| /* |
| * Copyright (C) 1991, 1992 Linus Torvalds |
| * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs |
| * |
| * Pentium III FXSR, SSE support |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| */ |
| |
| /* |
| * Handle hardware traps and faults. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/context_tracking.h> |
| #include <linux/interrupt.h> |
| #include <linux/kallsyms.h> |
| #include <linux/spinlock.h> |
| #include <linux/kprobes.h> |
| #include <linux/uaccess.h> |
| #include <linux/kdebug.h> |
| #include <linux/kgdb.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/ptrace.h> |
| #include <linux/uprobes.h> |
| #include <linux/string.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/kexec.h> |
| #include <linux/sched.h> |
| #include <linux/timer.h> |
| #include <linux/init.h> |
| #include <linux/bug.h> |
| #include <linux/nmi.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/io.h> |
| |
| #ifdef CONFIG_EISA |
| #include <linux/ioport.h> |
| #include <linux/eisa.h> |
| #endif |
| |
| #if defined(CONFIG_EDAC) |
| #include <linux/edac.h> |
| #endif |
| |
| #include <asm/kmemcheck.h> |
| #include <asm/stacktrace.h> |
| #include <asm/processor.h> |
| #include <asm/debugreg.h> |
| #include <linux/atomic.h> |
| #include <asm/ftrace.h> |
| #include <asm/traps.h> |
| #include <asm/desc.h> |
| #include <asm/i387.h> |
| #include <asm/fpu-internal.h> |
| #include <asm/mce.h> |
| #include <asm/fixmap.h> |
| #include <asm/mach_traps.h> |
| #include <asm/alternative.h> |
| #include <asm/mpx.h> |
| |
| #ifdef CONFIG_X86_64 |
| #include <asm/x86_init.h> |
| #include <asm/pgalloc.h> |
| #include <asm/proto.h> |
| |
| /* No need to be aligned, but done to keep all IDTs defined the same way. */ |
| gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss; |
| #else |
| #include <asm/processor-flags.h> |
| #include <asm/setup.h> |
| |
| asmlinkage int system_call(void); |
| #endif |
| |
| /* Must be page-aligned because the real IDT is used in a fixmap. */ |
| gate_desc idt_table[NR_VECTORS] __page_aligned_bss; |
| |
| DECLARE_BITMAP(used_vectors, NR_VECTORS); |
| EXPORT_SYMBOL_GPL(used_vectors); |
| |
| static inline void conditional_sti(struct pt_regs *regs) |
| { |
| if (regs->flags & X86_EFLAGS_IF) |
| local_irq_enable(); |
| } |
| |
| static inline void preempt_conditional_sti(struct pt_regs *regs) |
| { |
| preempt_count_inc(); |
| if (regs->flags & X86_EFLAGS_IF) |
| local_irq_enable(); |
| } |
| |
| static inline void conditional_cli(struct pt_regs *regs) |
| { |
| if (regs->flags & X86_EFLAGS_IF) |
| local_irq_disable(); |
| } |
| |
| static inline void preempt_conditional_cli(struct pt_regs *regs) |
| { |
| if (regs->flags & X86_EFLAGS_IF) |
| local_irq_disable(); |
| preempt_count_dec(); |
| } |
| |
| enum ctx_state ist_enter(struct pt_regs *regs) |
| { |
| /* |
| * We are atomic because we're on the IST stack (or we're on x86_32, |
| * in which case we still shouldn't schedule. |
| */ |
| preempt_count_add(HARDIRQ_OFFSET); |
| |
| if (user_mode_vm(regs)) { |
| /* Other than that, we're just an exception. */ |
| return exception_enter(); |
| } else { |
| /* |
| * We might have interrupted pretty much anything. In |
| * fact, if we're a machine check, we can even interrupt |
| * NMI processing. We don't want in_nmi() to return true, |
| * but we need to notify RCU. |
| */ |
| rcu_nmi_enter(); |
| return IN_KERNEL; /* the value is irrelevant. */ |
| } |
| } |
| |
| void ist_exit(struct pt_regs *regs, enum ctx_state prev_state) |
| { |
| preempt_count_sub(HARDIRQ_OFFSET); |
| |
| if (user_mode_vm(regs)) |
| return exception_exit(prev_state); |
| else |
| rcu_nmi_exit(); |
| } |
| |
| /** |
| * ist_begin_non_atomic() - begin a non-atomic section in an IST exception |
| * @regs: regs passed to the IST exception handler |
| * |
| * IST exception handlers normally cannot schedule. As a special |
| * exception, if the exception interrupted userspace code (i.e. |
| * user_mode_vm(regs) would return true) and the exception was not |
| * a double fault, it can be safe to schedule. ist_begin_non_atomic() |
| * begins a non-atomic section within an ist_enter()/ist_exit() region. |
| * Callers are responsible for enabling interrupts themselves inside |
| * the non-atomic section, and callers must call is_end_non_atomic() |
| * before ist_exit(). |
| */ |
| void ist_begin_non_atomic(struct pt_regs *regs) |
| { |
| BUG_ON(!user_mode_vm(regs)); |
| |
| /* |
| * Sanity check: we need to be on the normal thread stack. This |
| * will catch asm bugs and any attempt to use ist_preempt_enable |
| * from double_fault. |
| */ |
| BUG_ON(((current_stack_pointer() ^ this_cpu_read_stable(kernel_stack)) |
| & ~(THREAD_SIZE - 1)) != 0); |
| |
| preempt_count_sub(HARDIRQ_OFFSET); |
| } |
| |
| /** |
| * ist_end_non_atomic() - begin a non-atomic section in an IST exception |
| * |
| * Ends a non-atomic section started with ist_begin_non_atomic(). |
| */ |
| void ist_end_non_atomic(void) |
| { |
| preempt_count_add(HARDIRQ_OFFSET); |
| } |
| |
| static nokprobe_inline int |
| do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str, |
| struct pt_regs *regs, long error_code) |
| { |
| #ifdef CONFIG_X86_32 |
| if (regs->flags & X86_VM_MASK) { |
| /* |
| * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. |
| * On nmi (interrupt 2), do_trap should not be called. |
| */ |
| if (trapnr < X86_TRAP_UD) { |
| if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, |
| error_code, trapnr)) |
| return 0; |
| } |
| return -1; |
| } |
| #endif |
| if (!user_mode(regs)) { |
| if (!fixup_exception(regs)) { |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_nr = trapnr; |
| die(str, regs, error_code); |
| } |
| return 0; |
| } |
| |
| return -1; |
| } |
| |
| static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr, |
| siginfo_t *info) |
| { |
| unsigned long siaddr; |
| int sicode; |
| |
| switch (trapnr) { |
| default: |
| return SEND_SIG_PRIV; |
| |
| case X86_TRAP_DE: |
| sicode = FPE_INTDIV; |
| siaddr = uprobe_get_trap_addr(regs); |
| break; |
| case X86_TRAP_UD: |
| sicode = ILL_ILLOPN; |
| siaddr = uprobe_get_trap_addr(regs); |
| break; |
| case X86_TRAP_AC: |
| sicode = BUS_ADRALN; |
| siaddr = 0; |
| break; |
| } |
| |
| info->si_signo = signr; |
| info->si_errno = 0; |
| info->si_code = sicode; |
| info->si_addr = (void __user *)siaddr; |
| return info; |
| } |
| |
| static void |
| do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, |
| long error_code, siginfo_t *info) |
| { |
| struct task_struct *tsk = current; |
| |
| |
| if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) |
| return; |
| /* |
| * We want error_code and trap_nr set for userspace faults and |
| * kernelspace faults which result in die(), but not |
| * kernelspace faults which are fixed up. die() gives the |
| * process no chance to handle the signal and notice the |
| * kernel fault information, so that won't result in polluting |
| * the information about previously queued, but not yet |
| * delivered, faults. See also do_general_protection below. |
| */ |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_nr = trapnr; |
| |
| #ifdef CONFIG_X86_64 |
| if (show_unhandled_signals && unhandled_signal(tsk, signr) && |
| printk_ratelimit()) { |
| pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx", |
| tsk->comm, tsk->pid, str, |
| regs->ip, regs->sp, error_code); |
| print_vma_addr(" in ", regs->ip); |
| pr_cont("\n"); |
| } |
| #endif |
| |
| force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk); |
| } |
| NOKPROBE_SYMBOL(do_trap); |
| |
| static void do_error_trap(struct pt_regs *regs, long error_code, char *str, |
| unsigned long trapnr, int signr) |
| { |
| enum ctx_state prev_state = exception_enter(); |
| siginfo_t info; |
| |
| if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != |
| NOTIFY_STOP) { |
| conditional_sti(regs); |
| do_trap(trapnr, signr, str, regs, error_code, |
| fill_trap_info(regs, signr, trapnr, &info)); |
| } |
| |
| exception_exit(prev_state); |
| } |
| |
| #define DO_ERROR(trapnr, signr, str, name) \ |
| dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ |
| { \ |
| do_error_trap(regs, error_code, str, trapnr, signr); \ |
| } |
| |
| DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error) |
| DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow) |
| DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op) |
| DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun) |
| DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS) |
| DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present) |
| DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment) |
| DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check) |
| |
| #ifdef CONFIG_X86_64 |
| /* Runs on IST stack */ |
| dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code) |
| { |
| static const char str[] = "double fault"; |
| struct task_struct *tsk = current; |
| |
| #ifdef CONFIG_X86_ESPFIX64 |
| extern unsigned char native_irq_return_iret[]; |
| |
| /* |
| * If IRET takes a non-IST fault on the espfix64 stack, then we |
| * end up promoting it to a doublefault. In that case, modify |
| * the stack to make it look like we just entered the #GP |
| * handler from user space, similar to bad_iret. |
| * |
| * No need for ist_enter here because we don't use RCU. |
| */ |
| if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY && |
| regs->cs == __KERNEL_CS && |
| regs->ip == (unsigned long)native_irq_return_iret) |
| { |
| struct pt_regs *normal_regs = task_pt_regs(current); |
| |
| /* Fake a #GP(0) from userspace. */ |
| memmove(&normal_regs->ip, (void *)regs->sp, 5*8); |
| normal_regs->orig_ax = 0; /* Missing (lost) #GP error code */ |
| regs->ip = (unsigned long)general_protection; |
| regs->sp = (unsigned long)&normal_regs->orig_ax; |
| |
| return; |
| } |
| #endif |
| |
| ist_enter(regs); /* Discard prev_state because we won't return. */ |
| notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); |
| |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_nr = X86_TRAP_DF; |
| |
| #ifdef CONFIG_DOUBLEFAULT |
| df_debug(regs, error_code); |
| #endif |
| /* |
| * This is always a kernel trap and never fixable (and thus must |
| * never return). |
| */ |
| for (;;) |
| die(str, regs, error_code); |
| } |
| #endif |
| |
| dotraplinkage void do_bounds(struct pt_regs *regs, long error_code) |
| { |
| struct task_struct *tsk = current; |
| struct xsave_struct *xsave_buf; |
| enum ctx_state prev_state; |
| struct bndcsr *bndcsr; |
| siginfo_t *info; |
| |
| prev_state = exception_enter(); |
| if (notify_die(DIE_TRAP, "bounds", regs, error_code, |
| X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) |
| goto exit; |
| conditional_sti(regs); |
| |
| if (!user_mode(regs)) |
| die("bounds", regs, error_code); |
| |
| if (!cpu_feature_enabled(X86_FEATURE_MPX)) { |
| /* The exception is not from Intel MPX */ |
| goto exit_trap; |
| } |
| |
| /* |
| * We need to look at BNDSTATUS to resolve this exception. |
| * It is not directly accessible, though, so we need to |
| * do an xsave and then pull it out of the xsave buffer. |
| */ |
| fpu_save_init(&tsk->thread.fpu); |
| xsave_buf = &(tsk->thread.fpu.state->xsave); |
| bndcsr = get_xsave_addr(xsave_buf, XSTATE_BNDCSR); |
| if (!bndcsr) |
| goto exit_trap; |
| |
| /* |
| * The error code field of the BNDSTATUS register communicates status |
| * information of a bound range exception #BR or operation involving |
| * bound directory. |
| */ |
| switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) { |
| case 2: /* Bound directory has invalid entry. */ |
| if (mpx_handle_bd_fault(xsave_buf)) |
| goto exit_trap; |
| break; /* Success, it was handled */ |
| case 1: /* Bound violation. */ |
| info = mpx_generate_siginfo(regs, xsave_buf); |
| if (IS_ERR(info)) { |
| /* |
| * We failed to decode the MPX instruction. Act as if |
| * the exception was not caused by MPX. |
| */ |
| goto exit_trap; |
| } |
| /* |
| * Success, we decoded the instruction and retrieved |
| * an 'info' containing the address being accessed |
| * which caused the exception. This information |
| * allows and application to possibly handle the |
| * #BR exception itself. |
| */ |
| do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info); |
| kfree(info); |
| break; |
| case 0: /* No exception caused by Intel MPX operations. */ |
| goto exit_trap; |
| default: |
| die("bounds", regs, error_code); |
| } |
| |
| exit: |
| exception_exit(prev_state); |
| return; |
| exit_trap: |
| /* |
| * This path out is for all the cases where we could not |
| * handle the exception in some way (like allocating a |
| * table or telling userspace about it. We will also end |
| * up here if the kernel has MPX turned off at compile |
| * time.. |
| */ |
| do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL); |
| exception_exit(prev_state); |
| } |
| |
| dotraplinkage void |
| do_general_protection(struct pt_regs *regs, long error_code) |
| { |
| struct task_struct *tsk; |
| enum ctx_state prev_state; |
| |
| prev_state = exception_enter(); |
| conditional_sti(regs); |
| |
| #ifdef CONFIG_X86_32 |
| if (regs->flags & X86_VM_MASK) { |
| local_irq_enable(); |
| handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); |
| goto exit; |
| } |
| #endif |
| |
| tsk = current; |
| if (!user_mode(regs)) { |
| if (fixup_exception(regs)) |
| goto exit; |
| |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_nr = X86_TRAP_GP; |
| if (notify_die(DIE_GPF, "general protection fault", regs, error_code, |
| X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP) |
| die("general protection fault", regs, error_code); |
| goto exit; |
| } |
| |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_nr = X86_TRAP_GP; |
| |
| if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && |
| printk_ratelimit()) { |
| pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx", |
| tsk->comm, task_pid_nr(tsk), |
| regs->ip, regs->sp, error_code); |
| print_vma_addr(" in ", regs->ip); |
| pr_cont("\n"); |
| } |
| |
| force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk); |
| exit: |
| exception_exit(prev_state); |
| } |
| NOKPROBE_SYMBOL(do_general_protection); |
| |
| /* May run on IST stack. */ |
| dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code) |
| { |
| enum ctx_state prev_state; |
| |
| #ifdef CONFIG_DYNAMIC_FTRACE |
| /* |
| * ftrace must be first, everything else may cause a recursive crash. |
| * See note by declaration of modifying_ftrace_code in ftrace.c |
| */ |
| if (unlikely(atomic_read(&modifying_ftrace_code)) && |
| ftrace_int3_handler(regs)) |
| return; |
| #endif |
| if (poke_int3_handler(regs)) |
| return; |
| |
| prev_state = ist_enter(regs); |
| #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP |
| if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, |
| SIGTRAP) == NOTIFY_STOP) |
| goto exit; |
| #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ |
| |
| #ifdef CONFIG_KPROBES |
| if (kprobe_int3_handler(regs)) |
| goto exit; |
| #endif |
| |
| if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, |
| SIGTRAP) == NOTIFY_STOP) |
| goto exit; |
| |
| /* |
| * Let others (NMI) know that the debug stack is in use |
| * as we may switch to the interrupt stack. |
| */ |
| debug_stack_usage_inc(); |
| preempt_conditional_sti(regs); |
| do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL); |
| preempt_conditional_cli(regs); |
| debug_stack_usage_dec(); |
| exit: |
| ist_exit(regs, prev_state); |
| } |
| NOKPROBE_SYMBOL(do_int3); |
| |
| #ifdef CONFIG_X86_64 |
| /* |
| * Help handler running on IST stack to switch off the IST stack if the |
| * interrupted code was in user mode. The actual stack switch is done in |
| * entry_64.S |
| */ |
| asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs) |
| { |
| struct pt_regs *regs = task_pt_regs(current); |
| *regs = *eregs; |
| return regs; |
| } |
| NOKPROBE_SYMBOL(sync_regs); |
| |
| struct bad_iret_stack { |
| void *error_entry_ret; |
| struct pt_regs regs; |
| }; |
| |
| asmlinkage __visible notrace |
| struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) |
| { |
| /* |
| * This is called from entry_64.S early in handling a fault |
| * caused by a bad iret to user mode. To handle the fault |
| * correctly, we want move our stack frame to task_pt_regs |
| * and we want to pretend that the exception came from the |
| * iret target. |
| */ |
| struct bad_iret_stack *new_stack = |
| container_of(task_pt_regs(current), |
| struct bad_iret_stack, regs); |
| |
| /* Copy the IRET target to the new stack. */ |
| memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8); |
| |
| /* Copy the remainder of the stack from the current stack. */ |
| memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip)); |
| |
| BUG_ON(!user_mode_vm(&new_stack->regs)); |
| return new_stack; |
| } |
| NOKPROBE_SYMBOL(fixup_bad_iret); |
| #endif |
| |
| /* |
| * Our handling of the processor debug registers is non-trivial. |
| * We do not clear them on entry and exit from the kernel. Therefore |
| * it is possible to get a watchpoint trap here from inside the kernel. |
| * However, the code in ./ptrace.c has ensured that the user can |
| * only set watchpoints on userspace addresses. Therefore the in-kernel |
| * watchpoint trap can only occur in code which is reading/writing |
| * from user space. Such code must not hold kernel locks (since it |
| * can equally take a page fault), therefore it is safe to call |
| * force_sig_info even though that claims and releases locks. |
| * |
| * Code in ./signal.c ensures that the debug control register |
| * is restored before we deliver any signal, and therefore that |
| * user code runs with the correct debug control register even though |
| * we clear it here. |
| * |
| * Being careful here means that we don't have to be as careful in a |
| * lot of more complicated places (task switching can be a bit lazy |
| * about restoring all the debug state, and ptrace doesn't have to |
| * find every occurrence of the TF bit that could be saved away even |
| * by user code) |
| * |
| * May run on IST stack. |
| */ |
| dotraplinkage void do_debug(struct pt_regs *regs, long error_code) |
| { |
| struct task_struct *tsk = current; |
| enum ctx_state prev_state; |
| int user_icebp = 0; |
| unsigned long dr6; |
| int si_code; |
| |
| prev_state = ist_enter(regs); |
| |
| get_debugreg(dr6, 6); |
| |
| /* Filter out all the reserved bits which are preset to 1 */ |
| dr6 &= ~DR6_RESERVED; |
| |
| /* |
| * If dr6 has no reason to give us about the origin of this trap, |
| * then it's very likely the result of an icebp/int01 trap. |
| * User wants a sigtrap for that. |
| */ |
| if (!dr6 && user_mode(regs)) |
| user_icebp = 1; |
| |
| /* Catch kmemcheck conditions first of all! */ |
| if ((dr6 & DR_STEP) && kmemcheck_trap(regs)) |
| goto exit; |
| |
| /* DR6 may or may not be cleared by the CPU */ |
| set_debugreg(0, 6); |
| |
| /* |
| * The processor cleared BTF, so don't mark that we need it set. |
| */ |
| clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); |
| |
| /* Store the virtualized DR6 value */ |
| tsk->thread.debugreg6 = dr6; |
| |
| #ifdef CONFIG_KPROBES |
| if (kprobe_debug_handler(regs)) |
| goto exit; |
| #endif |
| |
| if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code, |
| SIGTRAP) == NOTIFY_STOP) |
| goto exit; |
| |
| /* |
| * Let others (NMI) know that the debug stack is in use |
| * as we may switch to the interrupt stack. |
| */ |
| debug_stack_usage_inc(); |
| |
| /* It's safe to allow irq's after DR6 has been saved */ |
| preempt_conditional_sti(regs); |
| |
| if (regs->flags & X86_VM_MASK) { |
| handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, |
| X86_TRAP_DB); |
| preempt_conditional_cli(regs); |
| debug_stack_usage_dec(); |
| goto exit; |
| } |
| |
| /* |
| * Single-stepping through system calls: ignore any exceptions in |
| * kernel space, but re-enable TF when returning to user mode. |
| * |
| * We already checked v86 mode above, so we can check for kernel mode |
| * by just checking the CPL of CS. |
| */ |
| if ((dr6 & DR_STEP) && !user_mode(regs)) { |
| tsk->thread.debugreg6 &= ~DR_STEP; |
| set_tsk_thread_flag(tsk, TIF_SINGLESTEP); |
| regs->flags &= ~X86_EFLAGS_TF; |
| } |
| si_code = get_si_code(tsk->thread.debugreg6); |
| if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) |
| send_sigtrap(tsk, regs, error_code, si_code); |
| preempt_conditional_cli(regs); |
| debug_stack_usage_dec(); |
| |
| exit: |
| ist_exit(regs, prev_state); |
| } |
| NOKPROBE_SYMBOL(do_debug); |
| |
| /* |
| * Note that we play around with the 'TS' bit in an attempt to get |
| * the correct behaviour even in the presence of the asynchronous |
| * IRQ13 behaviour |
| */ |
| static void math_error(struct pt_regs *regs, int error_code, int trapnr) |
| { |
| struct task_struct *task = current; |
| siginfo_t info; |
| unsigned short err; |
| char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : |
| "simd exception"; |
| |
| if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP) |
| return; |
| conditional_sti(regs); |
| |
| if (!user_mode_vm(regs)) |
| { |
| if (!fixup_exception(regs)) { |
| task->thread.error_code = error_code; |
| task->thread.trap_nr = trapnr; |
| die(str, regs, error_code); |
| } |
| return; |
| } |
| |
| /* |
| * Save the info for the exception handler and clear the error. |
| */ |
| save_init_fpu(task); |
| task->thread.trap_nr = trapnr; |
| task->thread.error_code = error_code; |
| info.si_signo = SIGFPE; |
| info.si_errno = 0; |
| info.si_addr = (void __user *)uprobe_get_trap_addr(regs); |
| if (trapnr == X86_TRAP_MF) { |
| unsigned short cwd, swd; |
| /* |
| * (~cwd & swd) will mask out exceptions that are not set to unmasked |
| * status. 0x3f is the exception bits in these regs, 0x200 is the |
| * C1 reg you need in case of a stack fault, 0x040 is the stack |
| * fault bit. We should only be taking one exception at a time, |
| * so if this combination doesn't produce any single exception, |
| * then we have a bad program that isn't synchronizing its FPU usage |
| * and it will suffer the consequences since we won't be able to |
| * fully reproduce the context of the exception |
| */ |
| cwd = get_fpu_cwd(task); |
| swd = get_fpu_swd(task); |
| |
| err = swd & ~cwd; |
| } else { |
| /* |
| * The SIMD FPU exceptions are handled a little differently, as there |
| * is only a single status/control register. Thus, to determine which |
| * unmasked exception was caught we must mask the exception mask bits |
| * at 0x1f80, and then use these to mask the exception bits at 0x3f. |
| */ |
| unsigned short mxcsr = get_fpu_mxcsr(task); |
| err = ~(mxcsr >> 7) & mxcsr; |
| } |
| |
| if (err & 0x001) { /* Invalid op */ |
| /* |
| * swd & 0x240 == 0x040: Stack Underflow |
| * swd & 0x240 == 0x240: Stack Overflow |
| * User must clear the SF bit (0x40) if set |
| */ |
| info.si_code = FPE_FLTINV; |
| } else if (err & 0x004) { /* Divide by Zero */ |
| info.si_code = FPE_FLTDIV; |
| } else if (err & 0x008) { /* Overflow */ |
| info.si_code = FPE_FLTOVF; |
| } else if (err & 0x012) { /* Denormal, Underflow */ |
| info.si_code = FPE_FLTUND; |
| } else if (err & 0x020) { /* Precision */ |
| info.si_code = FPE_FLTRES; |
| } else { |
| /* |
| * If we're using IRQ 13, or supposedly even some trap |
| * X86_TRAP_MF implementations, it's possible |
| * we get a spurious trap, which is not an error. |
| */ |
| return; |
| } |
| force_sig_info(SIGFPE, &info, task); |
| } |
| |
| dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) |
| { |
| enum ctx_state prev_state; |
| |
| prev_state = exception_enter(); |
| math_error(regs, error_code, X86_TRAP_MF); |
| exception_exit(prev_state); |
| } |
| |
| dotraplinkage void |
| do_simd_coprocessor_error(struct pt_regs *regs, long error_code) |
| { |
| enum ctx_state prev_state; |
| |
| prev_state = exception_enter(); |
| math_error(regs, error_code, X86_TRAP_XF); |
| exception_exit(prev_state); |
| } |
| |
| dotraplinkage void |
| do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) |
| { |
| conditional_sti(regs); |
| #if 0 |
| /* No need to warn about this any longer. */ |
| pr_info("Ignoring P6 Local APIC Spurious Interrupt Bug...\n"); |
| #endif |
| } |
| |
| asmlinkage __visible void __attribute__((weak)) smp_thermal_interrupt(void) |
| { |
| } |
| |
| asmlinkage __visible void __attribute__((weak)) smp_threshold_interrupt(void) |
| { |
| } |
| |
| /* |
| * 'math_state_restore()' saves the current math information in the |
| * old math state array, and gets the new ones from the current task |
| * |
| * Careful.. There are problems with IBM-designed IRQ13 behaviour. |
| * Don't touch unless you *really* know how it works. |
| * |
| * Must be called with kernel preemption disabled (eg with local |
| * local interrupts as in the case of do_device_not_available). |
| */ |
| void math_state_restore(void) |
| { |
| struct task_struct *tsk = current; |
| |
| if (!tsk_used_math(tsk)) { |
| local_irq_enable(); |
| /* |
| * does a slab alloc which can sleep |
| */ |
| if (init_fpu(tsk)) { |
| /* |
| * ran out of memory! |
| */ |
| do_group_exit(SIGKILL); |
| return; |
| } |
| local_irq_disable(); |
| } |
| |
| __thread_fpu_begin(tsk); |
| |
| /* |
| * Paranoid restore. send a SIGSEGV if we fail to restore the state. |
| */ |
| if (unlikely(restore_fpu_checking(tsk))) { |
| drop_init_fpu(tsk); |
| force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk); |
| return; |
| } |
| |
| tsk->thread.fpu_counter++; |
| } |
| EXPORT_SYMBOL_GPL(math_state_restore); |
| |
| dotraplinkage void |
| do_device_not_available(struct pt_regs *regs, long error_code) |
| { |
| enum ctx_state prev_state; |
| |
| prev_state = exception_enter(); |
| BUG_ON(use_eager_fpu()); |
| |
| #ifdef CONFIG_MATH_EMULATION |
| if (read_cr0() & X86_CR0_EM) { |
| struct math_emu_info info = { }; |
| |
| conditional_sti(regs); |
| |
| info.regs = regs; |
| math_emulate(&info); |
| exception_exit(prev_state); |
| return; |
| } |
| #endif |
| math_state_restore(); /* interrupts still off */ |
| #ifdef CONFIG_X86_32 |
| conditional_sti(regs); |
| #endif |
| exception_exit(prev_state); |
| } |
| NOKPROBE_SYMBOL(do_device_not_available); |
| |
| #ifdef CONFIG_X86_32 |
| dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) |
| { |
| siginfo_t info; |
| enum ctx_state prev_state; |
| |
| prev_state = exception_enter(); |
| local_irq_enable(); |
| |
| info.si_signo = SIGILL; |
| info.si_errno = 0; |
| info.si_code = ILL_BADSTK; |
| info.si_addr = NULL; |
| if (notify_die(DIE_TRAP, "iret exception", regs, error_code, |
| X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { |
| do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code, |
| &info); |
| } |
| exception_exit(prev_state); |
| } |
| #endif |
| |
| /* Set of traps needed for early debugging. */ |
| void __init early_trap_init(void) |
| { |
| set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK); |
| /* int3 can be called from all */ |
| set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK); |
| #ifdef CONFIG_X86_32 |
| set_intr_gate(X86_TRAP_PF, page_fault); |
| #endif |
| load_idt(&idt_descr); |
| } |
| |
| void __init early_trap_pf_init(void) |
| { |
| #ifdef CONFIG_X86_64 |
| set_intr_gate(X86_TRAP_PF, page_fault); |
| #endif |
| } |
| |
| void __init trap_init(void) |
| { |
| int i; |
| |
| #ifdef CONFIG_EISA |
| void __iomem *p = early_ioremap(0x0FFFD9, 4); |
| |
| if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24)) |
| EISA_bus = 1; |
| early_iounmap(p, 4); |
| #endif |
| |
| set_intr_gate(X86_TRAP_DE, divide_error); |
| set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK); |
| /* int4 can be called from all */ |
| set_system_intr_gate(X86_TRAP_OF, &overflow); |
| set_intr_gate(X86_TRAP_BR, bounds); |
| set_intr_gate(X86_TRAP_UD, invalid_op); |
| set_intr_gate(X86_TRAP_NM, device_not_available); |
| #ifdef CONFIG_X86_32 |
| set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS); |
| #else |
| set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK); |
| #endif |
| set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun); |
| set_intr_gate(X86_TRAP_TS, invalid_TSS); |
| set_intr_gate(X86_TRAP_NP, segment_not_present); |
| set_intr_gate(X86_TRAP_SS, stack_segment); |
| set_intr_gate(X86_TRAP_GP, general_protection); |
| set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug); |
| set_intr_gate(X86_TRAP_MF, coprocessor_error); |
| set_intr_gate(X86_TRAP_AC, alignment_check); |
| #ifdef CONFIG_X86_MCE |
| set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK); |
| #endif |
| set_intr_gate(X86_TRAP_XF, simd_coprocessor_error); |
| |
| /* Reserve all the builtin and the syscall vector: */ |
| for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++) |
| set_bit(i, used_vectors); |
| |
| #ifdef CONFIG_IA32_EMULATION |
| set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall); |
| set_bit(IA32_SYSCALL_VECTOR, used_vectors); |
| #endif |
| |
| #ifdef CONFIG_X86_32 |
| set_system_trap_gate(SYSCALL_VECTOR, &system_call); |
| set_bit(SYSCALL_VECTOR, used_vectors); |
| #endif |
| |
| /* |
| * Set the IDT descriptor to a fixed read-only location, so that the |
| * "sidt" instruction will not leak the location of the kernel, and |
| * to defend the IDT against arbitrary memory write vulnerabilities. |
| * It will be reloaded in cpu_init() */ |
| __set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO); |
| idt_descr.address = fix_to_virt(FIX_RO_IDT); |
| |
| /* |
| * Should be a barrier for any external CPU state: |
| */ |
| cpu_init(); |
| |
| x86_init.irqs.trap_init(); |
| |
| #ifdef CONFIG_X86_64 |
| memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16); |
| set_nmi_gate(X86_TRAP_DB, &debug); |
| set_nmi_gate(X86_TRAP_BP, &int3); |
| #endif |
| } |