is about to be destroyed. |
| * This is called from timer deletion with the timer already locked. |
| * If we return TIMER_RETRY, it's necessary to release the timer's lock |
| * and try again. (This happens when the timer is in the middle of firing.) |
| */ |
| int posix_cpu_timer_del(struct k_itimer *timer) |
| { |
| struct task_struct *p = timer->it.cpu.task; |
| int ret = 0; |
| |
| if (likely(p != NULL)) { |
| read_lock(&tasklist_lock); |
| if (unlikely(p->signal == NULL)) { |
| /* |
| * We raced with the reaping of the task. |
| * The deletion should have cleared us off the list. |
| */ |
| BUG_ON(!list_empty(&timer->it.cpu.entry)); |
| } else { |
| spin_lock(&p->sighand->siglock); |
| if (timer->it.cpu.firing) |
| ret = TIMER_RETRY; |
| else |
| list_del(&timer->it.cpu.entry); |
| spin_unlock(&p->sighand->siglock); |
| } |
| read_unlock(&tasklist_lock); |
| |
| if (!ret) |
| put_task_struct(p); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Clean out CPU timers still ticking when a thread exited. The task |
| * pointer is cleared, and the expiry time is replaced with the residual |
| * time for later timer_gettime calls to return. |
| * This must be called with the siglock held. |
| */ |
| static void cleanup_timers(struct list_head *head, |
| cputime_t utime, cputime_t stime, |
| unsigned long long sched_time) |
| { |
| struct cpu_timer_list *timer, *next; |
| cputime_t ptime = cputime_add(utime, stime); |
| |
| list_for_each_entry_safe(timer, next, head, entry) { |
| list_del_init(&timer->entry); |
| if (cputime_lt(timer->expires.cpu, ptime)) { |
| timer->expires.cpu = cputime_zero; |
| } else { |
| timer->expires.cpu = cputime_sub(timer->expires.cpu, |
| ptime); |
| } |
| } |
| |
| ++head; |
| list_for_each_entry_safe(timer, next, head, entry) { |
| list_del_init(&timer->entry); |
| if (cputime_lt(timer->expires.cpu, utime)) { |
| timer->expires.cpu = cputime_zero; |
| } else { |
| timer->expires.cpu = cputime_sub(timer->expires.cpu, |
| utime); |
| } |
| } |
| |
| ++head; |
| list_for_each_entry_safe(timer, next, head, entry) { |
| list_del_init(&timer->entry); |
| if (timer->expires.sched < sched_time) { |
| timer->expires.sched = 0; |
| } else { |
| timer->expires.sched -= sched_time; |
| } |
| } |
| } |
| |
| /* |
| * These are both called with the siglock held, when the current thread |
| * is being reaped. When the final (leader) thread in the group is reaped, |
| * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. |
| */ |
| void posix_cpu_timers_exit(struct task_struct *tsk) |
| { |
| cleanup_timers(tsk->cpu_timers, |
| tsk->utime, tsk->stime, tsk->sched_time); |
| |
| } |
| void posix_cpu_timers_exit_group(struct task_struct *tsk) |
| { |
| cleanup_timers(tsk->signal->cpu_timers, |
| cputime_add(tsk->utime, tsk->signal->utime), |
| cputime_add(tsk->stime, tsk->signal->stime), |
| tsk->sched_time + tsk->signal->sched_time); |
| } |
| |
| |
| /* |
| * Set the expiry times of all the threads in the process so one of them |
| * will go off before the process cumulative expiry total is reached. |
| */ |
| static void process_timer_rebalance(struct task_struct *p, |
| unsigned int clock_idx, |
| union cpu_time_count expires, |
| union cpu_time_count val) |
| { |
| cputime_t ticks, left; |
| unsigned long long ns, nsleft; |
| struct task_struct *t = p; |
| unsigned int nthreads = atomic_read(&p->signal->live); |
| |
| if (!nthreads) |
| return; |
| |
| switch (clock_idx) { |
| default: |
| BUG(); |
| break; |
| case CPUCLOCK_PROF: |
| left = cputime_div(cputime_sub(expires.cpu, val.cpu), |
| nthreads); |
| do { |
| if (!unlikely(t->exit_state)) { |
| ticks = cputime_add(prof_ticks(t), left); |
| if (cputime_eq(t->it_prof_expires, |
| cputime_zero) || |
| cputime_gt(t->it_prof_expires, ticks)) { |
| t->it_prof_expires = ticks; |
| } |
| } |
| t = next_thread(t); |
| } while (t != p); |
| break; |
| case CPUCLOCK_VIRT: |
| left = cputime_div(cputime_sub(expires.cpu, val.cpu), |
| nthreads); |
| do { |
| if (!unlikely(t->exit_state)) { |
| ticks = cputime_add(virt_ticks(t), left); |
| if (cputime_eq(t->it_virt_expires, |
| cputime_zero) || |
| cputime_gt(t->it_virt_expires, ticks)) { |
| t->it_virt_expires = ticks; |
| } |
| } |
| t = next_thread(t); |
| } while (t != p); |
| break; |
| case CPUCLOCK_SCHED: |
| nsleft = expires.sched - val.sched; |
| do_div(nsleft, nthreads); |
| do { |
| if (!unlikely(t->exit_state)) { |
| ns = t->sched_time + nsleft; |
| if (t->it_sched_expires == 0 || |
| t->it_sched_expires > ns) { |
| t->it_sched_expires = ns; |
| } |
| } |
| t = next_thread(t); |
| } while (t != p); |
| break; |
| } |
| } |
| |
| static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) |
| { |
| /* |
| * That's all for this thread or process. |
| * We leave our residual in expires to be reported. |
| */ |
| put_task_struct(timer->it.cpu.task); |
| timer->it.cpu.task = NULL; |
| timer->it.cpu.expires = cpu_time_sub(timer->it_clock, |
| timer->it.cpu.expires, |
| now); |
| } |
| |
| /* |
| * Insert the timer on the appropriate list before any timers that |
| * expire later. This must be called with the tasklist_lock held |
| * for reading, and interrupts disabled. |
| */ |
| static void arm_timer(struct k_itimer *timer, union cpu_time_count now) |
| { |
| struct task_struct *p = timer->it.cpu.task; |
| struct list_head *head, *listpos; |
| struct cpu_timer_list *const nt = &timer->it.cpu; |
| struct cpu_timer_list *next; |
| unsigned long i; |
| |
| head = (CPUCLOCK_PERTHREAD(timer->it_clock) ? |
| p->cpu_timers : p->signal->cpu_timers); |
| head += CPUCLOCK_WHICH(timer->it_clock); |
| |
| BUG_ON(!irqs_disabled()); |
| spin_lock(&p->sighand->siglock); |
| |
| listpos = head; |
| if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) { |
| list_for_each_entry(next, head, entry) { |
| if (next->expires.sched > nt->expires.sched) { |
| listpos = &next->entry; |
| break; |
| } |
| } |
| } else { |
| list_for_each_entry(next, head, entry) { |
| if (cputime_gt(next->expires.cpu, nt->expires.cpu)) { |
| listpos = &next->entry; |
| break; |
| } |
| } |
| } |
| list_add(&nt->entry, listpos); |
| |
| if (listpos == head) { |
| /* |
| * We are the new earliest-expiring timer. |
| * If we are a thread timer, there can always |
| * be a process timer telling us to stop earlier. |
| */ |
| |
| if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
| switch (CPUCLOCK_WHICH(timer->it_clock)) { |
| default: |
| BUG(); |
| case CPUCLOCK_PROF: |
| if (cputime_eq(p->it_prof_expires, |
| cputime_zero) || |
| cputime_gt(p->it_prof_expires, |
| nt->expires.cpu)) |
| p->it_prof_expires = nt->expires.cpu; |
| break; |
| case CPUCLOCK_VIRT: |
| if (cputime_eq(p->it_virt_expires, |
| cputime_zero) || |
| cputime_gt(p->it_virt_expires, |
| nt->expires.cpu)) |
| p->it_virt_expires = nt->expires.cpu; |
| break; |
| case CPUCLOCK_SCHED: |
| if (p->it_sched_expires == 0 || |
| p->it_sched_expires > nt->expires.sched) |
| p->it_sched_expires = nt->expires.sched; |
| break; |
| } |
| } else { |
| /* |
| * For a process timer, we must balance |
| * all the live threads' expirations. |
| */ |
| switch (CPUCLOCK_WHICH(timer->it_clock)) { |
| default: |
| BUG(); |
| case CPUCLOCK_VIRT: |
| if (!cputime_eq(p->signal->it_virt_expires, |
| cputime_zero) && |
| cputime_lt(p->signal->it_virt_expires, |
| timer->it.cpu.expires.cpu)) |
| break; |
| goto rebalance; |
| case CPUCLOCK_PROF: |
| if (!cputime_eq(p->signal->it_prof_expires, |
| cputime_zero) && |
| cputime_lt(p->signal->it_prof_expires, |
| timer->it.cpu.expires.cpu)) |
| break; |
| i = p->signal->rlim[RLIMIT_CPU].rlim_cur; |
| if (i != RLIM_INFINITY && |
| i <= cputime_to_secs(timer->it.cpu.expires.cpu)) |
| break; |
| goto rebalance; |
| case CPUCLOCK_SCHED: |
| rebalance: |
| process_timer_rebalance( |
| timer->it.cpu.task, |
| CPUCLOCK_WHICH(timer->it_clock), |
| timer->it.cpu.expires, now); |
| break; |
| } |
| } |
| } |
| |
| spin_unlock(&p->sighand->siglock); |
| } |
| |
| /* |
| * The timer is locked, fire it and arrange for its reload. |
| */ |
| static void cpu_timer_fire(struct k_itimer *timer) |
| { |
| if (unlikely(timer->sigq == NULL)) { |
| /* |
| * This a special case for clock_nanosleep, |
| * not a normal timer from sys_timer_create. |
| */ |
| wake_up_process(timer->it_process); |
| timer->it.cpu.expires.sched = 0; |
| } else if (timer->it.cpu.incr.sched == 0) { |
| /* |
| * One-shot timer. Clear it as soon as it's fired. |
| */ |
| posix_timer_event(timer, 0); |
| timer->it.cpu.expires.sched = 0; |
| } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { |
| /* |
| * The signal did not get queued because the signal |
| * was ignored, so we won't get any callback to |
| * reload the timer. But we need to keep it |
| * ticking in case the signal is deliverable next time. |
| */ |
| posix_cpu_timer_schedule(timer); |
| } |
| } |
| |
| /* |
| * Guts of sys_timer_settime for CPU timers. |
| * This is called with the timer locked and interrupts disabled. |
| * If we return TIMER_RETRY, it's necessary to release the timer's lock |
| * and try again. (This happens when the timer is in the middle of firing.) |
| */ |
| int posix_cpu_timer_set(struct k_itimer *timer, int flags, |
| struct itimerspec *new, struct itimerspec *old) |
| { |
| struct task_struct *p = timer->it.cpu.task; |
| union cpu_time_count old_expires, new_expires, val; |
| int ret; |
| |
| if (unlikely(p == NULL)) { |
| /* |
| * Timer refers to a dead task's clock. |
| */ |
| return -ESRCH; |
| } |
| |
| new_expires = timespec_to_sample(timer->it_clock, &new->it_value); |
| |
| read_lock(&tasklist_lock); |
| /* |
| * We need the tasklist_lock to protect against reaping that |
| * clears p->signal. If p has just been reaped, we can no |
| * longer get any information about it at all. |
| */ |
| if (unlikely(p->signal == NULL)) { |
| read_unlock(&tasklist_lock); |
| put_task_struct(p); |
| timer->it.cpu.task = NULL; |
| return -ESRCH; |
| } |
| |
| /* |
| * Disarm any old timer after extracting its expiry time. |
| */ |
| BUG_ON(!irqs_disabled()); |
| |
| ret = 0; |
| spin_lock(&p->sighand->siglock); |
| old_expires = timer->it.cpu.expires; |
| if (unlikely(timer->it.cpu.firing)) { |
| timer->it.cpu.firing = -1; |
| ret = TIMER_RETRY; |
| } else |
| list_del_init(&timer->it.cpu.entry); |
| spin_unlock(&p->sighand->siglock); |
| |
| /* |
| * We need to sample the current value to convert the new |
| * value from to relative and absolute, and to convert the |
| * old value from absolute to relative. To set a process |
| * timer, we need a sample to balance the thread expiry |
| * times (in arm_timer). With an absolute time, we must |
| * check if it's already passed. In short, we need a sample. |
| */ |
| if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
| cpu_clock_sample(timer->it_clock, p, &val); |
| } else { |
| cpu_clock_sample_group(timer->it_clock, p, &val); |
| } |
| |
| if (old) { |
| if (old_expires.sched == 0) { |
| old->it_value.tv_sec = 0; |
| old->it_value.tv_nsec = 0; |
| } else { |
| /* |
| * Update the timer in case it has |
| * overrun already. If it has, |
| * we'll report it as having overrun |
| * and with the next reloaded timer |
| * already ticking, though we are |
| * swallowing that pending |
| * notification here to install the |
| * new setting. |
| */ |
| bump_cpu_timer(timer, val); |
| if (cpu_time_before(timer->it_clock, val, |
| timer->it.cpu.expires)) { |
| old_expires = cpu_time_sub( |
| timer->it_clock, |
| timer->it.cpu.expires, val); |
| sample_to_timespec(timer->it_clock, |
| old_expires, |
| &old->it_value); |
| } else { |
| old->it_value.tv_nsec = 1; |
| old->it_value.tv_sec = 0; |
| } |
| } |
| } |
| |
| if (unlikely(ret)) { |
| /* |
| * We are colliding with the timer actually firing. |
| * Punt after filling in the timer's old value, and |
| * disable this firing since we are already reporting |
| * it as an overrun (thanks to bump_cpu_timer above). |
| */ |
| read_unlock(&tasklist_lock); |
| goto out; |
| } |
| |
| if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) { |
| cpu_time_add(timer->it_clock, &new_expires, val); |
| } |
| |
| /* |
| * Install the new expiry time (or zero). |
| * For a timer with no notification action, we don't actually |
| * arm the timer (we'll just fake it for timer_gettime). |
| */ |
| timer->it.cpu.expires = new_expires; |
| if (new_expires.sched != 0 && |
| (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE && |
| cpu_time_before(timer->it_clock, val, new_expires)) { |
| arm_timer(timer, val); |
| } |
| |
| read_unlock(&tasklist_lock); |
| |
| /* |
| * Install the new reload setting, and |
| * set up the signal and overrun bookkeeping. |
| */ |
| timer->it.cpu.incr = timespec_to_sample(timer->it_clock, |
| &new->it_interval); |
| |
| /* |
| * This acts as a modification timestamp for the timer, |
| * so any automatic reload attempt will punt on seeing |
| * that we have reset the timer manually. |
| */ |
| timer->it_requeue_pending = (timer->it_requeue_pending + 2) & |
| ~REQUEUE_PENDING; |
| timer->it_overrun_last = 0; |
| timer->it_overrun = -1; |
| |
| if (new_expires.sched != 0 && |
| (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE && |
| !cpu_time_before(timer->it_clock, val, new_expires)) { |
| /* |
| * The designated time already passed, so we notify |
| * immediately, even if the thread never runs to |
| * accumulate more time on this clock. |
| */ |
| cpu_timer_fire(timer); |
| } |
| |
| ret = 0; |
| out: |
| if (old) { |
| sample_to_timespec(timer->it_clock, |
| timer->it.cpu.incr, &old->it_interval); |
| } |
| return ret; |
| } |
| |
| void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) |
| { |
| union cpu_time_count now; |
| struct task_struct *p = timer->it.cpu.task; |
| int clear_dead; |
| |
| /* |
| * Easy part: convert the reload time. |
| */ |
| sample_to_timespec(timer->it_clock, |
| timer->it.cpu.incr, &itp->it_interval); |
| |
| if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */ |
| itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; |
| return; |
| } |
| |
| if (unlikely(p == NULL)) { |
| /* |
| * This task already died and the timer will never fire. |
| * In this case, expires is actually the dead value. |
| */ |
| dead: |
| sample_to_timespec(timer->it_clock, timer->it.cpu.expires, |
| &itp->it_value); |
| return; |
| } |
| |
| /* |
| * Sample the clock to take the difference with the expiry time. |
| */ |
| if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
| cpu_clock_sample(timer->it_clock, p, &now); |
| clear_dead = p->exit_state; |
| } else { |
| read_lock(&tasklist_lock); |
| if (unlikely(p->signal == NULL)) { |
| /* |
| * The process has been reaped. |
| * We can't even collect a sample any more. |
| * Call the timer disarmed, nothing else to do. |
| */ |
| put_task_struct(p); |
| timer->it.cpu.task = NULL; |
| timer->it.cpu.expires.sched = 0; |
| read_unlock(&tasklist_lock); |
| goto dead; |
| } else { |
| cpu_clock_sample_group(timer->it_clock, p, &now); |
| clear_dead = (unlikely(p->exit_state) && |
| thread_group_empty(p)); |
| } |
| read_unlock(&tasklist_lock); |
| } |
| |
| if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { |
| if (timer->it.cpu.incr.sched == 0 && |
| cpu_time_before(timer->it_clock, |
| timer->it.cpu.expires, now)) { |
| /* |
| * Do-nothing timer expired and has no reload, |
| * so it's as if it was never set. |
| */ |
| timer->it.cpu.expires.sched = 0; |
| itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; |
| return; |
| } |
| /* |
| * Account for any expirations and reloads that should |
| * have happened. |
| */ |
| bump_cpu_timer(timer, now); |
| } |
| |
| if (unlikely(clear_dead)) { |
| /* |
| * We've noticed that the thread is dead, but |
| * not yet reaped. Take this opportunity to |
| * drop our task ref. |
| */ |
| clear_dead_task(timer, now); |
| goto dead; |
| } |
| |
| if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) { |
| sample_to_timespec(timer->it_clock, |
| cpu_time_sub(timer->it_clock, |
| timer->it.cpu.expires, now), |
| &itp->it_value); |
| } else { |
| /* |
| * The timer should have expired already, but the firing |
| * hasn't taken place yet. Say it's just about to expire. |
| */ |
| itp->it_value.tv_nsec = 1; |
| itp->it_value.tv_sec = 0; |
| } |
| } |
| |
| /* |
| * Check for any per-thread CPU timers that have fired and move them off |
| * the tsk->cpu_timers[N] list onto the firing list. Here we update the |
| * tsk->it_*_expires values to reflect the remaining thread CPU timers. |
| */ |
| static void check_thread_timers(struct task_struct *tsk, |
| struct list_head *firing) |
| { |
| int maxfire; |
| struct list_head *timers = tsk->cpu_timers; |
| |
| maxfire = 20; |
| tsk->it_prof_expires = cputime_zero; |
| while (!list_empty(timers)) { |
| struct cpu_timer_list *t = list_entry(timers->next, |
| struct cpu_timer_list, |
| entry); |
| if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) { |
| tsk->it_prof_expires = t->expires.cpu; |
| break; |
| } |
| t->firing = 1; |
| list_move_tail(&t->entry, firing); |
| } |
| |
| ++timers; |
| maxfire = 20; |
| tsk->it_virt_expires = cputime_zero; |
| while (!list_empty(timers)) { |
| struct cpu_timer_list *t = list_entry(timers->next, |
| struct cpu_timer_list, |
| entry); |
| if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) { |
| tsk->it_virt_expires = t->expires.cpu; |
| break; |
| } |
| t->firing = 1; |
| list_move_tail(&t->entry, firing); |
| } |
| |
| ++timers; |
| maxfire = 20; |
| tsk->it_sched_expires = 0; |
| while (!list_empty(timers)) { |
| struct cpu_timer_list *t = list_entry(timers->next, |
| struct cpu_timer_list, |
| entry); |
| if (!--maxfire || tsk->sched_time < t->expires.sched) { |
| tsk->it_sched_expires = t->expires.sched; |
| break; |
| } |
| t->firing = 1; |
| list_move_tail(&t->entry, firing); |
| } |
| } |
| |
| /* |
| * Check for any per-thread CPU timers that have fired and move them |
| * off the tsk->*_timers list onto the firing list. Per-thread timers |
| * have already been taken off. |
| */ |
| static void check_process_timers(struct task_struct *tsk, |
| struct list_head *firing) |
| { |
| int maxfire; |
| struct signal_struct *const sig = tsk->signal; |
| cputime_t utime, stime, ptime, virt_expires, prof_expires; |
| unsigned long long sched_time, sched_expires; |
| struct task_struct *t; |
| struct list_head *timers = sig->cpu_timers; |
| |
| /* |
| * Don't sample the current process CPU clocks if there are no timers. |
| */ |
| if (list_empty(&timers[CPUCLOCK_PROF]) && |
| cputime_eq(sig->it_prof_expires, cputime_zero) && |
| sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY && |
| list_empty(&timers[CPUCLOCK_VIRT]) && |
| cputime_eq(sig->it_virt_expires, cputime_zero) && |
| list_empty(&timers[CPUCLOCK_SCHED])) |
| return; |
| |
| /* |
| * Collect the current process totals. |
| */ |
| utime = sig->utime; |
| stime = sig->stime; |
| sched_time = sig->sched_time; |
| t = tsk; |
| do { |
| utime = cputime_add(utime, t->utime); |
| stime = cputime_add(stime, t->stime); |
| sched_time += t->sched_time; |
| t = next_thread(t); |
| } while (t != tsk); |
| ptime = cputime_add(utime, stime); |
| |
| maxfire = 20; |
| prof_expires = cputime_zero; |
| while (!list_empty(timers)) { |
| struct cpu_timer_list *t = list_entry(timers->next, |
| struct cpu_timer_list, |
| entry); |
| if (!--maxfire || cputime_lt(ptime, t->expires.cpu)) { |
| prof_expires = t->expires.cpu; |
| break; |
| } |
| t->firing = 1; |
| list_move_tail(&t->entry, firing); |
| } |
| |
| ++timers; |
| maxfire = 20; |
| virt_expires = cputime_zero; |
| while (!list_empty(timers)) { |
| struct cpu_timer_list *t = list_entry(timers->next, |
| struct cpu_timer_list, |
| entry); |
| if (!--maxfire || cputime_lt(utime, t->expires.cpu)) { |
| virt_expires = t->expires.cpu; |
| break; |
| } |
| t->firing = 1; |
| list_move_tail(&t->entry, firing); |
| } |
| |
| ++timers; |
| maxfire = 20; |
| sched_expires = 0; |
| while (!list_empty(timers)) { |
| struct cpu_timer_list *t = list_entry(timers->next, |
| struct cpu_timer_list, |
| entry); |
| if (!--maxfire || sched_time < t->expires.sched) { |
| sched_expires = t->expires.sched; |
| break; |
| } |
| t->firing = 1; |
| list_move_tail(&t->entry, firing); |
| } |
| |
| /* |
| * Check for the special case process timers. |
| */ |
| if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { |
| if (cputime_ge(ptime, sig->it_prof_expires)) { |
| /* ITIMER_PROF fires and reloads. */ |
| sig->it_prof_expires = sig->it_prof_incr; |
| if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { |
| sig->it_prof_expires = cputime_add( |
| sig->it_prof_expires, ptime); |
| } |
| __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk); |
| } |
| if (!cputime_eq(sig->it_prof_expires, cputime_zero) && |
| (cputime_eq(prof_expires, cputime_zero) || |
| cputime_lt(sig->it_prof_expires, prof_expires))) { |
| prof_expires = sig->it_prof_expires; |
| } |
| } |
| if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { |
| if (cputime_ge(utime, sig->it_virt_expires)) { |
| /* ITIMER_VIRTUAL fires and reloads. */ |
| sig->it_virt_expires = sig->it_virt_incr; |
| if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { |
| sig->it_virt_expires = cputime_add( |
| sig->it_virt_expires, utime); |
| } |
| __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk); |
| } |
| if (!cputime_eq(sig->it_virt_expires, cputime_zero) && |
| (cputime_eq(virt_expires, cputime_zero) || |
| cputime_lt(sig->it_virt_expires, virt_expires))) { |
| virt_expires = sig->it_virt_expires; |
| } |
| } |
| if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { |
| unsigned long psecs = cputime_to_secs(ptime); |
| cputime_t x; |
| if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) { |
| /* |
| * At the hard limit, we just die. |
| * No need to calculate anything else now. |
| */ |
| __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); |
| return; |
| } |
| if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) { |
| /* |
| * At the soft limit, send a SIGXCPU every second. |
| */ |
| __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); |
| if (sig->rlim[RLIMIT_CPU].rlim_cur |
| < sig->rlim[RLIMIT_CPU].rlim_max) { |
| sig->rlim[RLIMIT_CPU].rlim_cur++; |
| } |
| } |
| x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur); |
| if (cputime_eq(prof_expires, cputime_zero) || |
| cputime_lt(x, prof_expires)) { |
| prof_expires = x; |
| } |
| } |
| |
| if (!cputime_eq(prof_expires, cputime_zero) || |
| !cputime_eq(virt_expires, cputime_zero) || |
| sched_expires != 0) { |
| /* |
| * Rebalance the threads' expiry times for the remaining |
| * process CPU timers. |
| */ |
| |
| cputime_t prof_left, virt_left, ticks; |
| unsigned long long sched_left, sched; |
| const unsigned int nthreads = atomic_read(&sig->live); |
| |
| if (!nthreads) |
| return; |
| |
| prof_left = cputime_sub(prof_expires, utime); |
| prof_left = cputime_sub(prof_left, stime); |
| prof_left = cputime_div(prof_left, nthreads); |
| virt_left = cputime_sub(virt_expires, utime); |
| virt_left = cputime_div(virt_left, nthreads); |
| if (sched_expires) { |
| sched_left = sched_expires - sched_time; |
| do_div(sched_left, nthreads); |
| } else { |
| sched_left = 0; |
| } |
| t = tsk; |
| do { |
| ticks = cputime_add(cputime_add(t->utime, t->stime), |
| prof_left); |
| if (!cputime_eq(prof_expires, cputime_zero) && |
| (cputime_eq(t->it_prof_expires, cputime_zero) || |
| cputime_gt(t->it_prof_expires, ticks))) { |
| t->it_prof_expires = ticks; |
| } |
| |
| ticks = cputime_add(t->utime, virt_left); |
| if (!cputime_eq(virt_expires, cputime_zero) && |
| (cputime_eq(t->it_virt_expires, cputime_zero) || |
| cputime_gt(t->it_virt_expires, ticks))) { |
| t->it_virt_expires = ticks; |
| } |
| |
| sched = t->sched_time + sched_left; |
| if (sched_expires && (t->it_sched_expires == 0 || |
| t->it_sched_expires > sched)) { |
| t->it_sched_expires = sched; |
| } |
| |
| do { |
| t = next_thread(t); |
| } while (unlikely(t->exit_state)); |
| } while (t != tsk); |
| } |
| } |
| |
| /* |
| * This is called from the signal code (via do_schedule_next_timer) |
| * when the last timer signal was delivered and we have to reload the timer. |
| */ |
| void posix_cpu_timer_schedule(struct k_itimer *timer) |
| { |
| struct task_struct *p = timer->it.cpu.task; |
| union cpu_time_count now; |
| |
| if (unlikely(p == NULL)) |
| /* |
| * The task was cleaned up already, no future firings. |
| */ |
| return; |
| |
| /* |
| * Fetch the current sample and update the timer's expiry time. |
| */ |
| if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
| cpu_clock_sample(timer->it_clock, p, &now); |
| bump_cpu_timer(timer, now); |
| if (unlikely(p->exit_state)) { |
| clear_dead_task(timer, now); |
| return; |
| } |
| read_lock(&tasklist_lock); /* arm_timer needs it. */ |
| } else { |
| read_lock(&tasklist_lock); |
| if (unlikely(p->signal == NULL)) { |
| /* |
| * The process has been reaped. |
| * We can't even collect a sample any more. |
| */ |
| put_task_struct(p); |
| timer->it.cpu.task = p = NULL; |
| timer->it.cpu.expires.sched = 0; |
| read_unlock(&tasklist_lock); |
| return; |
| } else if (unlikely(p->exit_state) && thread_group_empty(p)) { |
| /* |
| * We've noticed that the thread is dead, but |
| * not yet reaped. Take this opportunity to |
| * drop our task ref. |
| */ |
| clear_dead_task(timer, now); |
| read_unlock(&tasklist_lock); |
| return; |
| } |
| cpu_clock_sample_group(timer->it_clock, p, &now); |
| bump_cpu_timer(timer, now); |
| /* Leave the tasklist_lock locked for the call below. */ |
| } |
| |
| /* |
| * Now re-arm for the new expiry time. |
| */ |
| arm_timer(timer, now); |
| |
| read_unlock(&tasklist_lock); |
| } |
| |
| /* |
| * This is called from the timer interrupt handler. The irq handler has |
| * already updated our counts. We need to check if any timers fire now. |
| * Interrupts are disabled. |
| */ |
| void run_posix_cpu_timers(struct task_struct *tsk) |
| { |
| LIST_HEAD(firing); |
| struct k_itimer *timer, *next; |
| |
| BUG_ON(!irqs_disabled()); |
| |
| #define UNEXPIRED(clock) \ |
| (cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \ |
| cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires)) |
| |
| if (UNEXPIRED(prof) && UNEXPIRED(virt) && |
| (tsk->it_sched_expires == 0 || |
| tsk->sched_time < tsk->it_sched_expires)) |
| return; |
| |
| #undef UNEXPIRED |
| |
| /* |
| * Double-check with locks held. |
| */ |
| read_lock(&tasklist_lock); |
| if (likely(tsk->signal != NULL)) { |
| spin_lock(&tsk->sighand->siglock); |
| |
| /* |
| * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N] |
| * all the timers that are firing, and put them on the firing list. |
| */ |
| check_thread_timers(tsk, &firing); |
| check_process_timers(tsk, &firing); |
| |
| /* |
| * We must release these locks before taking any timer's lock. |
| * There is a potential race with timer deletion here, as the |
| * siglock now protects our private firing list. We have set |
| * the firing flag in each timer, so that a deletion attempt |
| * that gets the timer lock before we do will give it up and |
| * spin until we've taken care of that timer below. |
| */ |
| spin_unlock(&tsk->sighand->siglock); |
| } |
| read_unlock(&tasklist_lock); |
| |
| /* |
| * Now that all the timers on our list have the firing flag, |
| * noone will touch their list entries but us. We'll take |
| * each timer's lock before clearing its firing flag, so no |
| * timer call will interfere. |
| */ |
| list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { |
| int firing; |
| spin_lock(&timer->it_lock); |
| list_del_init(&timer->it.cpu.entry); |
| firing = timer->it.cpu.firing; |
| timer->it.cpu.firing = 0; |
| /* |
| * The firing flag is -1 if we collided with a reset |
| * of the timer, which already reported this |
| * almost-firing as an overrun. So don't generate an event. |
| */ |
| if (likely(firing >= 0)) { |
| cpu_timer_fire(timer); |
| } |
| spin_unlock(&timer->it_lock); |
| } |
| } |
| |
| /* |
| * Set one of the process-wide special case CPU timers. |
| * The tasklist_lock and tsk->sighand->siglock must be held by the caller. |
| * The oldval argument is null for the RLIMIT_CPU timer, where *newval is |
| * absolute; non-null for ITIMER_*, where *newval is relative and we update |
| * it to be absolute, *oldval is absolute and we update it to be relative. |
| */ |
| void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, |
| cputime_t *newval, cputime_t *oldval) |
| { |
| union cpu_time_count now; |
| struct list_head *head; |
| |
| BUG_ON(clock_idx == CPUCLOCK_SCHED); |
| cpu_clock_sample_group_locked(clock_idx, tsk, &now); |
| |
| if (oldval) { |
| if (!cputime_eq(*oldval, cputime_zero)) { |
| if (cputime_le(*oldval, now.cpu)) { |
| /* Just about to fire. */ |
| *oldval = jiffies_to_cputime(1); |
| } else { |
| *oldval = cputime_sub(*oldval, now.cpu); |
| } |
| } |
| |
| if (cputime_eq(*newval, cputime_zero)) |
| return; |
| *newval = cputime_add(*newval, now.cpu); |
| |
| /* |
| * If the RLIMIT_CPU timer will expire before the |
| * ITIMER_PROF timer, we have nothing else to do. |
| */ |
| if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur |
| < cputime_to_secs(*newval)) |
| return; |
| } |
| |
| /* |
| * Check whether there are any process timers already set to fire |
| * before this one. If so, we don't have anything more to do. |
| */ |
| head = &tsk->signal->cpu_timers[clock_idx]; |
| if (list_empty(head) || |
| cputime_ge(list_entry(head->next, |
| struct cpu_timer_list, entry)->expires.cpu, |
| *newval)) { |
| /* |
| * Rejigger each thread's expiry time so that one will |
| * notice before we hit the process-cumulative expiry time. |
| */ |
| union cpu_time_count expires = { .sched = 0 }; |
| expires.cpu = *newval; |
| process_timer_rebalance(tsk, clock_idx, expires, now); |
| } |
| } |
| |
| static long posix_cpu_clock_nanosleep_restart(struct restart_block *); |
| |
| int posix_cpu_nsleep(clockid_t which_clock, int flags, |
| struct timespec *rqtp) |
| { |
| struct restart_block *restart_block = |
| ¤t_thread_info()->restart_block; |
| struct k_itimer timer; |
| int error; |
| |
| /* |
| * Diagnose required errors first. |
| */ |
| if (CPUCLOCK_PERTHREAD(which_clock) && |
| (CPUCLOCK_PID(which_clock) == 0 || |
| CPUCLOCK_PID(which_clock) == current->pid)) |
| return -EINVAL; |
| |
| /* |
| * Set up a temporary timer and then wait for it to go off. |
| */ |
| memset(&timer, 0, sizeof timer); |
| spin_lock_init(&timer.it_lock); |
| timer.it_clock = which_clock; |
| timer.it_overrun = -1; |
| error = posix_cpu_timer_create(&timer); |
| timer.it_process = current; |
| if (!error) { |
| struct timespec __user *rmtp; |
| static struct itimerspec zero_it; |
| struct itimerspec it = { .it_value = *rqtp, |
| .it_interval = {} }; |
| |
| spin_lock_irq(&timer.it_lock); |
| error = posix_cpu_timer_set(&timer, flags, &it, NULL); |
| if (error) { |
| spin_unlock_irq(&timer.it_lock); |
| return error; |
| } |
| |
| while (!signal_pending(current)) { |
| if (timer.it.cpu.expires.sched == 0) { |
| /* |
| * Our timer fired and was reset. |
| */ |
| spin_unlock_irq(&timer.it_lock); |
| return 0; |
| } |
| |
| /* |
| * Block until cpu_timer_fire (or a signal) wakes us. |
| */ |
| __set_current_state(TASK_INTERRUPTIBLE); |
| spin_unlock_irq(&timer.it_lock); |
| schedule(); |
| spin_lock_irq(&timer.it_lock); |
| } |
| |
| /* |
| * We were interrupted by a signal. |
| */ |
| sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp); |
| posix_cpu_timer_set(&timer, 0, &zero_it, &it); |
| spin_unlock_irq(&timer.it_lock); |
| |
| if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) { |
| /* |
| * It actually did fire already. |
| */ |
| return 0; |
| } |
| |
| /* |
| * Report back to the user the time still remaining. |
| */ |
| rmtp = (struct timespec __user *) restart_block->arg1; |
| if (rmtp != NULL && !(flags & TIMER_ABSTIME) && |
| copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) |
| return -EFAULT; |
| |
| restart_block->fn = posix_cpu_clock_nanosleep_restart; |
| /* Caller already set restart_block->arg1 */ |
| restart_block->arg0 = which_clock; |
| restart_block->arg2 = rqtp->tv_sec; |
| restart_block->arg3 = rqtp->tv_nsec; |
| |
| error = -ERESTART_RESTARTBLOCK; |
| } |
| |
| return error; |
| } |
| |
| static long |
| posix_cpu_clock_nanosleep_restart(struct restart_block *restart_block) |
| { |
| clockid_t which_clock = restart_block->arg0; |
| struct timespec t = { .tv_sec = restart_block->arg2, |
| .tv_nsec = restart_block->arg3 }; |
| restart_block->fn = do_no_restart_syscall; |
| return posix_cpu_nsleep(which_clock, TIMER_ABSTIME, &t); |
| } |
| |
| |
| #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) |
| #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) |
| |
| static int process_cpu_clock_getres(clockid_t which_clock, struct timespec *tp) |
| { |
| return posix_cpu_clock_getres(PROCESS_CLOCK, tp); |
| } |
| static int process_cpu_clock_get(clockid_t which_clock, struct timespec *tp) |
| { |
| return posix_cpu_clock_get(PROCESS_CLOCK, tp); |
| } |
| static int process_cpu_timer_create(struct k_itimer *timer) |
| { |
| timer->it_clock = PROCESS_CLOCK; |
| return posix_cpu_timer_create(timer); |
| } |
| static int process_cpu_nsleep(clockid_t which_clock, int flags, |
| struct timespec *rqtp) |
| { |
| return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp); |
| } |
| static int thread_cpu_clock_getres(clockid_t which_clock, struct timespec *tp) |
| { |
| return posix_cpu_clock_getres(THREAD_CLOCK, tp); |
| } |
| static int thread_cpu_clock_get(clockid_t which_clock, struct timespec *tp) |
| { |
| return posix_cpu_clock_get(THREAD_CLOCK, tp); |
| } |
| static int thread_cpu_timer_create(struct k_itimer *timer) |
| { |
| timer->it_clock = THREAD_CLOCK; |
| return posix_cpu_timer_create(timer); |
| } |
| static int thread_cpu_nsleep(clockid_t which_clock, int flags, |
| struct timespec *rqtp) |
| { |
| return -EINVAL; |
| } |
| |
| static __init int init_posix_cpu_timers(void) |
| { |
| struct k_clock process = { |
| .clock_getres = process_cpu_clock_getres, |
| .clock_get = process_cpu_clock_get, |
| .clock_set = do_posix_clock_nosettime, |
| .timer_create = process_cpu_timer_create, |
| .nsleep = process_cpu_nsleep, |
| }; |
| struct k_clock thread = { |
| .clock_getres = thread_cpu_clock_getres, |
| .clock_get = thread_cpu_clock_get, |
| .clock_set = do_posix_clock_nosettime, |
| .timer_create = thread_cpu_timer_create, |
| .nsleep = thread_cpu_nsleep, |
| }; |
| |
| register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process); |
| register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread); |
| |
| return 0; |
| } |
| __initcall(init_posix_cpu_timers); |