| /* |
| * Budget Fair Queueing (BFQ) I/O scheduler. |
| * |
| * Based on ideas and code from CFQ: |
| * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> |
| * |
| * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> |
| * Paolo Valente <paolo.valente@unimore.it> |
| * |
| * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it> |
| * Arianna Avanzini <avanzini@google.com> |
| * |
| * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of the |
| * License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * BFQ is a proportional-share I/O scheduler, with some extra |
| * low-latency capabilities. BFQ also supports full hierarchical |
| * scheduling through cgroups. Next paragraphs provide an introduction |
| * on BFQ inner workings. Details on BFQ benefits, usage and |
| * limitations can be found in Documentation/block/bfq-iosched.txt. |
| * |
| * BFQ is a proportional-share storage-I/O scheduling algorithm based |
| * on the slice-by-slice service scheme of CFQ. But BFQ assigns |
| * budgets, measured in number of sectors, to processes instead of |
| * time slices. The device is not granted to the in-service process |
| * for a given time slice, but until it has exhausted its assigned |
| * budget. This change from the time to the service domain enables BFQ |
| * to distribute the device throughput among processes as desired, |
| * without any distortion due to throughput fluctuations, or to device |
| * internal queueing. BFQ uses an ad hoc internal scheduler, called |
| * B-WF2Q+, to schedule processes according to their budgets. More |
| * precisely, BFQ schedules queues associated with processes. Each |
| * process/queue is assigned a user-configurable weight, and B-WF2Q+ |
| * guarantees that each queue receives a fraction of the throughput |
| * proportional to its weight. Thanks to the accurate policy of |
| * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound |
| * processes issuing sequential requests (to boost the throughput), |
| * and yet guarantee a low latency to interactive and soft real-time |
| * applications. |
| * |
| * In particular, to provide these low-latency guarantees, BFQ |
| * explicitly privileges the I/O of two classes of time-sensitive |
| * applications: interactive and soft real-time. This feature enables |
| * BFQ to provide applications in these classes with a very low |
| * latency. Finally, BFQ also features additional heuristics for |
| * preserving both a low latency and a high throughput on NCQ-capable, |
| * rotational or flash-based devices, and to get the job done quickly |
| * for applications consisting in many I/O-bound processes. |
| * |
| * BFQ is described in [1], where also a reference to the initial, more |
| * theoretical paper on BFQ can be found. The interested reader can find |
| * in the latter paper full details on the main algorithm, as well as |
| * formulas of the guarantees and formal proofs of all the properties. |
| * With respect to the version of BFQ presented in these papers, this |
| * implementation adds a few more heuristics, such as the one that |
| * guarantees a low latency to soft real-time applications, and a |
| * hierarchical extension based on H-WF2Q+. |
| * |
| * B-WF2Q+ is based on WF2Q+, which is described in [2], together with |
| * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+ |
| * with O(log N) complexity derives from the one introduced with EEVDF |
| * in [3]. |
| * |
| * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O |
| * Scheduler", Proceedings of the First Workshop on Mobile System |
| * Technologies (MST-2015), May 2015. |
| * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf |
| * |
| * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing |
| * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689, |
| * Oct 1997. |
| * |
| * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz |
| * |
| * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline |
| * First: A Flexible and Accurate Mechanism for Proportional Share |
| * Resource Allocation", technical report. |
| * |
| * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf |
| */ |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/blkdev.h> |
| #include <linux/elevator.h> |
| #include <linux/ktime.h> |
| #include <linux/rbtree.h> |
| #include <linux/ioprio.h> |
| #include <linux/sbitmap.h> |
| #include <linux/delay.h> |
| |
| #include "blk.h" |
| #include "blk-mq.h" |
| #include "blk-mq-tag.h" |
| #include "blk-mq-sched.h" |
| #include <linux/blktrace_api.h> |
| #include <linux/hrtimer.h> |
| #include <linux/blk-cgroup.h> |
| |
| #define BFQ_IOPRIO_CLASSES 3 |
| #define BFQ_CL_IDLE_TIMEOUT (HZ/5) |
| |
| #define BFQ_MIN_WEIGHT 1 |
| #define BFQ_MAX_WEIGHT 1000 |
| #define BFQ_WEIGHT_CONVERSION_COEFF 10 |
| |
| #define BFQ_DEFAULT_QUEUE_IOPRIO 4 |
| |
| #define BFQ_DEFAULT_GRP_WEIGHT 10 |
| #define BFQ_DEFAULT_GRP_IOPRIO 0 |
| #define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE |
| |
| struct bfq_entity; |
| |
| /** |
| * struct bfq_service_tree - per ioprio_class service tree. |
| * |
| * Each service tree represents a B-WF2Q+ scheduler on its own. Each |
| * ioprio_class has its own independent scheduler, and so its own |
| * bfq_service_tree. All the fields are protected by the queue lock |
| * of the containing bfqd. |
| */ |
| struct bfq_service_tree { |
| /* tree for active entities (i.e., those backlogged) */ |
| struct rb_root active; |
| /* tree for idle entities (i.e., not backlogged, with V <= F_i)*/ |
| struct rb_root idle; |
| |
| /* idle entity with minimum F_i */ |
| struct bfq_entity *first_idle; |
| /* idle entity with maximum F_i */ |
| struct bfq_entity *last_idle; |
| |
| /* scheduler virtual time */ |
| u64 vtime; |
| /* scheduler weight sum; active and idle entities contribute to it */ |
| unsigned long wsum; |
| }; |
| |
| /** |
| * struct bfq_sched_data - multi-class scheduler. |
| * |
| * bfq_sched_data is the basic scheduler queue. It supports three |
| * ioprio_classes, and can be used either as a toplevel queue or as |
| * an intermediate queue on a hierarchical setup. |
| * @next_in_service points to the active entity of the sched_data |
| * service trees that will be scheduled next. |
| * |
| * The supported ioprio_classes are the same as in CFQ, in descending |
| * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE. |
| * Requests from higher priority queues are served before all the |
| * requests from lower priority queues; among requests of the same |
| * queue requests are served according to B-WF2Q+. |
| * All the fields are protected by the queue lock of the containing bfqd. |
| */ |
| struct bfq_sched_data { |
| /* entity in service */ |
| struct bfq_entity *in_service_entity; |
| /* head-of-the-line entity in the scheduler */ |
| struct bfq_entity *next_in_service; |
| /* array of service trees, one per ioprio_class */ |
| struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES]; |
| }; |
| |
| /** |
| * struct bfq_entity - schedulable entity. |
| * |
| * A bfq_entity is used to represent a bfq_queue (leaf node in the upper |
| * level scheduler). Each entity belongs to the sched_data of the parent |
| * group hierarchy. Non-leaf entities have also their own sched_data, |
| * stored in @my_sched_data. |
| * |
| * Each entity stores independently its priority values; this would |
| * allow different weights on different devices, but this |
| * functionality is not exported to userspace by now. Priorities and |
| * weights are updated lazily, first storing the new values into the |
| * new_* fields, then setting the @prio_changed flag. As soon as |
| * there is a transition in the entity state that allows the priority |
| * update to take place the effective and the requested priority |
| * values are synchronized. |
| * |
| * The weight value is calculated from the ioprio to export the same |
| * interface as CFQ. When dealing with ``well-behaved'' queues (i.e., |
| * queues that do not spend too much time to consume their budget |
| * and have true sequential behavior, and when there are no external |
| * factors breaking anticipation) the relative weights at each level |
| * of the hierarchy should be guaranteed. All the fields are |
| * protected by the queue lock of the containing bfqd. |
| */ |
| struct bfq_entity { |
| /* service_tree member */ |
| struct rb_node rb_node; |
| |
| /* |
| * flag, true if the entity is on a tree (either the active or |
| * the idle one of its service_tree). |
| */ |
| int on_st; |
| |
| /* B-WF2Q+ start and finish timestamps [sectors/weight] */ |
| u64 start, finish; |
| |
| /* tree the entity is enqueued into; %NULL if not on a tree */ |
| struct rb_root *tree; |
| |
| /* |
| * minimum start time of the (active) subtree rooted at this |
| * entity; used for O(log N) lookups into active trees |
| */ |
| u64 min_start; |
| |
| /* amount of service received during the last service slot */ |
| int service; |
| |
| /* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */ |
| int budget; |
| |
| /* weight of the queue */ |
| int weight; |
| /* next weight if a change is in progress */ |
| int new_weight; |
| |
| /* original weight, used to implement weight boosting */ |
| int orig_weight; |
| |
| /* parent entity, for hierarchical scheduling */ |
| struct bfq_entity *parent; |
| |
| /* |
| * For non-leaf nodes in the hierarchy, the associated |
| * scheduler queue, %NULL on leaf nodes. |
| */ |
| struct bfq_sched_data *my_sched_data; |
| /* the scheduler queue this entity belongs to */ |
| struct bfq_sched_data *sched_data; |
| |
| /* flag, set to request a weight, ioprio or ioprio_class change */ |
| int prio_changed; |
| }; |
| |
| /** |
| * struct bfq_ttime - per process thinktime stats. |
| */ |
| struct bfq_ttime { |
| /* completion time of the last request */ |
| u64 last_end_request; |
| |
| /* total process thinktime */ |
| u64 ttime_total; |
| /* number of thinktime samples */ |
| unsigned long ttime_samples; |
| /* average process thinktime */ |
| u64 ttime_mean; |
| }; |
| |
| /** |
| * struct bfq_queue - leaf schedulable entity. |
| * |
| * A bfq_queue is a leaf request queue; it can be associated with an |
| * io_context or more, if it is async. |
| */ |
| struct bfq_queue { |
| /* reference counter */ |
| int ref; |
| /* parent bfq_data */ |
| struct bfq_data *bfqd; |
| |
| /* current ioprio and ioprio class */ |
| unsigned short ioprio, ioprio_class; |
| /* next ioprio and ioprio class if a change is in progress */ |
| unsigned short new_ioprio, new_ioprio_class; |
| |
| /* sorted list of pending requests */ |
| struct rb_root sort_list; |
| /* if fifo isn't expired, next request to serve */ |
| struct request *next_rq; |
| /* number of sync and async requests queued */ |
| int queued[2]; |
| /* number of requests currently allocated */ |
| int allocated; |
| /* number of pending metadata requests */ |
| int meta_pending; |
| /* fifo list of requests in sort_list */ |
| struct list_head fifo; |
| |
| /* entity representing this queue in the scheduler */ |
| struct bfq_entity entity; |
| |
| /* maximum budget allowed from the feedback mechanism */ |
| int max_budget; |
| /* budget expiration (in jiffies) */ |
| unsigned long budget_timeout; |
| |
| /* number of requests on the dispatch list or inside driver */ |
| int dispatched; |
| |
| /* status flags */ |
| unsigned long flags; |
| |
| /* node for active/idle bfqq list inside parent bfqd */ |
| struct list_head bfqq_list; |
| |
| /* associated @bfq_ttime struct */ |
| struct bfq_ttime ttime; |
| |
| /* bit vector: a 1 for each seeky requests in history */ |
| u32 seek_history; |
| /* position of the last request enqueued */ |
| sector_t last_request_pos; |
| |
| /* Number of consecutive pairs of request completion and |
| * arrival, such that the queue becomes idle after the |
| * completion, but the next request arrives within an idle |
| * time slice; used only if the queue's IO_bound flag has been |
| * cleared. |
| */ |
| unsigned int requests_within_timer; |
| |
| /* pid of the process owning the queue, used for logging purposes */ |
| pid_t pid; |
| }; |
| |
| /** |
| * struct bfq_io_cq - per (request_queue, io_context) structure. |
| */ |
| struct bfq_io_cq { |
| /* associated io_cq structure */ |
| struct io_cq icq; /* must be the first member */ |
| /* array of two process queues, the sync and the async */ |
| struct bfq_queue *bfqq[2]; |
| /* per (request_queue, blkcg) ioprio */ |
| int ioprio; |
| }; |
| |
| /** |
| * struct bfq_data - per-device data structure. |
| * |
| * All the fields are protected by @lock. |
| */ |
| struct bfq_data { |
| /* device request queue */ |
| struct request_queue *queue; |
| /* dispatch queue */ |
| struct list_head dispatch; |
| |
| /* root @bfq_sched_data for the device */ |
| struct bfq_sched_data sched_data; |
| |
| /* |
| * Number of bfq_queues containing requests (including the |
| * queue in service, even if it is idling). |
| */ |
| int busy_queues; |
| /* number of queued requests */ |
| int queued; |
| /* number of requests dispatched and waiting for completion */ |
| int rq_in_driver; |
| |
| /* |
| * Maximum number of requests in driver in the last |
| * @hw_tag_samples completed requests. |
| */ |
| int max_rq_in_driver; |
| /* number of samples used to calculate hw_tag */ |
| int hw_tag_samples; |
| /* flag set to one if the driver is showing a queueing behavior */ |
| int hw_tag; |
| |
| /* number of budgets assigned */ |
| int budgets_assigned; |
| |
| /* |
| * Timer set when idling (waiting) for the next request from |
| * the queue in service. |
| */ |
| struct hrtimer idle_slice_timer; |
| |
| /* bfq_queue in service */ |
| struct bfq_queue *in_service_queue; |
| /* bfq_io_cq (bic) associated with the @in_service_queue */ |
| struct bfq_io_cq *in_service_bic; |
| |
| /* on-disk position of the last served request */ |
| sector_t last_position; |
| |
| /* beginning of the last budget */ |
| ktime_t last_budget_start; |
| /* beginning of the last idle slice */ |
| ktime_t last_idling_start; |
| /* number of samples used to calculate @peak_rate */ |
| int peak_rate_samples; |
| /* |
| * Peak read/write rate, observed during the service of a |
| * budget [BFQ_RATE_SHIFT * sectors/usec]. The value is |
| * left-shifted by BFQ_RATE_SHIFT to increase precision in |
| * fixed-point calculations. |
| */ |
| u64 peak_rate; |
| /* maximum budget allotted to a bfq_queue before rescheduling */ |
| int bfq_max_budget; |
| |
| /* list of all the bfq_queues active on the device */ |
| struct list_head active_list; |
| /* list of all the bfq_queues idle on the device */ |
| struct list_head idle_list; |
| |
| /* |
| * Timeout for async/sync requests; when it fires, requests |
| * are served in fifo order. |
| */ |
| u64 bfq_fifo_expire[2]; |
| /* weight of backward seeks wrt forward ones */ |
| unsigned int bfq_back_penalty; |
| /* maximum allowed backward seek */ |
| unsigned int bfq_back_max; |
| /* maximum idling time */ |
| u32 bfq_slice_idle; |
| /* last time CLASS_IDLE was served */ |
| u64 bfq_class_idle_last_service; |
| |
| /* user-configured max budget value (0 for auto-tuning) */ |
| int bfq_user_max_budget; |
| /* |
| * Timeout for bfq_queues to consume their budget; used to |
| * prevent seeky queues from imposing long latencies to |
| * sequential or quasi-sequential ones (this also implies that |
| * seeky queues cannot receive guarantees in the service |
| * domain; after a timeout they are charged for the time they |
| * have been in service, to preserve fairness among them, but |
| * without service-domain guarantees). |
| */ |
| unsigned int bfq_timeout; |
| |
| /* |
| * Number of consecutive requests that must be issued within |
| * the idle time slice to set again idling to a queue which |
| * was marked as non-I/O-bound (see the definition of the |
| * IO_bound flag for further details). |
| */ |
| unsigned int bfq_requests_within_timer; |
| |
| /* |
| * Force device idling whenever needed to provide accurate |
| * service guarantees, without caring about throughput |
| * issues. CAVEAT: this may even increase latencies, in case |
| * of useless idling for processes that did stop doing I/O. |
| */ |
| bool strict_guarantees; |
| |
| /* fallback dummy bfqq for extreme OOM conditions */ |
| struct bfq_queue oom_bfqq; |
| |
| spinlock_t lock; |
| |
| /* |
| * bic associated with the task issuing current bio for |
| * merging. This and the next field are used as a support to |
| * be able to perform the bic lookup, needed by bio-merge |
| * functions, before the scheduler lock is taken, and thus |
| * avoid taking the request-queue lock while the scheduler |
| * lock is being held. |
| */ |
| struct bfq_io_cq *bio_bic; |
| /* bfqq associated with the task issuing current bio for merging */ |
| struct bfq_queue *bio_bfqq; |
| }; |
| |
| enum bfqq_state_flags { |
| BFQQF_busy = 0, /* has requests or is in service */ |
| BFQQF_wait_request, /* waiting for a request */ |
| BFQQF_non_blocking_wait_rq, /* |
| * waiting for a request |
| * without idling the device |
| */ |
| BFQQF_fifo_expire, /* FIFO checked in this slice */ |
| BFQQF_idle_window, /* slice idling enabled */ |
| BFQQF_sync, /* synchronous queue */ |
| BFQQF_budget_new, /* no completion with this budget */ |
| BFQQF_IO_bound, /* |
| * bfqq has timed-out at least once |
| * having consumed at most 2/10 of |
| * its budget |
| */ |
| }; |
| |
| #define BFQ_BFQQ_FNS(name) \ |
| static void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \ |
| { \ |
| __set_bit(BFQQF_##name, &(bfqq)->flags); \ |
| } \ |
| static void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \ |
| { \ |
| __clear_bit(BFQQF_##name, &(bfqq)->flags); \ |
| } \ |
| static int bfq_bfqq_##name(const struct bfq_queue *bfqq) \ |
| { \ |
| return test_bit(BFQQF_##name, &(bfqq)->flags); \ |
| } |
| |
| BFQ_BFQQ_FNS(busy); |
| BFQ_BFQQ_FNS(wait_request); |
| BFQ_BFQQ_FNS(non_blocking_wait_rq); |
| BFQ_BFQQ_FNS(fifo_expire); |
| BFQ_BFQQ_FNS(idle_window); |
| BFQ_BFQQ_FNS(sync); |
| BFQ_BFQQ_FNS(budget_new); |
| BFQ_BFQQ_FNS(IO_bound); |
| #undef BFQ_BFQQ_FNS |
| |
| /* Logging facilities. */ |
| #define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \ |
| blk_add_trace_msg((bfqd)->queue, "bfq%d " fmt, (bfqq)->pid, ##args) |
| |
| #define bfq_log(bfqd, fmt, args...) \ |
| blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args) |
| |
| /* Expiration reasons. */ |
| enum bfqq_expiration { |
| BFQQE_TOO_IDLE = 0, /* |
| * queue has been idling for |
| * too long |
| */ |
| BFQQE_BUDGET_TIMEOUT, /* budget took too long to be used */ |
| BFQQE_BUDGET_EXHAUSTED, /* budget consumed */ |
| BFQQE_NO_MORE_REQUESTS, /* the queue has no more requests */ |
| BFQQE_PREEMPTED /* preemption in progress */ |
| }; |
| |
| static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity); |
| |
| static struct bfq_service_tree * |
| bfq_entity_service_tree(struct bfq_entity *entity) |
| { |
| struct bfq_sched_data *sched_data = entity->sched_data; |
| struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| unsigned int idx = bfqq ? bfqq->ioprio_class - 1 : |
| BFQ_DEFAULT_GRP_CLASS - 1; |
| |
| return sched_data->service_tree + idx; |
| } |
| |
| static struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync) |
| { |
| return bic->bfqq[is_sync]; |
| } |
| |
| static void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, |
| bool is_sync) |
| { |
| bic->bfqq[is_sync] = bfqq; |
| } |
| |
| static struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic) |
| { |
| return bic->icq.q->elevator->elevator_data; |
| } |
| |
| static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio); |
| static void bfq_put_queue(struct bfq_queue *bfqq); |
| static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, |
| struct bio *bio, bool is_sync, |
| struct bfq_io_cq *bic); |
| static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq); |
| |
| /* |
| * Array of async queues for all the processes, one queue |
| * per ioprio value per ioprio_class. |
| */ |
| struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR]; |
| /* Async queue for the idle class (ioprio is ignored) */ |
| struct bfq_queue *async_idle_bfqq; |
| |
| /* Expiration time of sync (0) and async (1) requests, in ns. */ |
| static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 }; |
| |
| /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */ |
| static const int bfq_back_max = 16 * 1024; |
| |
| /* Penalty of a backwards seek, in number of sectors. */ |
| static const int bfq_back_penalty = 2; |
| |
| /* Idling period duration, in ns. */ |
| static u64 bfq_slice_idle = NSEC_PER_SEC / 125; |
| |
| /* Minimum number of assigned budgets for which stats are safe to compute. */ |
| static const int bfq_stats_min_budgets = 194; |
| |
| /* Default maximum budget values, in sectors and number of requests. */ |
| static const int bfq_default_max_budget = 16 * 1024; |
| |
| /* Default timeout values, in jiffies, approximating CFQ defaults. */ |
| static const int bfq_timeout = HZ / 8; |
| |
| static struct kmem_cache *bfq_pool; |
| |
| /* Below this threshold (in ms), we consider thinktime immediate. */ |
| #define BFQ_MIN_TT (2 * NSEC_PER_MSEC) |
| |
| /* hw_tag detection: parallel requests threshold and min samples needed. */ |
| #define BFQ_HW_QUEUE_THRESHOLD 4 |
| #define BFQ_HW_QUEUE_SAMPLES 32 |
| |
| #define BFQQ_SEEK_THR (sector_t)(8 * 100) |
| #define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32) |
| #define BFQQ_CLOSE_THR (sector_t)(8 * 1024) |
| #define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 32/8) |
| |
| /* Budget feedback step. */ |
| #define BFQ_BUDGET_STEP 128 |
| |
| /* Min samples used for peak rate estimation (for autotuning). */ |
| #define BFQ_PEAK_RATE_SAMPLES 32 |
| |
| /* Shift used for peak rate fixed precision calculations. */ |
| #define BFQ_RATE_SHIFT 16 |
| |
| #define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \ |
| { RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 }) |
| |
| #define RQ_BIC(rq) ((struct bfq_io_cq *) (rq)->elv.priv[0]) |
| #define RQ_BFQQ(rq) ((rq)->elv.priv[1]) |
| |
| /** |
| * icq_to_bic - convert iocontext queue structure to bfq_io_cq. |
| * @icq: the iocontext queue. |
| */ |
| static struct bfq_io_cq *icq_to_bic(struct io_cq *icq) |
| { |
| /* bic->icq is the first member, %NULL will convert to %NULL */ |
| return container_of(icq, struct bfq_io_cq, icq); |
| } |
| |
| /** |
| * bfq_bic_lookup - search into @ioc a bic associated to @bfqd. |
| * @bfqd: the lookup key. |
| * @ioc: the io_context of the process doing I/O. |
| * @q: the request queue. |
| */ |
| static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd, |
| struct io_context *ioc, |
| struct request_queue *q) |
| { |
| if (ioc) { |
| unsigned long flags; |
| struct bfq_io_cq *icq; |
| |
| spin_lock_irqsave(q->queue_lock, flags); |
| icq = icq_to_bic(ioc_lookup_icq(ioc, q)); |
| spin_unlock_irqrestore(q->queue_lock, flags); |
| |
| return icq; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Next two macros are just fake loops for the moment. They will |
| * become true loops in the cgroups-enabled variant of the code. Such |
| * a variant, in its turn, will be introduced by next commit. |
| */ |
| #define for_each_entity(entity) \ |
| for (; entity ; entity = NULL) |
| |
| #define for_each_entity_safe(entity, parent) \ |
| for (parent = NULL; entity ; entity = parent) |
| |
| static int bfq_update_next_in_service(struct bfq_sched_data *sd) |
| { |
| return 0; |
| } |
| |
| static void bfq_check_next_in_service(struct bfq_sched_data *sd, |
| struct bfq_entity *entity) |
| { |
| } |
| |
| static void bfq_update_budget(struct bfq_entity *next_in_service) |
| { |
| } |
| |
| /* |
| * Shift for timestamp calculations. This actually limits the maximum |
| * service allowed in one timestamp delta (small shift values increase it), |
| * the maximum total weight that can be used for the queues in the system |
| * (big shift values increase it), and the period of virtual time |
| * wraparounds. |
| */ |
| #define WFQ_SERVICE_SHIFT 22 |
| |
| /** |
| * bfq_gt - compare two timestamps. |
| * @a: first ts. |
| * @b: second ts. |
| * |
| * Return @a > @b, dealing with wrapping correctly. |
| */ |
| static int bfq_gt(u64 a, u64 b) |
| { |
| return (s64)(a - b) > 0; |
| } |
| |
| static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity) |
| { |
| struct bfq_queue *bfqq = NULL; |
| |
| if (!entity->my_sched_data) |
| bfqq = container_of(entity, struct bfq_queue, entity); |
| |
| return bfqq; |
| } |
| |
| |
| /** |
| * bfq_delta - map service into the virtual time domain. |
| * @service: amount of service. |
| * @weight: scale factor (weight of an entity or weight sum). |
| */ |
| static u64 bfq_delta(unsigned long service, unsigned long weight) |
| { |
| u64 d = (u64)service << WFQ_SERVICE_SHIFT; |
| |
| do_div(d, weight); |
| return d; |
| } |
| |
| /** |
| * bfq_calc_finish - assign the finish time to an entity. |
| * @entity: the entity to act upon. |
| * @service: the service to be charged to the entity. |
| */ |
| static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service) |
| { |
| struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| |
| entity->finish = entity->start + |
| bfq_delta(service, entity->weight); |
| |
| if (bfqq) { |
| bfq_log_bfqq(bfqq->bfqd, bfqq, |
| "calc_finish: serv %lu, w %d", |
| service, entity->weight); |
| bfq_log_bfqq(bfqq->bfqd, bfqq, |
| "calc_finish: start %llu, finish %llu, delta %llu", |
| entity->start, entity->finish, |
| bfq_delta(service, entity->weight)); |
| } |
| } |
| |
| /** |
| * bfq_entity_of - get an entity from a node. |
| * @node: the node field of the entity. |
| * |
| * Convert a node pointer to the relative entity. This is used only |
| * to simplify the logic of some functions and not as the generic |
| * conversion mechanism because, e.g., in the tree walking functions, |
| * the check for a %NULL value would be redundant. |
| */ |
| static struct bfq_entity *bfq_entity_of(struct rb_node *node) |
| { |
| struct bfq_entity *entity = NULL; |
| |
| if (node) |
| entity = rb_entry(node, struct bfq_entity, rb_node); |
| |
| return entity; |
| } |
| |
| /** |
| * bfq_extract - remove an entity from a tree. |
| * @root: the tree root. |
| * @entity: the entity to remove. |
| */ |
| static void bfq_extract(struct rb_root *root, struct bfq_entity *entity) |
| { |
| entity->tree = NULL; |
| rb_erase(&entity->rb_node, root); |
| } |
| |
| /** |
| * bfq_idle_extract - extract an entity from the idle tree. |
| * @st: the service tree of the owning @entity. |
| * @entity: the entity being removed. |
| */ |
| static void bfq_idle_extract(struct bfq_service_tree *st, |
| struct bfq_entity *entity) |
| { |
| struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| struct rb_node *next; |
| |
| if (entity == st->first_idle) { |
| next = rb_next(&entity->rb_node); |
| st->first_idle = bfq_entity_of(next); |
| } |
| |
| if (entity == st->last_idle) { |
| next = rb_prev(&entity->rb_node); |
| st->last_idle = bfq_entity_of(next); |
| } |
| |
| bfq_extract(&st->idle, entity); |
| |
| if (bfqq) |
| list_del(&bfqq->bfqq_list); |
| } |
| |
| /** |
| * bfq_insert - generic tree insertion. |
| * @root: tree root. |
| * @entity: entity to insert. |
| * |
| * This is used for the idle and the active tree, since they are both |
| * ordered by finish time. |
| */ |
| static void bfq_insert(struct rb_root *root, struct bfq_entity *entity) |
| { |
| struct bfq_entity *entry; |
| struct rb_node **node = &root->rb_node; |
| struct rb_node *parent = NULL; |
| |
| while (*node) { |
| parent = *node; |
| entry = rb_entry(parent, struct bfq_entity, rb_node); |
| |
| if (bfq_gt(entry->finish, entity->finish)) |
| node = &parent->rb_left; |
| else |
| node = &parent->rb_right; |
| } |
| |
| rb_link_node(&entity->rb_node, parent, node); |
| rb_insert_color(&entity->rb_node, root); |
| |
| entity->tree = root; |
| } |
| |
| /** |
| * bfq_update_min - update the min_start field of a entity. |
| * @entity: the entity to update. |
| * @node: one of its children. |
| * |
| * This function is called when @entity may store an invalid value for |
| * min_start due to updates to the active tree. The function assumes |
| * that the subtree rooted at @node (which may be its left or its right |
| * child) has a valid min_start value. |
| */ |
| static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node) |
| { |
| struct bfq_entity *child; |
| |
| if (node) { |
| child = rb_entry(node, struct bfq_entity, rb_node); |
| if (bfq_gt(entity->min_start, child->min_start)) |
| entity->min_start = child->min_start; |
| } |
| } |
| |
| /** |
| * bfq_update_active_node - recalculate min_start. |
| * @node: the node to update. |
| * |
| * @node may have changed position or one of its children may have moved, |
| * this function updates its min_start value. The left and right subtrees |
| * are assumed to hold a correct min_start value. |
| */ |
| static void bfq_update_active_node(struct rb_node *node) |
| { |
| struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node); |
| |
| entity->min_start = entity->start; |
| bfq_update_min(entity, node->rb_right); |
| bfq_update_min(entity, node->rb_left); |
| } |
| |
| /** |
| * bfq_update_active_tree - update min_start for the whole active tree. |
| * @node: the starting node. |
| * |
| * @node must be the deepest modified node after an update. This function |
| * updates its min_start using the values held by its children, assuming |
| * that they did not change, and then updates all the nodes that may have |
| * changed in the path to the root. The only nodes that may have changed |
| * are the ones in the path or their siblings. |
| */ |
| static void bfq_update_active_tree(struct rb_node *node) |
| { |
| struct rb_node *parent; |
| |
| up: |
| bfq_update_active_node(node); |
| |
| parent = rb_parent(node); |
| if (!parent) |
| return; |
| |
| if (node == parent->rb_left && parent->rb_right) |
| bfq_update_active_node(parent->rb_right); |
| else if (parent->rb_left) |
| bfq_update_active_node(parent->rb_left); |
| |
| node = parent; |
| goto up; |
| } |
| |
| /** |
| * bfq_active_insert - insert an entity in the active tree of its |
| * group/device. |
| * @st: the service tree of the entity. |
| * @entity: the entity being inserted. |
| * |
| * The active tree is ordered by finish time, but an extra key is kept |
| * per each node, containing the minimum value for the start times of |
| * its children (and the node itself), so it's possible to search for |
| * the eligible node with the lowest finish time in logarithmic time. |
| */ |
| static void bfq_active_insert(struct bfq_service_tree *st, |
| struct bfq_entity *entity) |
| { |
| struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| struct rb_node *node = &entity->rb_node; |
| |
| bfq_insert(&st->active, entity); |
| |
| if (node->rb_left) |
| node = node->rb_left; |
| else if (node->rb_right) |
| node = node->rb_right; |
| |
| bfq_update_active_tree(node); |
| |
| if (bfqq) |
| list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list); |
| } |
| |
| /** |
| * bfq_ioprio_to_weight - calc a weight from an ioprio. |
| * @ioprio: the ioprio value to convert. |
| */ |
| static unsigned short bfq_ioprio_to_weight(int ioprio) |
| { |
| return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF; |
| } |
| |
| /** |
| * bfq_weight_to_ioprio - calc an ioprio from a weight. |
| * @weight: the weight value to convert. |
| * |
| * To preserve as much as possible the old only-ioprio user interface, |
| * 0 is used as an escape ioprio value for weights (numerically) equal or |
| * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF. |
| */ |
| static unsigned short bfq_weight_to_ioprio(int weight) |
| { |
| return max_t(int, 0, |
| IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight); |
| } |
| |
| static void bfq_get_entity(struct bfq_entity *entity) |
| { |
| struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| |
| if (bfqq) { |
| bfqq->ref++; |
| bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d", |
| bfqq, bfqq->ref); |
| } |
| } |
| |
| /** |
| * bfq_find_deepest - find the deepest node that an extraction can modify. |
| * @node: the node being removed. |
| * |
| * Do the first step of an extraction in an rb tree, looking for the |
| * node that will replace @node, and returning the deepest node that |
| * the following modifications to the tree can touch. If @node is the |
| * last node in the tree return %NULL. |
| */ |
| static struct rb_node *bfq_find_deepest(struct rb_node *node) |
| { |
| struct rb_node *deepest; |
| |
| if (!node->rb_right && !node->rb_left) |
| deepest = rb_parent(node); |
| else if (!node->rb_right) |
| deepest = node->rb_left; |
| else if (!node->rb_left) |
| deepest = node->rb_right; |
| else { |
| deepest = rb_next(node); |
| if (deepest->rb_right) |
| deepest = deepest->rb_right; |
| else if (rb_parent(deepest) != node) |
| deepest = rb_parent(deepest); |
| } |
| |
| return deepest; |
| } |
| |
| /** |
| * bfq_active_extract - remove an entity from the active tree. |
| * @st: the service_tree containing the tree. |
| * @entity: the entity being removed. |
| */ |
| static void bfq_active_extract(struct bfq_service_tree *st, |
| struct bfq_entity *entity) |
| { |
| struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| struct rb_node *node; |
| |
| node = bfq_find_deepest(&entity->rb_node); |
| bfq_extract(&st->active, entity); |
| |
| if (node) |
| bfq_update_active_tree(node); |
| |
| if (bfqq) |
| list_del(&bfqq->bfqq_list); |
| } |
| |
| /** |
| * bfq_idle_insert - insert an entity into the idle tree. |
| * @st: the service tree containing the tree. |
| * @entity: the entity to insert. |
| */ |
| static void bfq_idle_insert(struct bfq_service_tree *st, |
| struct bfq_entity *entity) |
| { |
| struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| struct bfq_entity *first_idle = st->first_idle; |
| struct bfq_entity *last_idle = st->last_idle; |
| |
| if (!first_idle || bfq_gt(first_idle->finish, entity->finish)) |
| st->first_idle = entity; |
| if (!last_idle || bfq_gt(entity->finish, last_idle->finish)) |
| st->last_idle = entity; |
| |
| bfq_insert(&st->idle, entity); |
| |
| if (bfqq) |
| list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list); |
| } |
| |
| /** |
| * bfq_forget_entity - do not consider entity any longer for scheduling |
| * @st: the service tree. |
| * @entity: the entity being removed. |
| * @is_in_service: true if entity is currently the in-service entity. |
| * |
| * Forget everything about @entity. In addition, if entity represents |
| * a queue, and the latter is not in service, then release the service |
| * reference to the queue (the one taken through bfq_get_entity). In |
| * fact, in this case, there is really no more service reference to |
| * the queue, as the latter is also outside any service tree. If, |
| * instead, the queue is in service, then __bfq_bfqd_reset_in_service |
| * will take care of putting the reference when the queue finally |
| * stops being served. |
| */ |
| static void bfq_forget_entity(struct bfq_service_tree *st, |
| struct bfq_entity *entity, |
| bool is_in_service) |
| { |
| struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| |
| entity->on_st = 0; |
| st->wsum -= entity->weight; |
| if (bfqq && !is_in_service) |
| bfq_put_queue(bfqq); |
| } |
| |
| /** |
| * bfq_put_idle_entity - release the idle tree ref of an entity. |
| * @st: service tree for the entity. |
| * @entity: the entity being released. |
| */ |
| static void bfq_put_idle_entity(struct bfq_service_tree *st, |
| struct bfq_entity *entity) |
| { |
| bfq_idle_extract(st, entity); |
| bfq_forget_entity(st, entity, |
| entity == entity->sched_data->in_service_entity); |
| } |
| |
| /** |
| * bfq_forget_idle - update the idle tree if necessary. |
| * @st: the service tree to act upon. |
| * |
| * To preserve the global O(log N) complexity we only remove one entry here; |
| * as the idle tree will not grow indefinitely this can be done safely. |
| */ |
| static void bfq_forget_idle(struct bfq_service_tree *st) |
| { |
| struct bfq_entity *first_idle = st->first_idle; |
| struct bfq_entity *last_idle = st->last_idle; |
| |
| if (RB_EMPTY_ROOT(&st->active) && last_idle && |
| !bfq_gt(last_idle->finish, st->vtime)) { |
| /* |
| * Forget the whole idle tree, increasing the vtime past |
| * the last finish time of idle entities. |
| */ |
| st->vtime = last_idle->finish; |
| } |
| |
| if (first_idle && !bfq_gt(first_idle->finish, st->vtime)) |
| bfq_put_idle_entity(st, first_idle); |
| } |
| |
| static struct bfq_service_tree * |
| __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st, |
| struct bfq_entity *entity) |
| { |
| struct bfq_service_tree *new_st = old_st; |
| |
| if (entity->prio_changed) { |
| struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| unsigned short prev_weight, new_weight; |
| struct bfq_data *bfqd = NULL; |
| |
| if (bfqq) |
| bfqd = bfqq->bfqd; |
| |
| old_st->wsum -= entity->weight; |
| |
| if (entity->new_weight != entity->orig_weight) { |
| if (entity->new_weight < BFQ_MIN_WEIGHT || |
| entity->new_weight > BFQ_MAX_WEIGHT) { |
| pr_crit("update_weight_prio: new_weight %d\n", |
| entity->new_weight); |
| if (entity->new_weight < BFQ_MIN_WEIGHT) |
| entity->new_weight = BFQ_MIN_WEIGHT; |
| else |
| entity->new_weight = BFQ_MAX_WEIGHT; |
| } |
| entity->orig_weight = entity->new_weight; |
| if (bfqq) |
| bfqq->ioprio = |
| bfq_weight_to_ioprio(entity->orig_weight); |
| } |
| |
| if (bfqq) |
| bfqq->ioprio_class = bfqq->new_ioprio_class; |
| entity->prio_changed = 0; |
| |
| /* |
| * NOTE: here we may be changing the weight too early, |
| * this will cause unfairness. The correct approach |
| * would have required additional complexity to defer |
| * weight changes to the proper time instants (i.e., |
| * when entity->finish <= old_st->vtime). |
| */ |
| new_st = bfq_entity_service_tree(entity); |
| |
| prev_weight = entity->weight; |
| new_weight = entity->orig_weight; |
| entity->weight = new_weight; |
| |
| new_st->wsum += entity->weight; |
| |
| if (new_st != old_st) |
| entity->start = new_st->vtime; |
| } |
| |
| return new_st; |
| } |
| |
| /** |
| * bfq_bfqq_served - update the scheduler status after selection for |
| * service. |
| * @bfqq: the queue being served. |
| * @served: bytes to transfer. |
| * |
| * NOTE: this can be optimized, as the timestamps of upper level entities |
| * are synchronized every time a new bfqq is selected for service. By now, |
| * we keep it to better check consistency. |
| */ |
| static void bfq_bfqq_served(struct bfq_queue *bfqq, int served) |
| { |
| struct bfq_entity *entity = &bfqq->entity; |
| struct bfq_service_tree *st; |
| |
| for_each_entity(entity) { |
| st = bfq_entity_service_tree(entity); |
| |
| entity->service += served; |
| |
| st->vtime += bfq_delta(served, st->wsum); |
| bfq_forget_idle(st); |
| } |
| bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served); |
| } |
| |
| /** |
| * bfq_bfqq_charge_full_budget - set the service to the entity budget. |
| * @bfqq: the queue that needs a service update. |
| * |
| * When it's not possible to be fair in the service domain, because |
| * a queue is not consuming its budget fast enough (the meaning of |
| * fast depends on the timeout parameter), we charge it a full |
| * budget. In this way we should obtain a sort of time-domain |
| * fairness among all the seeky/slow queues. |
| */ |
| static void bfq_bfqq_charge_full_budget(struct bfq_queue *bfqq) |
| { |
| struct bfq_entity *entity = &bfqq->entity; |
| |
| bfq_log_bfqq(bfqq->bfqd, bfqq, "charge_full_budget"); |
| |
| bfq_bfqq_served(bfqq, entity->budget - entity->service); |
| } |
| |
| /** |
| * __bfq_activate_entity - activate an entity. |
| * @entity: the entity being activated. |
| * @non_blocking_wait_rq: true if this entity was waiting for a request |
| * |
| * Called whenever an entity is activated, i.e., it is not active and one |
| * of its children receives a new request, or has to be reactivated due to |
| * budget exhaustion. It uses the current budget of the entity (and the |
| * service received if @entity is active) of the queue to calculate its |
| * timestamps. |
| */ |
| static void __bfq_activate_entity(struct bfq_entity *entity, |
| bool non_blocking_wait_rq) |
| { |
| struct bfq_sched_data *sd = entity->sched_data; |
| struct bfq_service_tree *st = bfq_entity_service_tree(entity); |
| bool backshifted = false; |
| |
| if (entity == sd->in_service_entity) { |
| /* |
| * If we are requeueing the current entity we have |
| * to take care of not charging to it service it has |
| * not received. |
| */ |
| bfq_calc_finish(entity, entity->service); |
| entity->start = entity->finish; |
| sd->in_service_entity = NULL; |
| } else if (entity->tree == &st->active) { |
| /* |
| * Requeueing an entity due to a change of some |
| * next_in_service entity below it. We reuse the |
| * old start time. |
| */ |
| bfq_active_extract(st, entity); |
| } else { |
| unsigned long long min_vstart; |
| |
| /* See comments on bfq_fqq_update_budg_for_activation */ |
| if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) { |
| backshifted = true; |
| min_vstart = entity->finish; |
| } else |
| min_vstart = st->vtime; |
| |
| if (entity->tree == &st->idle) { |
| /* |
| * Must be on the idle tree, bfq_idle_extract() will |
| * check for that. |
| */ |
| bfq_idle_extract(st, entity); |
| entity->start = bfq_gt(min_vstart, entity->finish) ? |
| min_vstart : entity->finish; |
| } else { |
| /* |
| * The finish time of the entity may be invalid, and |
| * it is in the past for sure, otherwise the queue |
| * would have been on the idle tree. |
| */ |
| entity->start = min_vstart; |
| st->wsum += entity->weight; |
| /* |
| * entity is about to be inserted into a service tree, |
| * and then set in service: get a reference to make |
| * sure entity does not disappear until it is no |
| * longer in service or scheduled for service. |
| */ |
| bfq_get_entity(entity); |
| |
| entity->on_st = 1; |
| } |
| } |
| |
| st = __bfq_entity_update_weight_prio(st, entity); |
| bfq_calc_finish(entity, entity->budget); |
| |
| /* |
| * If some queues enjoy backshifting for a while, then their |
| * (virtual) finish timestamps may happen to become lower and |
| * lower than the system virtual time. In particular, if |
| * these queues often happen to be idle for short time |
| * periods, and during such time periods other queues with |
| * higher timestamps happen to be busy, then the backshifted |
| * timestamps of the former queues can become much lower than |
| * the system virtual time. In fact, to serve the queues with |
| * higher timestamps while the ones with lower timestamps are |
| * idle, the system virtual time may be pushed-up to much |
| * higher values than the finish timestamps of the idle |
| * queues. As a consequence, the finish timestamps of all new |
| * or newly activated queues may end up being much larger than |
| * those of lucky queues with backshifted timestamps. The |
| * latter queues may then monopolize the device for a lot of |
| * time. This would simply break service guarantees. |
| * |
| * To reduce this problem, push up a little bit the |
| * backshifted timestamps of the queue associated with this |
| * entity (only a queue can happen to have the backshifted |
| * flag set): just enough to let the finish timestamp of the |
| * queue be equal to the current value of the system virtual |
| * time. This may introduce a little unfairness among queues |
| * with backshifted timestamps, but it does not break |
| * worst-case fairness guarantees. |
| */ |
| if (backshifted && bfq_gt(st->vtime, entity->finish)) { |
| unsigned long delta = st->vtime - entity->finish; |
| |
| entity->start += delta; |
| entity->finish += delta; |
| } |
| |
| bfq_active_insert(st, entity); |
| } |
| |
| /** |
| * bfq_activate_entity - activate an entity and its ancestors if necessary. |
| * @entity: the entity to activate. |
| * @non_blocking_wait_rq: true if this entity was waiting for a request |
| * |
| * Activate @entity and all the entities on the path from it to the root. |
| */ |
| static void bfq_activate_entity(struct bfq_entity *entity, |
| bool non_blocking_wait_rq) |
| { |
| struct bfq_sched_data *sd; |
| |
| for_each_entity(entity) { |
| __bfq_activate_entity(entity, non_blocking_wait_rq); |
| |
| sd = entity->sched_data; |
| if (!bfq_update_next_in_service(sd)) |
| /* |
| * No need to propagate the activation to the |
| * upper entities, as they will be updated when |
| * the in-service entity is rescheduled. |
| */ |
| break; |
| } |
| } |
| |
| /** |
| * __bfq_deactivate_entity - deactivate an entity from its service tree. |
| * @entity: the entity to deactivate. |
| * @requeue: if false, the entity will not be put into the idle tree. |
| * |
| * Deactivate an entity, independently from its previous state. If the |
| * entity was not on a service tree just return, otherwise if it is on |
| * any scheduler tree, extract it from that tree, and if necessary |
| * and if the caller did not specify @requeue, put it on the idle tree. |
| * |
| * Return %1 if the caller should update the entity hierarchy, i.e., |
| * if the entity was in service or if it was the next_in_service for |
| * its sched_data; return %0 otherwise. |
| */ |
| static int __bfq_deactivate_entity(struct bfq_entity *entity, int requeue) |
| { |
| struct bfq_sched_data *sd = entity->sched_data; |
| struct bfq_service_tree *st = bfq_entity_service_tree(entity); |
| int is_in_service = entity == sd->in_service_entity; |
| int ret = 0; |
| |
| if (!entity->on_st) |
| return 0; |
| |
| if (is_in_service) { |
| bfq_calc_finish(entity, entity->service); |
| sd->in_service_entity = NULL; |
| } else if (entity->tree == &st->active) |
| bfq_active_extract(st, entity); |
| else if (entity->tree == &st->idle) |
| bfq_idle_extract(st, entity); |
| |
| if (is_in_service || sd->next_in_service == entity) |
| ret = bfq_update_next_in_service(sd); |
| |
| if (!requeue || !bfq_gt(entity->finish, st->vtime)) |
| bfq_forget_entity(st, entity, is_in_service); |
| else |
| bfq_idle_insert(st, entity); |
| |
| return ret; |
| } |
| |
| /** |
| * bfq_deactivate_entity - deactivate an entity. |
| * @entity: the entity to deactivate. |
| * @requeue: true if the entity can be put on the idle tree |
| */ |
| static void bfq_deactivate_entity(struct bfq_entity *entity, int requeue) |
| { |
| struct bfq_sched_data *sd; |
| struct bfq_entity *parent = NULL; |
| |
| for_each_entity_safe(entity, parent) { |
| sd = entity->sched_data; |
| |
| if (!__bfq_deactivate_entity(entity, requeue)) |
| /* |
| * The parent entity is still backlogged, and |
| * we don't need to update it as it is still |
| * in service. |
| */ |
| break; |
| |
| if (sd->next_in_service) |
| /* |
| * The parent entity is still backlogged and |
| * the budgets on the path towards the root |
| * need to be updated. |
| */ |
| goto update; |
| |
| /* |
| * If we get here, then the parent is no more backlogged and |
| * we want to propagate the deactivation upwards. |
| */ |
| requeue = 1; |
| } |
| |
| return; |
| |
| update: |
| entity = parent; |
| for_each_entity(entity) { |
| __bfq_activate_entity(entity, false); |
| |
| sd = entity->sched_data; |
| if (!bfq_update_next_in_service(sd)) |
| break; |
| } |
| } |
| |
| /** |
| * bfq_update_vtime - update vtime if necessary. |
| * @st: the service tree to act upon. |
| * |
| * If necessary update the service tree vtime to have at least one |
| * eligible entity, skipping to its start time. Assumes that the |
| * active tree of the device is not empty. |
| * |
| * NOTE: this hierarchical implementation updates vtimes quite often, |
| * we may end up with reactivated processes getting timestamps after a |
| * vtime skip done because we needed a ->first_active entity on some |
| * intermediate node. |
| */ |
| static void bfq_update_vtime(struct bfq_service_tree *st) |
| { |
| struct bfq_entity *entry; |
| struct rb_node *node = st->active.rb_node; |
| |
| entry = rb_entry(node, struct bfq_entity, rb_node); |
| if (bfq_gt(entry->min_start, st->vtime)) { |
| st->vtime = entry->min_start; |
| bfq_forget_idle(st); |
| } |
| } |
| |
| /** |
| * bfq_first_active_entity - find the eligible entity with |
| * the smallest finish time |
| * @st: the service tree to select from. |
| * |
| * This function searches the first schedulable entity, starting from the |
| * root of the tree and going on the left every time on this side there is |
| * a subtree with at least one eligible (start >= vtime) entity. The path on |
| * the right is followed only if a) the left subtree contains no eligible |
| * entities and b) no eligible entity has been found yet. |
| */ |
| static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st) |
| { |
| struct bfq_entity *entry, *first = NULL; |
| struct rb_node *node = st->active.rb_node; |
| |
| while (node) { |
| entry = rb_entry(node, struct bfq_entity, rb_node); |
| left: |
| if (!bfq_gt(entry->start, st->vtime)) |
| first = entry; |
| |
| if (node->rb_left) { |
| entry = rb_entry(node->rb_left, |
| struct bfq_entity, rb_node); |
| if (!bfq_gt(entry->min_start, st->vtime)) { |
| node = node->rb_left; |
| goto left; |
| } |
| } |
| if (first) |
| break; |
| node = node->rb_right; |
| } |
| |
| return first; |
| } |
| |
| /** |
| * __bfq_lookup_next_entity - return the first eligible entity in @st. |
| * @st: the service tree. |
| * |
| * Update the virtual time in @st and return the first eligible entity |
| * it contains. |
| */ |
| static struct bfq_entity *__bfq_lookup_next_entity(struct bfq_service_tree *st, |
| bool force) |
| { |
| struct bfq_entity *entity, *new_next_in_service = NULL; |
| |
| if (RB_EMPTY_ROOT(&st->active)) |
| return NULL; |
| |
| bfq_update_vtime(st); |
| entity = bfq_first_active_entity(st); |
| |
| /* |
| * If the chosen entity does not match with the sched_data's |
| * next_in_service and we are forcedly serving the IDLE priority |
| * class tree, bubble up budget update. |
| */ |
| if (unlikely(force && entity != entity->sched_data->next_in_service)) { |
| new_next_in_service = entity; |
| for_each_entity(new_next_in_service) |
| bfq_update_budget(new_next_in_service); |
| } |
| |
| return entity; |
| } |
| |
| /** |
| * bfq_lookup_next_entity - return the first eligible entity in @sd. |
| * @sd: the sched_data. |
| * @extract: if true the returned entity will be also extracted from @sd. |
| * |
| * NOTE: since we cache the next_in_service entity at each level of the |
| * hierarchy, the complexity of the lookup can be decreased with |
| * absolutely no effort just returning the cached next_in_service value; |
| * we prefer to do full lookups to test the consistency of the data |
| * structures. |
| */ |
| static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd, |
| int extract, |
| struct bfq_data *bfqd) |
| { |
| struct bfq_service_tree *st = sd->service_tree; |
| struct bfq_entity *entity; |
| int i = 0; |
| |
| /* |
| * Choose from idle class, if needed to guarantee a minimum |
| * bandwidth to this class. This should also mitigate |
| * priority-inversion problems in case a low priority task is |
| * holding file system resources. |
| */ |
| if (bfqd && |
| jiffies - bfqd->bfq_class_idle_last_service > |
| BFQ_CL_IDLE_TIMEOUT) { |
| entity = __bfq_lookup_next_entity(st + BFQ_IOPRIO_CLASSES - 1, |
| true); |
| if (entity) { |
| i = BFQ_IOPRIO_CLASSES - 1; |
| bfqd->bfq_class_idle_last_service = jiffies; |
| sd->next_in_service = entity; |
| } |
| } |
| for (; i < BFQ_IOPRIO_CLASSES; i++) { |
| entity = __bfq_lookup_next_entity(st + i, false); |
| if (entity) { |
| if (extract) { |
| bfq_check_next_in_service(sd, entity); |
| bfq_active_extract(st + i, entity); |
| sd->in_service_entity = entity; |
| sd->next_in_service = NULL; |
| } |
| break; |
| } |
| } |
| |
| return entity; |
| } |
| |
| static bool next_queue_may_preempt(struct bfq_data *bfqd) |
| { |
| struct bfq_sched_data *sd = &bfqd->sched_data; |
| |
| return sd->next_in_service != sd->in_service_entity; |
| } |
| |
| |
| /* |
| * Get next queue for service. |
| */ |
| static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd) |
| { |
| struct bfq_entity *entity = NULL; |
| struct bfq_sched_data *sd; |
| struct bfq_queue *bfqq; |
| |
| if (bfqd->busy_queues == 0) |
| return NULL; |
| |
| sd = &bfqd->sched_data; |
| for (; sd ; sd = entity->my_sched_data) { |
| entity = bfq_lookup_next_entity(sd, 1, bfqd); |
| entity->service = 0; |
| } |
| |
| bfqq = bfq_entity_to_bfqq(entity); |
| |
| return bfqq; |
| } |
| |
| static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd) |
| { |
| struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue; |
| struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity; |
| |
| if (bfqd->in_service_bic) { |
| put_io_context(bfqd->in_service_bic->icq.ioc); |
| bfqd->in_service_bic = NULL; |
| } |
| |
| bfq_clear_bfqq_wait_request(in_serv_bfqq); |
| hrtimer_try_to_cancel(&bfqd->idle_slice_timer); |
| bfqd->in_service_queue = NULL; |
| |
| /* |
| * in_serv_entity is no longer in service, so, if it is in no |
| * service tree either, then release the service reference to |
| * the queue it represents (taken with bfq_get_entity). |
| */ |
| if (!in_serv_entity->on_st) |
| bfq_put_queue(in_serv_bfqq); |
| } |
| |
| static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| int requeue) |
| { |
| struct bfq_entity *entity = &bfqq->entity; |
| |
| bfq_deactivate_entity(entity, requeue); |
| } |
| |
| static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) |
| { |
| struct bfq_entity *entity = &bfqq->entity; |
| |
| bfq_activate_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq)); |
| bfq_clear_bfqq_non_blocking_wait_rq(bfqq); |
| } |
| |
| /* |
| * Called when the bfqq no longer has requests pending, remove it from |
| * the service tree. |
| */ |
| static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| int requeue) |
| { |
| bfq_log_bfqq(bfqd, bfqq, "del from busy"); |
| |
| bfq_clear_bfqq_busy(bfqq); |
| |
| bfqd->busy_queues--; |
| |
| bfq_deactivate_bfqq(bfqd, bfqq, requeue); |
| } |
| |
| /* |
| * Called when an inactive queue receives a new request. |
| */ |
| static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq) |
| { |
| bfq_log_bfqq(bfqd, bfqq, "add to busy"); |
| |
| bfq_activate_bfqq(bfqd, bfqq); |
| |
| bfq_mark_bfqq_busy(bfqq); |
| bfqd->busy_queues++; |
| } |
| |
| static void bfq_init_entity(struct bfq_entity *entity) |
| { |
| struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| |
| entity->weight = entity->new_weight; |
| entity->orig_weight = entity->new_weight; |
| |
| bfqq->ioprio = bfqq->new_ioprio; |
| bfqq->ioprio_class = bfqq->new_ioprio_class; |
| |
| entity->sched_data = &bfqq->bfqd->sched_data; |
| } |
| |
| #define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE) |
| #define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT) |
| |
| #define bfq_sample_valid(samples) ((samples) > 80) |
| |
| /* |
| * Scheduler run of queue, if there are requests pending and no one in the |
| * driver that will restart queueing. |
| */ |
| static void bfq_schedule_dispatch(struct bfq_data *bfqd) |
| { |
| if (bfqd->queued != 0) { |
| bfq_log(bfqd, "schedule dispatch"); |
| blk_mq_run_hw_queues(bfqd->queue, true); |
| } |
| } |
| |
| /* |
| * Lifted from AS - choose which of rq1 and rq2 that is best served now. |
| * We choose the request that is closesr to the head right now. Distance |
| * behind the head is penalized and only allowed to a certain extent. |
| */ |
| static struct request *bfq_choose_req(struct bfq_data *bfqd, |
| struct request *rq1, |
| struct request *rq2, |
| sector_t last) |
| { |
| sector_t s1, s2, d1 = 0, d2 = 0; |
| unsigned long back_max; |
| #define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */ |
| #define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */ |
| unsigned int wrap = 0; /* bit mask: requests behind the disk head? */ |
| |
| if (!rq1 || rq1 == rq2) |
| return rq2; |
| if (!rq2) |
| return rq1; |
| |
| if (rq_is_sync(rq1) && !rq_is_sync(rq2)) |
| return rq1; |
| else if (rq_is_sync(rq2) && !rq_is_sync(rq1)) |
| return rq2; |
| if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META)) |
| return rq1; |
| else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META)) |
| return rq2; |
| |
| s1 = blk_rq_pos(rq1); |
| s2 = blk_rq_pos(rq2); |
| |
| /* |
| * By definition, 1KiB is 2 sectors. |
| */ |
| back_max = bfqd->bfq_back_max * 2; |
| |
| /* |
| * Strict one way elevator _except_ in the case where we allow |
| * short backward seeks which are biased as twice the cost of a |
| * similar forward seek. |
| */ |
| if (s1 >= last) |
| d1 = s1 - last; |
| else if (s1 + back_max >= last) |
| d1 = (last - s1) * bfqd->bfq_back_penalty; |
| else |
| wrap |= BFQ_RQ1_WRAP; |
| |
| if (s2 >= last) |
| d2 = s2 - last; |
| else if (s2 + back_max >= last) |
| d2 = (last - s2) * bfqd->bfq_back_penalty; |
| else |
| wrap |= BFQ_RQ2_WRAP; |
| |
| /* Found required data */ |
| |
| /* |
| * By doing switch() on the bit mask "wrap" we avoid having to |
| * check two variables for all permutations: --> faster! |
| */ |
| switch (wrap) { |
| case 0: /* common case for CFQ: rq1 and rq2 not wrapped */ |
| if (d1 < d2) |
| return rq1; |
| else if (d2 < d1) |
| return rq2; |
| |
| if (s1 >= s2) |
| return rq1; |
| else |
| return rq2; |
| |
| case BFQ_RQ2_WRAP: |
| return rq1; |
| case BFQ_RQ1_WRAP: |
| return rq2; |
| case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */ |
| default: |
| /* |
| * Since both rqs are wrapped, |
| * start with the one that's further behind head |
| * (--> only *one* back seek required), |
| * since back seek takes more time than forward. |
| */ |
| if (s1 <= s2) |
| return rq1; |
| else |
| return rq2; |
| } |
| } |
| |
| /* |
| * Return expired entry, or NULL to just start from scratch in rbtree. |
| */ |
| static struct request *bfq_check_fifo(struct bfq_queue *bfqq, |
| struct request *last) |
| { |
| struct request *rq; |
| |
| if (bfq_bfqq_fifo_expire(bfqq)) |
| return NULL; |
| |
| bfq_mark_bfqq_fifo_expire(bfqq); |
| |
| rq = rq_entry_fifo(bfqq->fifo.next); |
| |
| if (rq == last || ktime_get_ns() < rq->fifo_time) |
| return NULL; |
| |
| bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq); |
| return rq; |
| } |
| |
| static struct request *bfq_find_next_rq(struct bfq_data *bfqd, |
| struct bfq_queue *bfqq, |
| struct request *last) |
| { |
| struct rb_node *rbnext = rb_next(&last->rb_node); |
| struct rb_node *rbprev = rb_prev(&last->rb_node); |
| struct request *next, *prev = NULL; |
| |
| /* Follow expired path, else get first next available. */ |
| next = bfq_check_fifo(bfqq, last); |
| if (next) |
| return next; |
| |
| if (rbprev) |
| prev = rb_entry_rq(rbprev); |
| |
| if (rbnext) |
| next = rb_entry_rq(rbnext); |
| else { |
| rbnext = rb_first(&bfqq->sort_list); |
| if (rbnext && rbnext != &last->rb_node) |
| next = rb_entry_rq(rbnext); |
| } |
| |
| return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last)); |
| } |
| |
| static unsigned long bfq_serv_to_charge(struct request *rq, |
| struct bfq_queue *bfqq) |
| { |
| return blk_rq_sectors(rq); |
| } |
| |
| /** |
| * bfq_updated_next_req - update the queue after a new next_rq selection. |
| * @bfqd: the device data the queue belongs to. |
| * @bfqq: the queue to update. |
| * |
| * If the first request of a queue changes we make sure that the queue |
| * has enough budget to serve at least its first request (if the |
| * request has grown). We do this because if the queue has not enough |
| * budget for its first request, it has to go through two dispatch |
| * rounds to actually get it dispatched. |
| */ |
| static void bfq_updated_next_req(struct bfq_data *bfqd, |
| struct bfq_queue *bfqq) |
| { |
| struct bfq_entity *entity = &bfqq->entity; |
| struct request *next_rq = bfqq->next_rq; |
| unsigned long new_budget; |
| |
| if (!next_rq) |
| return; |
| |
| if (bfqq == bfqd->in_service_queue) |
| /* |
| * In order not to break guarantees, budgets cannot be |
| * changed after an entity has been selected. |
| */ |
| return; |
| |
| new_budget = max_t(unsigned long, bfqq->max_budget, |
| bfq_serv_to_charge(next_rq, bfqq)); |
| if (entity->budget != new_budget) { |
| entity->budget = new_budget; |
| bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu", |
| new_budget); |
| bfq_activate_bfqq(bfqd, bfqq); |
| } |
| } |
| |
| static int bfq_bfqq_budget_left(struct bfq_queue *bfqq) |
| { |
| struct bfq_entity *entity = &bfqq->entity; |
| |
| return entity->budget - entity->service; |
| } |
| |
| /* |
| * If enough samples have been computed, return the current max budget |
| * stored in bfqd, which is dynamically updated according to the |
| * estimated disk peak rate; otherwise return the default max budget |
| */ |
| static int bfq_max_budget(struct bfq_data *bfqd) |
| { |
| if (bfqd->budgets_assigned < bfq_stats_min_budgets) |
| return bfq_default_max_budget; |
| else |
| return bfqd->bfq_max_budget; |
| } |
| |
| /* |
| * Return min budget, which is a fraction of the current or default |
| * max budget (trying with 1/32) |
| */ |
| static int bfq_min_budget(struct bfq_data *bfqd) |
| { |
| if (bfqd->budgets_assigned < bfq_stats_min_budgets) |
| return bfq_default_max_budget / 32; |
| else |
| return bfqd->bfq_max_budget / 32; |
| } |
| |
| static void bfq_bfqq_expire(struct bfq_data *bfqd, |
| struct bfq_queue *bfqq, |
| bool compensate, |
| enum bfqq_expiration reason); |
| |
| /* |
| * The next function, invoked after the input queue bfqq switches from |
| * idle to busy, updates the budget of bfqq. The function also tells |
| * whether the in-service queue should be expired, by returning |
| * true. The purpose of expiring the in-service queue is to give bfqq |
| * the chance to possibly preempt the in-service queue, and the reason |
| * for preempting the in-service queue is to achieve the following |
| * goal: guarantee to bfqq its reserved bandwidth even if bfqq has |
| * expired because it has remained idle. |
| * |
| * In particular, bfqq may have expired for one of the following two |
| * reasons: |
| * |
| * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling |
| * and did not make it to issue a new request before its last |
| * request was served; |
| * |
| * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue |
| * a new request before the expiration of the idling-time. |
| * |
| * Even if bfqq has expired for one of the above reasons, the process |
| * associated with the queue may be however issuing requests greedily, |
| * and thus be sensitive to the bandwidth it receives (bfqq may have |
| * remained idle for other reasons: CPU high load, bfqq not enjoying |
| * idling, I/O throttling somewhere in the path from the process to |
| * the I/O scheduler, ...). But if, after every expiration for one of |
| * the above two reasons, bfqq has to wait for the service of at least |
| * one full budget of another queue before being served again, then |
| * bfqq is likely to get a much lower bandwidth or resource time than |
| * its reserved ones. To address this issue, two countermeasures need |
| * to be taken. |
| * |
| * First, the budget and the timestamps of bfqq need to be updated in |
| * a special way on bfqq reactivation: they need to be updated as if |
| * bfqq did not remain idle and did not expire. In fact, if they are |
| * computed as if bfqq expired and remained idle until reactivation, |
| * then the process associated with bfqq is treated as if, instead of |
| * being greedy, it stopped issuing requests when bfqq remained idle, |
| * and restarts issuing requests only on this reactivation. In other |
| * words, the scheduler does not help the process recover the "service |
| * hole" between bfqq expiration and reactivation. As a consequence, |
| * the process receives a lower bandwidth than its reserved one. In |
| * contrast, to recover this hole, the budget must be updated as if |
| * bfqq was not expired at all before this reactivation, i.e., it must |
| * be set to the value of the remaining budget when bfqq was |
| * expired. Along the same line, timestamps need to be assigned the |
| * value they had the last time bfqq was selected for service, i.e., |
| * before last expiration. Thus timestamps need to be back-shifted |
| * with respect to their normal computation (see [1] for more details |
| * on this tricky aspect). |
| * |
| * Secondly, to allow the process to recover the hole, the in-service |
| * queue must be expired too, to give bfqq the chance to preempt it |
| * immediately. In fact, if bfqq has to wait for a full budget of the |
| * in-service queue to be completed, then it may become impossible to |
| * let the process recover the hole, even if the back-shifted |
| * timestamps of bfqq are lower than those of the in-service queue. If |
| * this happens for most or all of the holes, then the process may not |
| * receive its reserved bandwidth. In this respect, it is worth noting |
| * that, being the service of outstanding requests unpreemptible, a |
| * little fraction of the holes may however be unrecoverable, thereby |
| * causing a little loss of bandwidth. |
| * |
| * The last important point is detecting whether bfqq does need this |
| * bandwidth recovery. In this respect, the next function deems the |
| * process associated with bfqq greedy, and thus allows it to recover |
| * the hole, if: 1) the process is waiting for the arrival of a new |
| * request (which implies that bfqq expired for one of the above two |
| * reasons), and 2) such a request has arrived soon. The first |
| * condition is controlled through the flag non_blocking_wait_rq, |
| * while the second through the flag arrived_in_time. If both |
| * conditions hold, then the function computes the budget in the |
| * above-described special way, and signals that the in-service queue |
| * should be expired. Timestamp back-shifting is done later in |
| * __bfq_activate_entity. |
| */ |
| static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd, |
| struct bfq_queue *bfqq, |
| bool arrived_in_time) |
| { |
| struct bfq_entity *entity = &bfqq->entity; |
| |
| if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) { |
| /* |
| * We do not clear the flag non_blocking_wait_rq here, as |
| * the latter is used in bfq_activate_bfqq to signal |
| * that timestamps need to be back-shifted (and is |
| * cleared right after). |
| */ |
| |
| /* |
| * In next assignment we rely on that either |
| * entity->service or entity->budget are not updated |
| * on expiration if bfqq is empty (see |
| * __bfq_bfqq_recalc_budget). Thus both quantities |
| * remain unchanged after such an expiration, and the |
| * following statement therefore assigns to |
| * entity->budget the remaining budget on such an |
| * expiration. For clarity, entity->service is not |
| * updated on expiration in any case, and, in normal |
| * operation, is reset only when bfqq is selected for |
| * service (see bfq_get_next_queue). |
| */ |
| entity->budget = min_t(unsigned long, |
| bfq_bfqq_budget_left(bfqq), |
| bfqq->max_budget); |
| |
| return true; |
| } |
| |
| entity->budget = max_t(unsigned long, bfqq->max_budget, |
| bfq_serv_to_charge(bfqq->next_rq, bfqq)); |
| bfq_clear_bfqq_non_blocking_wait_rq(bfqq); |
| return false; |
| } |
| |
| static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd, |
| struct bfq_queue *bfqq, |
| struct request *rq) |
| { |
| bool bfqq_wants_to_preempt, |
| /* |
| * See the comments on |
| * bfq_bfqq_update_budg_for_activation for |
| * details on the usage of the next variable. |
| */ |
| arrived_in_time = ktime_get_ns() <= |
| bfqq->ttime.last_end_request + |
| bfqd->bfq_slice_idle * 3; |
| |
| /* |
| * Update budget and check whether bfqq may want to preempt |
| * the in-service queue. |
| */ |
| bfqq_wants_to_preempt = |
| bfq_bfqq_update_budg_for_activation(bfqd, bfqq, |
| arrived_in_time); |
| |
| if (!bfq_bfqq_IO_bound(bfqq)) { |
| if (arrived_in_time) { |
| bfqq->requests_within_timer++; |
| if (bfqq->requests_within_timer >= |
| bfqd->bfq_requests_within_timer) |
| bfq_mark_bfqq_IO_bound(bfqq); |
| } else |
| bfqq->requests_within_timer = 0; |
| } |
| |
| bfq_add_bfqq_busy(bfqd, bfqq); |
| |
| /* |
| * Expire in-service queue only if preemption may be needed |
| * for guarantees. In this respect, the function |
| * next_queue_may_preempt just checks a simple, necessary |
| * condition, and not a sufficient condition based on |
| * timestamps. In fact, for the latter condition to be |
| * evaluated, timestamps would need first to be updated, and |
| * this operation is quite costly (see the comments on the |
| * function bfq_bfqq_update_budg_for_activation). |
| */ |
| if (bfqd->in_service_queue && bfqq_wants_to_preempt && |
| next_queue_may_preempt(bfqd)) |
| bfq_bfqq_expire(bfqd, bfqd->in_service_queue, |
| false, BFQQE_PREEMPTED); |
| } |
| |
| static void bfq_add_request(struct request *rq) |
| { |
| struct bfq_queue *bfqq = RQ_BFQQ(rq); |
| struct bfq_data *bfqd = bfqq->bfqd; |
| struct request *next_rq, *prev; |
| |
| bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq)); |
| bfqq->queued[rq_is_sync(rq)]++; |
| bfqd->queued++; |
| |
| elv_rb_add(&bfqq->sort_list, rq); |
| |
| /* |
| * Check if this request is a better next-serve candidate. |
| */ |
| prev = bfqq->next_rq; |
| next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position); |
| bfqq->next_rq = next_rq; |
| |
| if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */ |
| bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, rq); |
| else if (prev != bfqq->next_rq) |
| bfq_updated_next_req(bfqd, bfqq); |
| } |
| |
| static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd, |
| struct bio *bio, |
| struct request_queue *q) |
| { |
| struct bfq_queue *bfqq = bfqd->bio_bfqq; |
| |
| |
| if (bfqq) |
| return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio)); |
| |
| return NULL; |
| } |
| |
| #if 0 /* Still not clear if we can do without next two functions */ |
| static void bfq_activate_request(struct request_queue *q, struct request *rq) |
| { |
| struct bfq_data *bfqd = q->elevator->elevator_data; |
| |
| bfqd->rq_in_driver++; |
| bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq); |
| bfq_log(bfqd, "activate_request: new bfqd->last_position %llu", |
| (unsigned long long)bfqd->last_position); |
| } |
| |
| static void bfq_deactivate_request(struct request_queue *q, struct request *rq) |
| { |
| struct bfq_data *bfqd = q->elevator->elevator_data; |
| |
| bfqd->rq_in_driver--; |
| } |
| #endif |
| |
| static void bfq_remove_request(struct request_queue *q, |
| struct request *rq) |
| { |
| struct bfq_queue *bfqq = RQ_BFQQ(rq); |
| struct bfq_data *bfqd = bfqq->bfqd; |
| const int sync = rq_is_sync(rq); |
| |
| if (bfqq->next_rq == rq) { |
| bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq); |
| bfq_updated_next_req(bfqd, bfqq); |
| } |
| |
| if (rq->queuelist.prev != &rq->queuelist) |
| list_del_init(&rq->queuelist); |
| bfqq->queued[sync]--; |
| bfqd->queued--; |
| elv_rb_del(&bfqq->sort_list, rq); |
| |
| elv_rqhash_del(q, rq); |
| if (q->last_merge == rq) |
| q->last_merge = NULL; |
| |
| if (RB_EMPTY_ROOT(&bfqq->sort_list)) { |
| bfqq->next_rq = NULL; |
| |
| if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) { |
| bfq_del_bfqq_busy(bfqd, bfqq, 1); |
| /* |
| * bfqq emptied. In normal operation, when |
| * bfqq is empty, bfqq->entity.service and |
| * bfqq->entity.budget must contain, |
| * respectively, the service received and the |
| * budget used last time bfqq emptied. These |
| * facts do not hold in this case, as at least |
| * this last removal occurred while bfqq is |
| * not in service. To avoid inconsistencies, |
| * reset both bfqq->entity.service and |
| * bfqq->entity.budget, if bfqq has still a |
| * process that may issue I/O requests to it. |
| */ |
| bfqq->entity.budget = bfqq->entity.service = 0; |
| } |
| } |
| |
| if (rq->cmd_flags & REQ_META) |
| bfqq->meta_pending--; |
| } |
| |
| static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio) |
| { |
| struct request_queue *q = hctx->queue; |
| struct bfq_data *bfqd = q->elevator->elevator_data; |
| struct request *free = NULL; |
| /* |
| * bfq_bic_lookup grabs the queue_lock: invoke it now and |
| * store its return value for later use, to avoid nesting |
| * queue_lock inside the bfqd->lock. We assume that the bic |
| * returned by bfq_bic_lookup does not go away before |
| * bfqd->lock is taken. |
| */ |
| struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q); |
| bool ret; |
| |
| spin_lock_irq(&bfqd->lock); |
| |
| if (bic) |
| bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf)); |
| else |
| bfqd->bio_bfqq = NULL; |
| bfqd->bio_bic = bic; |
| |
| ret = blk_mq_sched_try_merge(q, bio, &free); |
| |
| if (free) |
| blk_mq_free_request(free); |
| spin_unlock_irq(&bfqd->lock); |
| |
| return ret; |
| } |
| |
| static int bfq_request_merge(struct request_queue *q, struct request **req, |
| struct bio *bio) |
| { |
| struct bfq_data *bfqd = q->elevator->elevator_data; |
| struct request *__rq; |
| |
| __rq = bfq_find_rq_fmerge(bfqd, bio, q); |
| if (__rq && elv_bio_merge_ok(__rq, bio)) { |
| *req = __rq; |
| return ELEVATOR_FRONT_MERGE; |
| } |
| |
| return ELEVATOR_NO_MERGE; |
| } |
| |
| static void bfq_request_merged(struct request_queue *q, struct request *req, |
| enum elv_merge type) |
| { |
| if (type == ELEVATOR_FRONT_MERGE && |
| rb_prev(&req->rb_node) && |
| blk_rq_pos(req) < |
| blk_rq_pos(container_of(rb_prev(&req->rb_node), |
| struct request, rb_node))) { |
| struct bfq_queue *bfqq = RQ_BFQQ(req); |
| struct bfq_data *bfqd = bfqq->bfqd; |
| struct request *prev, *next_rq; |
| |
| /* Reposition request in its sort_list */ |
| elv_rb_del(&bfqq->sort_list, req); |
| elv_rb_add(&bfqq->sort_list, req); |
| |
| /* Choose next request to be served for bfqq */ |
| prev = bfqq->next_rq; |
| next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req, |
| bfqd->last_position); |
| bfqq->next_rq = next_rq; |
| /* |
| * If next_rq changes, update the queue's budget to fit |
| * the new request. |
| */ |
| if (prev != bfqq->next_rq) |
| bfq_updated_next_req(bfqd, bfqq); |
| } |
| } |
| |
| static void bfq_requests_merged(struct request_queue *q, struct request *rq, |
| struct request *next) |
| { |
| struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next); |
| |
| if (!RB_EMPTY_NODE(&rq->rb_node)) |
| return; |
| spin_lock_irq(&bfqq->bfqd->lock); |
| |
| /* |
| * If next and rq belong to the same bfq_queue and next is older |
| * than rq, then reposition rq in the fifo (by substituting next |
| * with rq). Otherwise, if next and rq belong to different |
| * bfq_queues, never reposition rq: in fact, we would have to |
| * reposition it with respect to next's position in its own fifo, |
| * which would most certainly be too expensive with respect to |
| * the benefits. |
| */ |
| if (bfqq == next_bfqq && |
| !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) && |
| next->fifo_time < rq->fifo_time) { |
| list_del_init(&rq->queuelist); |
| list_replace_init(&next->queuelist, &rq->queuelist); |
| rq->fifo_time = next->fifo_time; |
| } |
| |
| if (bfqq->next_rq == next) |
| bfqq->next_rq = rq; |
| |
| bfq_remove_request(q, next); |
| |
| spin_unlock_irq(&bfqq->bfqd->lock); |
| } |
| |
| static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq, |
| struct bio *bio) |
| { |
| struct bfq_data *bfqd = q->elevator->elevator_data; |
| bool is_sync = op_is_sync(bio->bi_opf); |
| struct bfq_queue *bfqq = bfqd->bio_bfqq; |
| |
| /* |
| * Disallow merge of a sync bio into an async request. |
| */ |
| if (is_sync && !rq_is_sync(rq)) |
| return false; |
| |
| /* |
| * Lookup the bfqq that this bio will be queued with. Allow |
| * merge only if rq is queued there. |
| */ |
| if (!bfqq) |
| return false; |
| |
| return bfqq == RQ_BFQQ(rq); |
| } |
| |
| static void __bfq_set_in_service_queue(struct bfq_data *bfqd, |
| struct bfq_queue *bfqq) |
| { |
| if (bfqq) { |
| bfq_mark_bfqq_budget_new(bfqq); |
| bfq_clear_bfqq_fifo_expire(bfqq); |
| |
| bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8; |
| |
| bfq_log_bfqq(bfqd, bfqq, |
| "set_in_service_queue, cur-budget = %d", |
| bfqq->entity.budget); |
| } |
| |
| bfqd->in_service_queue = bfqq; |
| } |
| |
| /* |
| * Get and set a new queue for service. |
| */ |
| static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd) |
| { |
| struct bfq_queue *bfqq = bfq_get_next_queue(bfqd); |
| |
| __bfq_set_in_service_queue(bfqd, bfqq); |
| return bfqq; |
| } |
| |
| /* |
| * bfq_default_budget - return the default budget for @bfqq on @bfqd. |
| * @bfqd: the device descriptor. |
| * @bfqq: the queue to consider. |
| * |
| * We use 3/4 of the @bfqd maximum budget as the default value |
| * for the max_budget field of the queues. This lets the feedback |
| * mechanism to start from some middle ground, then the behavior |
| * of the process will drive the heuristics towards high values, if |
| * it behaves as a greedy sequential reader, or towards small values |
| * if it shows a more intermittent behavior. |
| */ |
| static unsigned long bfq_default_budget(struct bfq_data *bfqd, |
| struct bfq_queue *bfqq) |
| { |
| unsigned long budget; |
| |
| /* |
| * When we need an estimate of the peak rate we need to avoid |
| * to give budgets that are too short due to previous |
| * measurements. So, in the first 10 assignments use a |
| * ``safe'' budget value. For such first assignment the value |
| * of bfqd->budgets_assigned happens to be lower than 194. |
| * See __bfq_set_in_service_queue for the formula by which |
| * this field is computed. |
| */ |
| if (bfqd->budgets_assigned < 194 && bfqd->bfq_user_max_budget == 0) |
| budget = bfq_default_max_budget; |
| else |
| budget = bfqd->bfq_max_budget; |
| |
| return budget - budget / 4; |
| } |
| |
| static void bfq_arm_slice_timer(struct bfq_data *bfqd) |
| { |
| struct bfq_queue *bfqq = bfqd->in_service_queue; |
| struct bfq_io_cq *bic; |
| u32 sl; |
| |
| /* Processes have exited, don't wait. */ |
| bic = bfqd->in_service_bic; |
| if (!bic || atomic_read(&bic->icq.ioc->active_ref) == 0) |
| return; |
| |
| bfq_mark_bfqq_wait_request(bfqq); |
| |
| /* |
| * We don't want to idle for seeks, but we do want to allow |
| * fair distribution of slice time for a process doing back-to-back |
| * seeks. So allow a little bit of time for him to submit a new rq. |
| */ |
| sl = bfqd->bfq_slice_idle; |
| /* |
| * Grant only minimum idle time if the queue is seeky. |
| */ |
| if (BFQQ_SEEKY(bfqq)) |
| sl = min_t(u64, sl, BFQ_MIN_TT); |
| |
| bfqd->last_idling_start = ktime_get(); |
| hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl), |
| HRTIMER_MODE_REL); |
| } |
| |
| /* |
| * Set the maximum time for the in-service queue to consume its |
| * budget. This prevents seeky processes from lowering the disk |
| * throughput (always guaranteed with a time slice scheme as in CFQ). |
| */ |
| static void bfq_set_budget_timeout(struct bfq_data *bfqd) |
| { |
| struct bfq_queue *bfqq = bfqd->in_service_queue; |
| unsigned int timeout_coeff = bfqq->entity.weight / |
| bfqq->entity.orig_weight; |
| |
| bfqd->last_budget_start = ktime_get(); |
| |
| bfq_clear_bfqq_budget_new(bfqq); |
| bfqq->budget_timeout = jiffies + |
| bfqd->bfq_timeout * timeout_coeff; |
| |
| bfq_log_bfqq(bfqd, bfqq, "set budget_timeout %u", |
| jiffies_to_msecs(bfqd->bfq_timeout * timeout_coeff)); |
| } |
| |
| /* |
| * Remove request from internal lists. |
| */ |
| static void bfq_dispatch_remove(struct request_queue *q, struct request *rq) |
| { |
| struct bfq_queue *bfqq = RQ_BFQQ(rq); |
| |
| /* |
| * For consistency, the next instruction should have been |
| * executed after removing the request from the queue and |
| * dispatching it. We execute instead this instruction before |
| * bfq_remove_request() (and hence introduce a temporary |
| * inconsistency), for efficiency. In fact, should this |
| * dispatch occur for a non in-service bfqq, this anticipated |
| * increment prevents two counters related to bfqq->dispatched |
| * from risking to be, first, uselessly decremented, and then |
| * incremented again when the (new) value of bfqq->dispatched |
| * happens to be taken into account. |
| */ |
| bfqq->dispatched++; |
| |
| bfq_remove_request(q, rq); |
| } |
| |
| static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq) |
| { |
| __bfq_bfqd_reset_in_service(bfqd); |
| |
| if (RB_EMPTY_ROOT(&bfqq->sort_list)) |
| bfq_del_bfqq_busy(bfqd, bfqq, 1); |
| else |
| bfq_activate_bfqq(bfqd, bfqq); |
| } |
| |
| /** |
| * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior. |
| * @bfqd: device data. |
| * @bfqq: queue to update. |
| * @reason: reason for expiration. |
| * |
| * Handle the feedback on @bfqq budget at queue expiration. |
| * See the body for detailed comments. |
| */ |
| static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd, |
| struct bfq_queue *bfqq, |
| enum bfqq_expiration reason) |
| { |
| struct request *next_rq; |
| int budget, min_budget; |
| |
| budget = bfqq->max_budget; |
| min_budget = bfq_min_budget(bfqd); |
| |
| bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d", |
| bfqq->entity.budget, bfq_bfqq_budget_left(bfqq)); |
| bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d", |
| budget, bfq_min_budget(bfqd)); |
| bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d", |
| bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue)); |
| |
| if (bfq_bfqq_sync(bfqq)) { |
| switch (reason) { |
| /* |
| * Caveat: in all the following cases we trade latency |
| * for throughput. |
| */ |
| case BFQQE_TOO_IDLE: |
| if (budget > min_budget + BFQ_BUDGET_STEP) |
| budget -= BFQ_BUDGET_STEP; |
| else |
| budget = min_budget; |
| break; |
| case BFQQE_BUDGET_TIMEOUT: |
| budget = bfq_default_budget(bfqd, bfqq); |
| break; |
| case BFQQE_BUDGET_EXHAUSTED: |
| /* |
| * The process still has backlog, and did not |
| * let either the budget timeout or the disk |
| * idling timeout expire. Hence it is not |
| * seeky, has a short thinktime and may be |
| * happy with a higher budget too. So |
| * definitely increase the budget of this good |
| * candidate to boost the disk throughput. |
| */ |
| budget = min(budget + 8 * BFQ_BUDGET_STEP, |
| bfqd->bfq_max_budget); |
| break; |
| case BFQQE_NO_MORE_REQUESTS: |
| /* |
| * For queues that expire for this reason, it |
| * is particularly important to keep the |
| * budget close to the actual service they |
| * need. Doing so reduces the timestamp |
| * misalignment problem described in the |
| * comments in the body of |
| * __bfq_activate_entity. In fact, suppose |
| * that a queue systematically expires for |
| * BFQQE_NO_MORE_REQUESTS and presents a |
| * new request in time to enjoy timestamp |
| * back-shifting. The larger the budget of the |
| * queue is with respect to the service the |
| * queue actually requests in each service |
| * slot, the more times the queue can be |
| * reactivated with the same virtual finish |
| * time. It follows that, even if this finish |
| * time is pushed to the system virtual time |
| * to reduce the consequent timestamp |
| * misalignment, the queue unjustly enjoys for |
| * many re-activations a lower finish time |
| * than all newly activated queues. |
| * |
| * The service needed by bfqq is measured |
| * quite precisely by bfqq->entity.service. |
| * Since bfqq does not enjoy device idling, |
| * bfqq->entity.service is equal to the number |
| * of sectors that the process associated with |
| * bfqq requested to read/write before waiting |
| * for request completions, or blocking for |
| * other reasons. |
| */ |
| budget = max_t(int, bfqq->entity.service, min_budget); |
| break; |
| default: |
| return; |
| } |
| } else { |
| /* |
| * Async queues get always the maximum possible |
| * budget, as for them we do not care about latency |
| * (in addition, their ability to dispatch is limited |
| * by the charging factor). |
| */ |
| budget = bfqd->bfq_max_budget; |
| } |
| |
| bfqq->max_budget = budget; |
| |
| if (bfqd->budgets_assigned >= bfq_stats_min_budgets && |
| !bfqd->bfq_user_max_budget) |
| bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget); |
| |
| /* |
| * If there is still backlog, then assign a new budget, making |
| * sure that it is large enough for the next request. Since |
| * the finish time of bfqq must be kept in sync with the |
| * budget, be sure to call __bfq_bfqq_expire() *after* this |
| * update. |
| * |
| * If there is no backlog, then no need to update the budget; |
| * it will be updated on the arrival of a new request. |
| */ |
| next_rq = bfqq->next_rq; |
| if (next_rq) |
| bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget, |
| bfq_serv_to_charge(next_rq, bfqq)); |
| |
| bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d", |
| next_rq ? blk_rq_sectors(next_rq) : 0, |
| bfqq->entity.budget); |
| } |
| |
| static unsigned long bfq_calc_max_budget(u64 peak_rate, u64 timeout) |
| { |
| unsigned long max_budget; |
| |
| /* |
| * The max_budget calculated when autotuning is equal to the |
| * amount of sectors transferred in timeout at the estimated |
| * peak rate. To get this value, peak_rate is, first, |
| * multiplied by 1000, because timeout is measured in ms, |
| * while peak_rate is measured in sectors/usecs. Then the |
| * result of this multiplication is right-shifted by |
| * BFQ_RATE_SHIFT, because peak_rate is equal to the value of |
| * the peak rate left-shifted by BFQ_RATE_SHIFT. |
| */ |
| max_budget = (unsigned long)(peak_rate * 1000 * |
| timeout >> BFQ_RATE_SHIFT); |
| |
| return max_budget; |
| } |
| |
| /* |
| * In addition to updating the peak rate, checks whether the process |
| * is "slow", and returns 1 if so. This slow flag is used, in addition |
| * to the budget timeout, to reduce the amount of service provided to |
| * seeky processes, and hence reduce their chances to lower the |
| * throughput. See the code for more details. |
| */ |
| static bool bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| bool compensate) |
| { |
| u64 bw, usecs, expected, timeout; |
| ktime_t delta; |
| int update = 0; |
| |
| if (!bfq_bfqq_sync(bfqq) || bfq_bfqq_budget_new(bfqq)) |
| return false; |
| |
| if (compensate) |
| delta = bfqd->last_idling_start; |
| else |
| delta = ktime_get(); |
| delta = ktime_sub(delta, bfqd->last_budget_start); |
| usecs = ktime_to_us(delta); |
| |
| /* don't use too short time intervals */ |
| if (usecs < 1000) |
| return false; |
| |
| /* |
| * Calculate the bandwidth for the last slice. We use a 64 bit |
| * value to store the peak rate, in sectors per usec in fixed |
| * point math. We do so to have enough precision in the estimate |
| * and to avoid overflows. |
| */ |
| bw = (u64)bfqq->entity.service << BFQ_RATE_SHIFT; |
| do_div(bw, (unsigned long)usecs); |
| |
| timeout = jiffies_to_msecs(bfqd->bfq_timeout); |
| |
| /* |
| * Use only long (> 20ms) intervals to filter out spikes for |
| * the peak rate estimation. |
| */ |
| if (usecs > 20000) { |
| if (bw > bfqd->peak_rate) { |
| bfqd->peak_rate = bw; |
| update = 1; |
| bfq_log(bfqd, "new peak_rate=%llu", bw); |
| } |
| |
| update |= bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES - 1; |
| |
| if (bfqd->peak_rate_samples < BFQ_PEAK_RATE_SAMPLES) |
| bfqd->peak_rate_samples++; |
| |
| if (bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES && |
| update && bfqd->bfq_user_max_budget == 0) { |
| bfqd->bfq_max_budget = |
| bfq_calc_max_budget(bfqd->peak_rate, |
| timeout); |
| bfq_log(bfqd, "new max_budget=%d", |
| bfqd->bfq_max_budget); |
| } |
| } |
| |
| /* |
| * A process is considered ``slow'' (i.e., seeky, so that we |
| * cannot treat it fairly in the service domain, as it would |
| * slow down too much the other processes) if, when a slice |
| * ends for whatever reason, it has received service at a |
| * rate that would not be high enough to complete the budget |
| * before the budget timeout expiration. |
| */ |
| expected = bw * 1000 * timeout >> BFQ_RATE_SHIFT; |
| |
| /* |
| * Caveat: processes doing IO in the slower disk zones will |
| * tend to be slow(er) even if not seeky. And the estimated |
| * peak rate will actually be an average over the disk |
| * surface. Hence, to not be too harsh with unlucky processes, |
| * we keep a budget/3 margin of safety before declaring a |
| * process slow. |
| */ |
| return expected > (4 * bfqq->entity.budget) / 3; |
| } |
| |
| /* |
| * Return the farthest past time instant according to jiffies |
| * macros. |
| */ |
| static unsigned long bfq_smallest_from_now(void) |
| { |
| return jiffies - MAX_JIFFY_OFFSET; |
| } |
| |
| /** |
| * bfq_bfqq_expire - expire a queue. |
| * @bfqd: device owning the queue. |
| * @bfqq: the queue to expire. |
| * @compensate: if true, compensate for the time spent idling. |
| * @reason: the reason causing the expiration. |
| * |
| * |
| * If the process associated with the queue is slow (i.e., seeky), or |
| * in case of budget timeout, or, finally, if it is async, we |
| * artificially charge it an entire budget (independently of the |
| * actual service it received). As a consequence, the queue will get |
| * higher timestamps than the correct ones upon reactivation, and |
| * hence it will be rescheduled as if it had received more service |
| * than what it actually received. In the end, this class of processes |
| * will receive less service in proportion to how slowly they consume |
| * their budgets (and hence how seriously they tend to lower the |
| * throughput). |
| * |
| * In contrast, when a queue expires because it has been idling for |
| * too much or because it exhausted its budget, we do not touch the |
| * amount of service it has received. Hence when the queue will be |
| * reactivated and its timestamps updated, the latter will be in sync |
| * with the actual service received by the queue until expiration. |
| * |
| * Charging a full budget to the first type of queues and the exact |
| * service to the others has the effect of using the WF2Q+ policy to |
| * schedule the former on a timeslice basis, without violating the |
| * service domain guarantees of the latter. |
| */ |
| static void bfq_bfqq_expire(struct bfq_data *bfqd, |
| struct bfq_queue *bfqq, |
| bool compensate, |
| enum bfqq_expiration reason) |
| { |
| bool slow; |
| int ref; |
| |
| /* |
| * Update device peak rate for autotuning and check whether the |
| * process is slow (see bfq_update_peak_rate). |
| */ |
| slow = bfq_update_peak_rate(bfqd, bfqq, compensate); |
| |
| /* |
| * As above explained, 'punish' slow (i.e., seeky), timed-out |
| * and async queues, to favor sequential sync workloads. |
| */ |
| if (slow || reason == BFQQE_BUDGET_TIMEOUT) |
| bfq_bfqq_charge_full_budget(bfqq); |
| |
| if (reason == BFQQE_TOO_IDLE && |
| bfqq->entity.service <= 2 * bfqq->entity.budget / 10) |
| bfq_clear_bfqq_IO_bound(bfqq); |
| |
| bfq_log_bfqq(bfqd, bfqq, |
| "expire (%d, slow %d, num_disp %d, idle_win %d)", reason, |
| slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq)); |
| |
| /* |
| * Increase, decrease or leave budget unchanged according to |
| * reason. |
| */ |
| __bfq_bfqq_recalc_budget(bfqd, bfqq, reason); |
| ref = bfqq->ref; |
| __bfq_bfqq_expire(bfqd, bfqq); |
| |
| /* mark bfqq as waiting a request only if a bic still points to it */ |
| if (ref > 1 && !bfq_bfqq_busy(bfqq) && |
| reason != BFQQE_BUDGET_TIMEOUT && |
| reason != BFQQE_BUDGET_EXHAUSTED) |
| bfq_mark_bfqq_non_blocking_wait_rq(bfqq); |
| } |
| |
| /* |
| * Budget timeout is not implemented through a dedicated timer, but |
| * just checked on request arrivals and completions, as well as on |
| * idle timer expirations. |
| */ |
| static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq) |
| { |
| if (bfq_bfqq_budget_new(bfqq) || |
| time_is_after_jiffies(bfqq->budget_timeout)) |
| return false; |
| return true; |
| } |
| |
| /* |
| * If we expire a queue that is actively waiting (i.e., with the |
| * device idled) for the arrival of a new request, then we may incur |
| * the timestamp misalignment problem described in the body of the |
| * function __bfq_activate_entity. Hence we return true only if this |
| * condition does not hold, or if the queue is slow enough to deserve |
| * only to be kicked off for preserving a high throughput. |
| */ |
| static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq) |
| { |
| bfq_log_bfqq(bfqq->bfqd, bfqq, |
| "may_budget_timeout: wait_request %d left %d timeout %d", |
| bfq_bfqq_wait_request(bfqq), |
| bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3, |
| bfq_bfqq_budget_timeout(bfqq)); |
| |
| return (!bfq_bfqq_wait_request(bfqq) || |
| bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3) |
| && |
| bfq_bfqq_budget_timeout(bfqq); |
| } |
| |
| /* |
| * For a queue that becomes empty, device idling is allowed only if |
| * this function returns true for the queue. And this function returns |
| * true only if idling is beneficial for throughput. |
| */ |
| static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq) |
| { |
| struct bfq_data *bfqd = bfqq->bfqd; |
| bool idling_boosts_thr; |
| |
| if (bfqd->strict_guarantees) |
| return true; |
| |
| /* |
| * The value of the next variable is computed considering that |
| * idling is usually beneficial for the throughput if: |
| * (a) the device is not NCQ-capable, or |
| * (b) regardless of the presence of NCQ, the request pattern |
| * for bfqq is I/O-bound (possible throughput losses |
| * caused by granting idling to seeky queues are mitigated |
| * by the fact that, in all scenarios where boosting |
| * throughput is the best thing to do, i.e., in all |
| * symmetric scenarios, only a minimal idle time is |
| * allowed to seeky queues). |
| */ |
| idling_boosts_thr = !bfqd->hw_tag || bfq_bfqq_IO_bound(bfqq); |
| |
| /* |
| * We have now the components we need to compute the return |
| * value of the function, which is true only if both the |
| * following conditions hold: |
| * 1) bfqq is sync, because idling make sense only for sync queues; |
| * 2) idling boosts the throughput. |
| */ |
| return bfq_bfqq_sync(bfqq) && idling_boosts_thr; |
| } |
| |
| /* |
| * If the in-service queue is empty but the function bfq_bfqq_may_idle |
| * returns true, then: |
| * 1) the queue must remain in service and cannot be expired, and |
| * 2) the device must be idled to wait for the possible arrival of a new |
| * request for the queue. |
| * See the comments on the function bfq_bfqq_may_idle for the reasons |
| * why performing device idling is the best choice to boost the throughput |
| * and preserve service guarantees when bfq_bfqq_may_idle itself |
| * returns true. |
| */ |
| static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq) |
| { |
| struct bfq_data *bfqd = bfqq->bfqd; |
| |
| return RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 && |
| bfq_bfqq_may_idle(bfqq); |
| } |
| |
| /* |
| * Select a queue for service. If we have a current queue in service, |
| * check whether to continue servicing it, or retrieve and set a new one. |
| */ |
| static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd) |
| { |
| struct bfq_queue *bfqq; |
| struct request *next_rq; |
| enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT; |
| |
| bfqq = bfqd->in_service_queue; |
| if (!bfqq) |
| goto new_queue; |
| |
| bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue"); |
| |
| if (bfq_may_expire_for_budg_timeout(bfqq) && |
| !bfq_bfqq_wait_request(bfqq) && |
| !bfq_bfqq_must_idle(bfqq)) |
| goto expire; |
| |
| check_queue: |
| /* |
| * This loop is rarely executed more than once. Even when it |
| * happens, it is much more convenient to re-execute this loop |
| * than to return NULL and trigger a new dispatch to get a |
| * request served. |
| */ |
| next_rq = bfqq->next_rq; |
| /* |
| * If bfqq has requests queued and it has enough budget left to |
| * serve them, keep the queue, otherwise expire it. |
| */ |
| if (next_rq) { |
| if (bfq_serv_to_charge(next_rq, bfqq) > |
| bfq_bfqq_budget_left(bfqq)) { |
| /* |
| * Expire the queue for budget exhaustion, |
| * which makes sure that the next budget is |
| * enough to serve the next request, even if |
| * it comes from the fifo expired path. |
| */ |
| reason = BFQQE_BUDGET_EXHAUSTED; |
| goto expire; |
| } else { |
| /* |
| * The idle timer may be pending because we may |
| * not disable disk idling even when a new request |
| * arrives. |
| */ |
| if (bfq_bfqq_wait_request(bfqq)) { |
| /* |
| * If we get here: 1) at least a new request |
| * has arrived but we have not disabled the |
| * timer because the request was too small, |
| * 2) then the block layer has unplugged |
| * the device, causing the dispatch to be |
| * invoked. |
| * |
| * Since the device is unplugged, now the |
| * requests are probably large enough to |
| * provide a reasonable throughput. |
| * So we disable idling. |
| */ |
| bfq_clear_bfqq_wait_request(bfqq); |
| hrtimer_try_to_cancel(&bfqd->idle_slice_timer); |
| } |
| goto keep_queue; |
| } |
| } |
| |
| /* |
| * No requests pending. However, if the in-service queue is idling |
| * for a new request, or has requests waiting for a completion and |
| * may idle after their completion, then keep it anyway. |
| */ |
| if (bfq_bfqq_wait_request(bfqq) || |
| (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) { |
| bfqq = NULL; |
| goto keep_queue; |
| } |
| |
| reason = BFQQE_NO_MORE_REQUESTS; |
| expire: |
| bfq_bfqq_expire(bfqd, bfqq, false, reason); |
| new_queue: |
| bfqq = bfq_set_in_service_queue(bfqd); |
| if (bfqq) { |
| bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue"); |
| goto check_queue; |
| } |
| keep_queue: |
| if (bfqq) |
| bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue"); |
| else |
| bfq_log(bfqd, "select_queue: no queue returned"); |
| |
| return bfqq; |
| } |
| |
| /* |
| * Dispatch next request from bfqq. |
| */ |
| static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd, |
| struct bfq_queue *bfqq) |
| { |
| struct request *rq = bfqq->next_rq; |
| unsigned long service_to_charge; |
| |
| service_to_charge = bfq_serv_to_charge(rq, bfqq); |
| |
| bfq_bfqq_served(bfqq, service_to_charge); |
| |
| bfq_dispatch_remove(bfqd->queue, rq); |
| |
| if (!bfqd->in_service_bic) { |
| atomic_long_inc(&RQ_BIC(rq)->icq.ioc->refcount); |
| bfqd->in_service_bic = RQ_BIC(rq); |
| } |
| |
| /* |
| * Expire bfqq, pretending that its budget expired, if bfqq |
| * belongs to CLASS_IDLE and other queues are waiting for |
| * service. |
| */ |
| if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq)) |
| goto expire; |
| |
| return rq; |
| |
| expire: |
| bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED); |
| return rq; |
| } |
| |
| static bool bfq_has_work(struct blk_mq_hw_ctx *hctx) |
| { |
| struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; |
| |
| /* |
| * Avoiding lock: a race on bfqd->busy_queues should cause at |
| * most a call to dispatch for nothing |
| */ |
| return !list_empty_careful(&bfqd->dispatch) || |
| bfqd->busy_queues > 0; |
| } |
| |
| static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx) |
| { |
| struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; |
| struct request *rq = NULL; |
| struct bfq_queue *bfqq = NULL; |
| |
| if (!list_empty(&bfqd->dispatch)) { |
| rq = list_first_entry(&bfqd->dispatch, struct request, |
| queuelist); |
| list_del_init(&rq->queuelist); |
| |
| bfqq = RQ_BFQQ(rq); |
| |
| if (bfqq) { |
| /* |
| * Increment counters here, because this |
| * dispatch does not follow the standard |
| * dispatch flow (where counters are |
| * incremented) |
| */ |
| bfqq->dispatched++; |
| |
| goto inc_in_driver_start_rq; |
| } |
| |
| /* |
| * We exploit the put_rq_private hook to decrement |
| * rq_in_driver, but put_rq_private will not be |
| * invoked on this request. So, to avoid unbalance, |
| * just start this request, without incrementing |
| * rq_in_driver. As a negative consequence, |
| * rq_in_driver is deceptively lower than it should be |
| * while this request is in service. This may cause |
| * bfq_schedule_dispatch to be invoked uselessly. |
| * |
| * As for implementing an exact solution, the |
| * put_request hook, if defined, is probably invoked |
| * also on this request. So, by exploiting this hook, |
| * we could 1) increment rq_in_driver here, and 2) |
| * decrement it in put_request. Such a solution would |
| * let the value of the counter be always accurate, |
| * but it would entail using an extra interface |
| * function. This cost seems higher than the benefit, |
| * being the frequency of non-elevator-private |
| * requests very low. |
| */ |
| goto start_rq; |
| } |
| |
| bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues); |
| |
| if (bfqd->busy_queues == 0) |
| goto exit; |
| |
| /* |
| * Force device to serve one request at a time if |
| * strict_guarantees is true. Forcing this service scheme is |
| * currently the ONLY way to guarantee that the request |
| * service order enforced by the scheduler is respected by a |
| * queueing device. Otherwise the device is free even to make |
| * some unlucky request wait for as long as the device |
| * wishes. |
| * |
| * Of course, serving one request at at time may cause loss of |
| * throughput. |
| */ |
| if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0) |
| goto exit; |
| |
| bfqq = bfq_select_queue(bfqd); |
| if (!bfqq) |
| goto exit; |
| |
| rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq); |
| |
| if (rq) { |
| inc_in_driver_start_rq: |
| bfqd->rq_in_driver++; |
| start_rq: |
| rq->rq_flags |= RQF_STARTED; |
| } |
| exit: |
| return rq; |
| } |
| |
| static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx) |
| { |
| struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; |
| struct request *rq; |
| |
| spin_lock_irq(&bfqd->lock); |
| rq = __bfq_dispatch_request(hctx); |
| spin_unlock_irq(&bfqd->lock); |
| |
| return rq; |
| } |
| |
| /* |
| * Task holds one reference to the queue, dropped when task exits. Each rq |
| * in-flight on this queue also holds a reference, dropped when rq is freed. |
| * |
| * Scheduler lock must be held here. Recall not to use bfqq after calling |
| * this function on it. |
| */ |
| static void bfq_put_queue(struct bfq_queue *bfqq) |
| { |
| if (bfqq->bfqd) |
| bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d", |
| bfqq, bfqq->ref); |
| |
| bfqq->ref--; |
| if (bfqq->ref) |
| return; |
| |
| kmem_cache_free(bfq_pool, bfqq); |
| } |
| |
| static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) |
| { |
| if (bfqq == bfqd->in_service_queue) { |
| __bfq_bfqq_expire(bfqd, bfqq); |
| bfq_schedule_dispatch(bfqd); |
| } |
| |
| bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref); |
| |
| bfq_put_queue(bfqq); /* release process reference */ |
| } |
| |
| static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync) |
| { |
| struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync); |
| struct bfq_data *bfqd; |
| |
| if (bfqq) |
| bfqd = bfqq->bfqd; /* NULL if scheduler already exited */ |
| |
| if (bfqq && bfqd) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&bfqd->lock, flags); |
| bfq_exit_bfqq(bfqd, bfqq); |
| bic_set_bfqq(bic, NULL, is_sync); |
| spin_unlock_irq(&bfqd->lock); |
| } |
| } |
| |
| static void bfq_exit_icq(struct io_cq *icq) |
| { |
| struct bfq_io_cq *bic = icq_to_bic(icq); |
| |
| bfq_exit_icq_bfqq(bic, true); |
| bfq_exit_icq_bfqq(bic, false); |
| } |
| |
| /* |
| * Update the entity prio values; note that the new values will not |
| * be used until the next (re)activation. |
| */ |
| static void |
| bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic) |
| { |
| struct task_struct *tsk = current; |
| int ioprio_class; |
| struct bfq_data *bfqd = bfqq->bfqd; |
| |
| if (!bfqd) |
| return; |
| |
| ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); |
| switch (ioprio_class) { |
| default: |
| dev_err(bfqq->bfqd->queue->backing_dev_info->dev, |
| "bfq: bad prio class %d\n", ioprio_class); |
| case IOPRIO_CLASS_NONE: |
| /* |
| * No prio set, inherit CPU scheduling settings. |
| */ |
| bfqq->new_ioprio = task_nice_ioprio(tsk); |
| bfqq->new_ioprio_class = task_nice_ioclass(tsk); |
| break; |
| case IOPRIO_CLASS_RT: |
| bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio); |
| bfqq->new_ioprio_class = IOPRIO_CLASS_RT; |
| break; |
| case IOPRIO_CLASS_BE: |
| bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio); |
| bfqq->new_ioprio_class = IOPRIO_CLASS_BE; |
| break; |
| case IOPRIO_CLASS_IDLE: |
| bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE; |
| bfqq->new_ioprio = 7; |
| bfq_clear_bfqq_idle_window(bfqq); |
| break; |
| } |
| |
| if (bfqq->new_ioprio >= IOPRIO_BE_NR) { |
| pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n", |
| bfqq->new_ioprio); |
| bfqq->new_ioprio = IOPRIO_BE_NR; |
| } |
| |
| bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio); |
| bfqq->entity.prio_changed = 1; |
| } |
| |
| static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio) |
| { |
| struct bfq_data *bfqd = bic_to_bfqd(bic); |
| struct bfq_queue *bfqq; |
| int ioprio = bic->icq.ioc->ioprio; |
| |
| /* |
| * This condition may trigger on a newly created bic, be sure to |
| * drop the lock before returning. |
| */ |
| if (unlikely(!bfqd) || likely(bic->ioprio == ioprio)) |
| return; |
| |
| bic->ioprio = ioprio; |
| |
| bfqq = bic_to_bfqq(bic, false); |
| if (bfqq) { |
| /* release process reference on this queue */ |
| bfq_put_queue(bfqq); |
| bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic); |
| bic_set_bfqq(bic, bfqq, false); |
| } |
| |
| bfqq = bic_to_bfqq(bic, true); |
| if (bfqq) |
| bfq_set_next_ioprio_data(bfqq, bic); |
| } |
| |
| static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| struct bfq_io_cq *bic, pid_t pid, int is_sync) |
| { |
| RB_CLEAR_NODE(&bfqq->entity.rb_node); |
| INIT_LIST_HEAD(&bfqq->fifo); |
| |
| bfqq->ref = 0; |
| bfqq->bfqd = bfqd; |
| |
| if (bic) |
| bfq_set_next_ioprio_data(bfqq, bic); |
| |
| if (is_sync) { |
| if (!bfq_class_idle(bfqq)) |
| bfq_mark_bfqq_idle_window(bfqq); |
| bfq_mark_bfqq_sync(bfqq); |
| } else |
| bfq_clear_bfqq_sync(bfqq); |
| |
| /* set end request to minus infinity from now */ |
| bfqq->ttime.last_end_request = ktime_get_ns() + 1; |
| |
| bfq_mark_bfqq_IO_bound(bfqq); |
| |
| bfqq->pid = pid; |
| |
| /* Tentative initial value to trade off between thr and lat */ |
| bfqq->max_budget = bfq_default_budget(bfqd, bfqq); |
| bfqq->budget_timeout = bfq_smallest_from_now(); |
| bfqq->pid = pid; |
| |
| /* first request is almost certainly seeky */ |
| bfqq->seek_history = 1; |
| } |
| |
| static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd, |
| int ioprio_class, int ioprio) |
| { |
| switch (ioprio_class) { |
| case IOPRIO_CLASS_RT: |
| return &async_bfqq[0][ioprio]; |
| case IOPRIO_CLASS_NONE: |
| ioprio = IOPRIO_NORM; |
| /* fall through */ |
| case IOPRIO_CLASS_BE: |
| return &async_bfqq[1][ioprio]; |
| case IOPRIO_CLASS_IDLE: |
| return &async_idle_bfqq; |
| default: |
| return NULL; |
| } |
| } |
| |
| static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, |
| struct bio *bio, bool is_sync, |
| struct bfq_io_cq *bic) |
| { |
| const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio); |
| const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); |
| struct bfq_queue **async_bfqq = NULL; |
| struct bfq_queue *bfqq; |
| |
| rcu_read_lock(); |
| |
| if (!is_sync) { |
| async_bfqq = bfq_async_queue_prio(bfqd, ioprio_class, |
| ioprio); |
| bfqq = *async_bfqq; |
| if (bfqq) |
| goto out; |
| } |
| |
| bfqq = kmem_cache_alloc_node(bfq_pool, |
| GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN, |
| bfqd->queue->node); |
| |
| if (bfqq) { |
| bfq_init_bfqq(bfqd, bfqq, bic, current->pid, |
| is_sync); |
| bfq_init_entity(&bfqq->entity); |
| bfq_log_bfqq(bfqd, bfqq, "allocated"); |
| } else { |
| bfqq = &bfqd->oom_bfqq; |
| bfq_log_bfqq(bfqd, bfqq, "using oom bfqq"); |
| goto out; |
| } |
| |
| /* |
| * Pin the queue now that it's allocated, scheduler exit will |
| * prune it. |
| */ |
| if (async_bfqq) { |
| bfqq->ref++; |
| bfq_log_bfqq(bfqd, bfqq, |
| "get_queue, bfqq not in async: %p, %d", |
| bfqq, bfqq->ref); |
| *async_bfqq = bfqq; |
| } |
| |
| out: |
| bfqq->ref++; /* get a process reference to this queue */ |
| bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref); |
| rcu_read_unlock(); |
| return bfqq; |
| } |
| |
| static void bfq_update_io_thinktime(struct bfq_data *bfqd, |
| struct bfq_queue *bfqq) |
| { |
| struct bfq_ttime *ttime = &bfqq->ttime; |
| u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request; |
| |
| elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle); |
| |
| ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8; |
| ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8); |
| ttime->ttime_mean = div64_ul(ttime->ttime_total + 128, |
| ttime->ttime_samples); |
| } |
| |
| static void |
| bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| struct request *rq) |
| { |
| sector_t sdist = 0; |
| |
| if (bfqq->last_request_pos) { |
| if (bfqq->last_request_pos < blk_rq_pos(rq)) |
| sdist = blk_rq_pos(rq) - bfqq->last_request_pos; |
| else |
| sdist = bfqq->last_request_pos - blk_rq_pos(rq); |
| } |
| |
| bfqq->seek_history <<= 1; |
| bfqq->seek_history |= sdist > BFQQ_SEEK_THR && |
| (!blk_queue_nonrot(bfqd->queue) || |
| blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT); |
| } |
| |
| /* |
| * Disable idle window if the process thinks too long or seeks so much that |
| * it doesn't matter. |
| */ |
| static void bfq_update_idle_window(struct bfq_data *bfqd, |
| struct bfq_queue *bfqq, |
| struct bfq_io_cq *bic) |
| { |
| int enable_idle; |
| |
| /* Don't idle for async or idle io prio class. */ |
| if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq)) |
| return; |
| |
| enable_idle = bfq_bfqq_idle_window(bfqq); |
| |
| if (atomic_read(&bic->icq.ioc->active_ref) == 0 || |
| bfqd->bfq_slice_idle == 0 || |
| (bfqd->hw_tag && BFQQ_SEEKY(bfqq))) |
| enable_idle = 0; |
| else if (bfq_sample_valid(bfqq->ttime.ttime_samples)) { |
| if (bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle) |
| enable_idle = 0; |
| else |
| enable_idle = 1; |
| } |
| bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d", |
| enable_idle); |
| |
| if (enable_idle) |
| bfq_mark_bfqq_idle_window(bfqq); |
| else |
| bfq_clear_bfqq_idle_window(bfqq); |
| } |
| |
| /* |
| * Called when a new fs request (rq) is added to bfqq. Check if there's |
| * something we should do about it. |
| */ |
| static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| struct request *rq) |
| { |
| struct bfq_io_cq *bic = RQ_BIC(rq); |
| |
| if (rq->cmd_flags & REQ_META) |
| bfqq->meta_pending++; |
| |
| bfq_update_io_thinktime(bfqd, bfqq); |
| bfq_update_io_seektime(bfqd, bfqq, rq); |
| if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 || |
| !BFQQ_SEEKY(bfqq)) |
| bfq_update_idle_window(bfqd, bfqq, bic); |
| |
| bfq_log_bfqq(bfqd, bfqq, |
| "rq_enqueued: idle_window=%d (seeky %d)", |
| bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq)); |
| |
| bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq); |
| |
| if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) { |
| bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 && |
| blk_rq_sectors(rq) < 32; |
| bool budget_timeout = bfq_bfqq_budget_timeout(bfqq); |
| |
| /* |
| * There is just this request queued: if the request |
| * is small and the queue is not to be expired, then |
| * just exit. |
| * |
| * In this way, if the device is being idled to wait |
| * for a new request from the in-service queue, we |
| * avoid unplugging the device and committing the |
| * device to serve just a small request. On the |
| * contrary, we wait for the block layer to decide |
| * when to unplug the device: hopefully, new requests |
| * will be merged to this one quickly, then the device |
| * will be unplugged and larger requests will be |
| * dispatched. |
| */ |
| if (small_req && !budget_timeout) |
| return; |
| |
| /* |
| * A large enough request arrived, or the queue is to |
| * be expired: in both cases disk idling is to be |
| * stopped, so clear wait_request flag and reset |
| * timer. |
| */ |
| bfq_clear_bfqq_wait_request(bfqq); |
| hrtimer_try_to_cancel(&bfqd->idle_slice_timer); |
| |
| /* |
| * The queue is not empty, because a new request just |
| * arrived. Hence we can safely expire the queue, in |
| * case of budget timeout, without risking that the |
| * timestamps of the queue are not updated correctly. |
| * See [1] for more details. |
| */ |
| if (budget_timeout) |
| bfq_bfqq_expire(bfqd, bfqq, false, |
| BFQQE_BUDGET_TIMEOUT); |
| } |
| } |
| |
| static void __bfq_insert_request(struct bfq_data *bfqd, struct request *rq) |
| { |
| struct bfq_queue *bfqq = RQ_BFQQ(rq); |
| |
| bfq_add_request(rq); |
| |
| rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)]; |
| list_add_tail(&rq->queuelist, &bfqq->fifo); |
| |
| bfq_rq_enqueued(bfqd, bfqq, rq); |
| } |
| |
| static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, |
| bool at_head) |
| { |
| struct request_queue *q = hctx->queue; |
| struct bfq_data *bfqd = q->elevator->elevator_data; |
| |
| spin_lock_irq(&bfqd->lock); |
| if (blk_mq_sched_try_insert_merge(q, rq)) { |
| spin_unlock_irq(&bfqd->lock); |
| return; |
| } |
| |
| spin_unlock_irq(&bfqd->lock); |
| |
| blk_mq_sched_request_inserted(rq); |
| |
| spin_lock_irq(&bfqd->lock); |
| if (at_head || blk_rq_is_passthrough(rq)) { |
| if (at_head) |
| list_add(&rq->queuelist, &bfqd->dispatch); |
| else |
| list_add_tail(&rq->queuelist, &bfqd->dispatch); |
| } else { |
| __bfq_insert_request(bfqd, rq); |
| |
| if (rq_mergeable(rq)) { |
| elv_rqhash_add(q, rq); |
| if (!q->last_merge) |
| q->last_merge = rq; |
| } |
| } |
| |
| spin_unlock_irq(&bfqd->lock); |
| } |
| |
| static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx, |
| struct list_head *list, bool at_head) |
| { |
| while (!list_empty(list)) { |
| struct request *rq; |
| |
| rq = list_first_entry(list, struct request, queuelist); |
| list_del_init(&rq->queuelist); |
| bfq_insert_request(hctx, rq, at_head); |
| } |
| } |
| |
| static void bfq_update_hw_tag(struct bfq_data *bfqd) |
| { |
| bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver, |
| bfqd->rq_in_driver); |
| |
| if (bfqd->hw_tag == 1) |
| return; |
| |
| /* |
| * This sample is valid if the number of outstanding requests |
| * is large enough to allow a queueing behavior. Note that the |
| * sum is not exact, as it's not taking into account deactivated |
| * requests. |
| */ |
| if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD) |
| return; |
| |
| if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES) |
| return; |
| |
| bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD; |
| bfqd->max_rq_in_driver = 0; |
| bfqd->hw_tag_samples = 0; |
| } |
| |
| static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd) |
| { |
| bfq_update_hw_tag(bfqd); |
| |
| bfqd->rq_in_driver--; |
| bfqq->dispatched--; |
| |
| bfqq->ttime.last_end_request = ktime_get_ns(); |
| |
| /* |
| * If this is the in-service queue, check if it needs to be expired, |
| * or if we want to idle in case it has no pending requests. |
| */ |
| if (bfqd->in_service_queue == bfqq) { |
| if (bfq_bfqq_budget_new(bfqq)) |
| bfq_set_budget_timeout(bfqd); |
| |
| if (bfq_bfqq_must_idle(bfqq)) { |
| bfq_arm_slice_timer(bfqd); |
| return; |
| } else if (bfq_may_expire_for_budg_timeout(bfqq)) |
| bfq_bfqq_expire(bfqd, bfqq, false, |
| BFQQE_BUDGET_TIMEOUT); |
| else if (RB_EMPTY_ROOT(&bfqq->sort_list) && |
| (bfqq->dispatched == 0 || |
| !bfq_bfqq_may_idle(bfqq))) |
| bfq_bfqq_expire(bfqd, bfqq, false, |
| BFQQE_NO_MORE_REQUESTS); |
| } |
| } |
| |
| static void bfq_put_rq_priv_body(struct bfq_queue *bfqq) |
| { |
| bfqq->allocated--; |
| |
| bfq_put_queue(bfqq); |
| } |
| |
| static void bfq_put_rq_private(struct request_queue *q, struct request *rq) |
| { |
| struct bfq_queue *bfqq = RQ_BFQQ(rq); |
| struct bfq_data *bfqd = bfqq->bfqd; |
| |
| |
| if (likely(rq->rq_flags & RQF_STARTED)) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&bfqd->lock, flags); |
| |
| bfq_completed_request(bfqq, bfqd); |
| bfq_put_rq_priv_body(bfqq); |
| |
| spin_unlock_irqrestore(&bfqd->lock, flags); |
| } else { |
| /* |
| * Request rq may be still/already in the scheduler, |
| * in which case we need to remove it. And we cannot |
| * defer such a check and removal, to avoid |
| * inconsistencies in the time interval from the end |
| * of this function to the start of the deferred work. |
| * This situation seems to occur only in process |
| * context, as a consequence of a merge. In the |
| * current version of the code, this implies that the |
| * lock is held. |
| */ |
| |
| if (!RB_EMPTY_NODE(&rq->rb_node)) |
| bfq_remove_request(q, rq); |
| bfq_put_rq_priv_body(bfqq); |
| } |
| |
| rq->elv.priv[0] = NULL; |
| rq->elv.priv[1] = NULL; |
| } |
| |
| /* |
| * Allocate bfq data structures associated with this request. |
| */ |
| static int bfq_get_rq_private(struct request_queue *q, struct request *rq, |
| struct bio *bio) |
| { |
| struct bfq_data *bfqd = q->elevator->elevator_data; |
| struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq); |
| const int is_sync = rq_is_sync(rq); |
| struct bfq_queue *bfqq; |
| |
| spin_lock_irq(&bfqd->lock); |
| |
| bfq_check_ioprio_change(bic, bio); |
| |
| if (!bic) |
| goto queue_fail; |
| |
| bfqq = bic_to_bfqq(bic, is_sync); |
| if (!bfqq || bfqq == &bfqd->oom_bfqq) { |
| if (bfqq) |
| bfq_put_queue(bfqq); |
| bfqq = bfq_get_queue(bfqd, bio, is_sync, bic); |
| bic_set_bfqq(bic, bfqq, is_sync); |
| } |
| |
| bfqq->allocated++; |
| bfqq->ref++; |
| bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d", |
| rq, bfqq, bfqq->ref); |
| |
| rq->elv.priv[0] = bic; |
| rq->elv.priv[1] = bfqq; |
| |
| spin_unlock_irq(&bfqd->lock); |
| |
| return 0; |
| |
| queue_fail: |
| spin_unlock_irq(&bfqd->lock); |
| |
| return 1; |
| } |
| |
| static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq) |
| { |
| struct bfq_data *bfqd = bfqq->bfqd; |
| enum bfqq_expiration reason; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&bfqd->lock, flags); |
| bfq_clear_bfqq_wait_request(bfqq); |
| |
| if (bfqq != bfqd->in_service_queue) { |
| spin_unlock_irqrestore(&bfqd->lock, flags); |
| return; |
| } |
| |
| if (bfq_bfqq_budget_timeout(bfqq)) |
| /* |
| * Also here the queue can be safely expired |
| * for budget timeout without wasting |
| * guarantees |
| */ |
| reason = BFQQE_BUDGET_TIMEOUT; |
| else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0) |
| /* |
| * The queue may not be empty upon timer expiration, |
| * because we may not disable the timer when the |
| * first request of the in-service queue arrives |
| * during disk idling. |
| */ |
| reason = BFQQE_TOO_IDLE; |
| else |
| goto schedule_dispatch; |
| |
| bfq_bfqq_expire(bfqd, bfqq, true, reason); |
| |
| schedule_dispatch: |
| spin_unlock_irqrestore(&bfqd->lock, flags); |
| bfq_schedule_dispatch(bfqd); |
| } |
| |
| /* |
| * Handler of the expiration of the timer running if the in-service queue |
| * is idling inside its time slice. |
| */ |
| static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer) |
| { |
| struct bfq_data *bfqd = container_of(timer, struct bfq_data, |
| idle_slice_timer); |
| struct bfq_queue *bfqq = bfqd->in_service_queue; |
| |
| /* |
| * Theoretical race here: the in-service queue can be NULL or |
| * different from the queue that was idling if a new request |
| * arrives for the current queue and there is a full dispatch |
| * cycle that changes the in-service queue. This can hardly |
| * happen, but in the worst case we just expire a queue too |
| * early. |
| */ |
| if (bfqq) |
| bfq_idle_slice_timer_body(bfqq); |
| |
| return HRTIMER_NORESTART; |
| } |
| |
| static void __bfq_put_async_bfqq(struct bfq_data *bfqd, |
| struct bfq_queue **bfqq_ptr) |
| { |
| struct bfq_queue *bfqq = *bfqq_ptr; |
| |
| bfq_log(bfqd, "put_async_bfqq: %p", bfqq); |
| if (bfqq) { |
| bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d", |
| bfqq, bfqq->ref); |
| bfq_put_queue(bfqq); |
| *bfqq_ptr = NULL; |
| } |
| } |
| |
| /* |
| * Release the extra reference of the async queues as the device |
| * goes away. |
| */ |
| static void bfq_put_async_queues(struct bfq_data *bfqd) |
| { |
| int i, j; |
| |
| for (i = 0; i < 2; i++) |
| for (j = 0; j < IOPRIO_BE_NR; j++) |
| __bfq_put_async_bfqq(bfqd, &async_bfqq[i][j]); |
| |
| __bfq_put_async_bfqq(bfqd, &async_idle_bfqq); |
| } |
| |
| static void bfq_exit_queue(struct elevator_queue *e) |
| { |
| struct bfq_data *bfqd = e->elevator_data; |
| struct bfq_queue *bfqq, *n; |
| |
| hrtimer_cancel(&bfqd->idle_slice_timer); |
| |
| spin_lock_irq(&bfqd->lock); |
| list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list) |
| bfq_deactivate_bfqq(bfqd, bfqq, false); |
| bfq_put_async_queues(bfqd); |
| spin_unlock_irq(&bfqd->lock); |
| |
| hrtimer_cancel(&bfqd->idle_slice_timer); |
| |
| kfree(bfqd); |
| } |
| |
| static int bfq_init_queue(struct request_queue *q, struct elevator_type *e) |
| { |
| struct bfq_data *bfqd; |
| struct elevator_queue *eq; |
| int i; |
| |
| eq = elevator_alloc(q, e); |
| if (!eq) |
| return -ENOMEM; |
| |
| bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node); |
| if (!bfqd) { |
| kobject_put(&eq->kobj); |
| return -ENOMEM; |
| } |
| eq->elevator_data = bfqd; |
| |
| /* |
| * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues. |
| * Grab a permanent reference to it, so that the normal code flow |
| * will not attempt to free it. |
| */ |
| bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0); |
| bfqd->oom_bfqq.ref++; |
| bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO; |
| bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE; |
| bfqd->oom_bfqq.entity.new_weight = |
| bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio); |
| /* |
| * Trigger weight initialization, according to ioprio, at the |
| * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio |
| * class won't be changed any more. |
| */ |
| bfqd->oom_bfqq.entity.prio_changed = 1; |
| |
| bfqd->queue = q; |
| |
| for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) |
| bfqd->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT; |
| |
| hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC, |
| HRTIMER_MODE_REL); |
| bfqd->idle_slice_timer.function = bfq_idle_slice_timer; |
| |
| INIT_LIST_HEAD(&bfqd->active_list); |
| INIT_LIST_HEAD(&bfqd->idle_list); |
| |
| bfqd->hw_tag = -1; |
| |
| bfqd->bfq_max_budget = bfq_default_max_budget; |
| |
| bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0]; |
| bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1]; |
| bfqd->bfq_back_max = bfq_back_max; |
| bfqd->bfq_back_penalty = bfq_back_penalty; |
| bfqd->bfq_slice_idle = bfq_slice_idle; |
| bfqd->bfq_class_idle_last_service = 0; |
| bfqd->bfq_timeout = bfq_timeout; |
| |
| bfqd->bfq_requests_within_timer = 120; |
| |
| spin_lock_init(&bfqd->lock); |
| INIT_LIST_HEAD(&bfqd->dispatch); |
| |
| q->elevator = eq; |
| |
| return 0; |
| } |
| |
| static void bfq_slab_kill(void) |
| { |
| kmem_cache_destroy(bfq_pool); |
| } |
| |
| static int __init bfq_slab_setup(void) |
| { |
| bfq_pool = KMEM_CACHE(bfq_queue, 0); |
| if (!bfq_pool) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static ssize_t bfq_var_show(unsigned int var, char *page) |
| { |
| return sprintf(page, "%u\n", var); |
| } |
| |
| static ssize_t bfq_var_store(unsigned long *var, const char *page, |
| size_t count) |
| { |
| unsigned long new_val; |
| int ret = kstrtoul(page, 10, &new_val); |
| |
| if (ret == 0) |
| *var = new_val; |
| |
| return count; |
| } |
| |
| #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \ |
| static ssize_t __FUNC(struct elevator_queue *e, char *page) \ |
| { \ |
| struct bfq_data *bfqd = e->elevator_data; \ |
| u64 __data = __VAR; \ |
| if (__CONV == 1) \ |
| __data = jiffies_to_msecs(__data); \ |
| else if (__CONV == 2) \ |
| __data = div_u64(__data, NSEC_PER_MSEC); \ |
| return bfq_var_show(__data, (page)); \ |
| } |
| SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2); |
| SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2); |
| SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0); |
| SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0); |
| SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2); |
| SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0); |
| SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1); |
| SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0); |
| #undef SHOW_FUNCTION |
| |
| #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \ |
| static ssize_t __FUNC(struct elevator_queue *e, char *page) \ |
| { \ |
| struct bfq_data *bfqd = e->elevator_data; \ |
| u64 __data = __VAR; \ |
| __data = div_u64(__data, NSEC_PER_USEC); \ |
| return bfq_var_show(__data, (page)); \ |
| } |
| USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle); |
| #undef USEC_SHOW_FUNCTION |
| |
| #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ |
| static ssize_t \ |
| __FUNC(struct elevator_queue *e, const char *page, size_t count) \ |
| { \ |
| struct bfq_data *bfqd = e->elevator_data; \ |
| unsigned long uninitialized_var(__data); \ |
| int ret = bfq_var_store(&__data, (page), count); \ |
| if (__data < (MIN)) \ |
| __data = (MIN); \ |
| else if (__data > (MAX)) \ |
| __data = (MAX); \ |
| if (__CONV == 1) \ |
| *(__PTR) = msecs_to_jiffies(__data); \ |
| else if (__CONV == 2) \ |
| *(__PTR) = (u64)__data * NSEC_PER_MSEC; \ |
| else \ |
| *(__PTR) = __data; \ |
| return ret; \ |
| } |
| STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1, |
| INT_MAX, 2); |
| STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1, |
| INT_MAX, 2); |
| STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0); |
| STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1, |
| INT_MAX, 0); |
| STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2); |
| #undef STORE_FUNCTION |
| |
| #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ |
| static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\ |
| { \ |
| struct bfq_data *bfqd = e->elevator_data; \ |
| unsigned long uninitialized_var(__data); \ |
| int ret = bfq_var_store(&__data, (page), count); \ |
| if (__data < (MIN)) \ |
| __data = (MIN); \ |
| else if (__data > (MAX)) \ |
| __data = (MAX); \ |
| *(__PTR) = (u64)__data * NSEC_PER_USEC; \ |
| return ret; \ |
| } |
| USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0, |
| UINT_MAX); |
| #undef USEC_STORE_FUNCTION |
| |
| static unsigned long bfq_estimated_max_budget(struct bfq_data *bfqd) |
| { |
| u64 timeout = jiffies_to_msecs(bfqd->bfq_timeout); |
| |
| if (bfqd->peak_rate_samples >= BFQ_PEAK_RATE_SAMPLES) |
| return bfq_calc_max_budget(bfqd->peak_rate, timeout); |
| else |
| return bfq_default_max_budget; |
| } |
| |
| static ssize_t bfq_max_budget_store(struct elevator_queue *e, |
| const char *page, size_t count) |
| { |
| struct bfq_data *bfqd = e->elevator_data; |
| unsigned long uninitialized_var(__data); |
| int ret = bfq_var_store(&__data, (page), count); |
| |
| if (__data == 0) |
| bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd); |
| else { |
| if (__data > INT_MAX) |
| __data = INT_MAX; |
| bfqd->bfq_max_budget = __data; |
| } |
| |
| bfqd->bfq_user_max_budget = __data; |
| |
| return ret; |
| } |
| |
| /* |
| * Leaving this name to preserve name compatibility with cfq |
| * parameters, but this timeout is used for both sync and async. |
| */ |
| static ssize_t bfq_timeout_sync_store(struct elevator_queue *e, |
| const char *page, size_t count) |
| { |
| struct bfq_data *bfqd = e->elevator_data; |
| unsigned long uninitialized_var(__data); |
| int ret = bfq_var_store(&__data, (page), count); |
| |
| if (__data < 1) |
| __data = 1; |
| else if (__data > INT_MAX) |
| __data = INT_MAX; |
| |
| bfqd->bfq_timeout = msecs_to_jiffies(__data); |
| if (bfqd->bfq_user_max_budget == 0) |
| bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd); |
| |
| return ret; |
| } |
| |
| static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e, |
| const char *page, size_t count) |
| { |
| struct bfq_data *bfqd = e->elevator_data; |
| unsigned long uninitialized_var(__data); |
| int ret = bfq_var_store(&__data, (page), count); |
| |
| if (__data > 1) |
| __data = 1; |
| if (!bfqd->strict_guarantees && __data == 1 |
| && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC) |
| bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC; |
| |
| bfqd->strict_guarantees = __data; |
| |
| return ret; |
| } |
| |
| #define BFQ_ATTR(name) \ |
| __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store) |
| |
| static struct elv_fs_entry bfq_attrs[] = { |
| BFQ_ATTR(fifo_expire_sync), |
| BFQ_ATTR(fifo_expire_async), |
| BFQ_ATTR(back_seek_max), |
| BFQ_ATTR(back_seek_penalty), |
| BFQ_ATTR(slice_idle), |
| BFQ_ATTR(slice_idle_us), |
| BFQ_ATTR(max_budget), |
| BFQ_ATTR(timeout_sync), |
| BFQ_ATTR(strict_guarantees), |
| __ATTR_NULL |
| }; |
| |
| static struct elevator_type iosched_bfq_mq = { |
| .ops.mq = { |
| .get_rq_priv = bfq_get_rq_private, |
| .put_rq_priv = bfq_put_rq_private, |
| .exit_icq = bfq_exit_icq, |
| .insert_requests = bfq_insert_requests, |
| .dispatch_request = bfq_dispatch_request, |
| .next_request = elv_rb_latter_request, |
| .former_request = elv_rb_former_request, |
| .allow_merge = bfq_allow_bio_merge, |
| .bio_merge = bfq_bio_merge, |
| .request_merge = bfq_request_merge, |
| .requests_merged = bfq_requests_merged, |
| .request_merged = bfq_request_merged, |
| .has_work = bfq_has_work, |
| .init_sched = bfq_init_queue, |
| .exit_sched = bfq_exit_queue, |
| }, |
| |
| .uses_mq = true, |
| .icq_size = sizeof(struct bfq_io_cq), |
| .icq_align = __alignof__(struct bfq_io_cq), |
| .elevator_attrs = bfq_attrs, |
| .elevator_name = "bfq", |
| .elevator_owner = THIS_MODULE, |
| }; |
| |
| static int __init bfq_init(void) |
| { |
| int ret; |
| |
| ret = -ENOMEM; |
| if (bfq_slab_setup()) |
| goto err_pol_unreg; |
| |
| ret = elv_register(&iosched_bfq_mq); |
| if (ret) |
| goto err_pol_unreg; |
| |
| return 0; |
| |
| err_pol_unreg: |
| return ret; |
| } |
| |
| static void __exit bfq_exit(void) |
| { |
| elv_unregister(&iosched_bfq_mq); |
| bfq_slab_kill(); |
| } |
| |
| module_init(bfq_init); |
| module_exit(bfq_exit); |
| |
| MODULE_AUTHOR("Paolo Valente"); |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler"); |