| /* |
| * Adaptec AAC series RAID controller driver |
| * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com> |
| * |
| * based on the old aacraid driver that is.. |
| * Adaptec aacraid device driver for Linux. |
| * |
| * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com) |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; see the file COPYING. If not, write to |
| * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| * Module Name: |
| * commsup.c |
| * |
| * Abstract: Contain all routines that are required for FSA host/adapter |
| * communication. |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/types.h> |
| #include <linux/sched.h> |
| #include <linux/pci.h> |
| #include <linux/spinlock.h> |
| #include <linux/slab.h> |
| #include <linux/completion.h> |
| #include <linux/blkdev.h> |
| #include <linux/delay.h> |
| #include <scsi/scsi_host.h> |
| #include <scsi/scsi_device.h> |
| #include <asm/semaphore.h> |
| |
| #include "aacraid.h" |
| |
| /** |
| * fib_map_alloc - allocate the fib objects |
| * @dev: Adapter to allocate for |
| * |
| * Allocate and map the shared PCI space for the FIB blocks used to |
| * talk to the Adaptec firmware. |
| */ |
| |
| static int fib_map_alloc(struct aac_dev *dev) |
| { |
| dprintk((KERN_INFO |
| "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n", |
| dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue, |
| AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); |
| if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size |
| * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), |
| &dev->hw_fib_pa))==NULL) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| /** |
| * aac_fib_map_free - free the fib objects |
| * @dev: Adapter to free |
| * |
| * Free the PCI mappings and the memory allocated for FIB blocks |
| * on this adapter. |
| */ |
| |
| void aac_fib_map_free(struct aac_dev *dev) |
| { |
| pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa); |
| } |
| |
| /** |
| * aac_fib_setup - setup the fibs |
| * @dev: Adapter to set up |
| * |
| * Allocate the PCI space for the fibs, map it and then intialise the |
| * fib area, the unmapped fib data and also the free list |
| */ |
| |
| int aac_fib_setup(struct aac_dev * dev) |
| { |
| struct fib *fibptr; |
| struct hw_fib *hw_fib_va; |
| dma_addr_t hw_fib_pa; |
| int i; |
| |
| while (((i = fib_map_alloc(dev)) == -ENOMEM) |
| && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { |
| dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1); |
| dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB; |
| } |
| if (i<0) |
| return -ENOMEM; |
| |
| hw_fib_va = dev->hw_fib_va; |
| hw_fib_pa = dev->hw_fib_pa; |
| memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); |
| /* |
| * Initialise the fibs |
| */ |
| for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) |
| { |
| fibptr->dev = dev; |
| fibptr->hw_fib = hw_fib_va; |
| fibptr->data = (void *) fibptr->hw_fib->data; |
| fibptr->next = fibptr+1; /* Forward chain the fibs */ |
| init_MUTEX_LOCKED(&fibptr->event_wait); |
| spin_lock_init(&fibptr->event_lock); |
| hw_fib_va->header.XferState = cpu_to_le32(0xffffffff); |
| hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size); |
| fibptr->hw_fib_pa = hw_fib_pa; |
| hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size); |
| hw_fib_pa = hw_fib_pa + dev->max_fib_size; |
| } |
| /* |
| * Add the fib chain to the free list |
| */ |
| dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; |
| /* |
| * Enable this to debug out of queue space |
| */ |
| dev->free_fib = &dev->fibs[0]; |
| return 0; |
| } |
| |
| /** |
| * aac_fib_alloc - allocate a fib |
| * @dev: Adapter to allocate the fib for |
| * |
| * Allocate a fib from the adapter fib pool. If the pool is empty we |
| * return NULL. |
| */ |
| |
| struct fib *aac_fib_alloc(struct aac_dev *dev) |
| { |
| struct fib * fibptr; |
| unsigned long flags; |
| spin_lock_irqsave(&dev->fib_lock, flags); |
| fibptr = dev->free_fib; |
| if(!fibptr){ |
| spin_unlock_irqrestore(&dev->fib_lock, flags); |
| return fibptr; |
| } |
| dev->free_fib = fibptr->next; |
| spin_unlock_irqrestore(&dev->fib_lock, flags); |
| /* |
| * Set the proper node type code and node byte size |
| */ |
| fibptr->type = FSAFS_NTC_FIB_CONTEXT; |
| fibptr->size = sizeof(struct fib); |
| /* |
| * Null out fields that depend on being zero at the start of |
| * each I/O |
| */ |
| fibptr->hw_fib->header.XferState = 0; |
| fibptr->callback = NULL; |
| fibptr->callback_data = NULL; |
| |
| return fibptr; |
| } |
| |
| /** |
| * aac_fib_free - free a fib |
| * @fibptr: fib to free up |
| * |
| * Frees up a fib and places it on the appropriate queue |
| * (either free or timed out) |
| */ |
| |
| void aac_fib_free(struct fib *fibptr) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&fibptr->dev->fib_lock, flags); |
| if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) { |
| aac_config.fib_timeouts++; |
| fibptr->next = fibptr->dev->timeout_fib; |
| fibptr->dev->timeout_fib = fibptr; |
| } else { |
| if (fibptr->hw_fib->header.XferState != 0) { |
| printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", |
| (void*)fibptr, |
| le32_to_cpu(fibptr->hw_fib->header.XferState)); |
| } |
| fibptr->next = fibptr->dev->free_fib; |
| fibptr->dev->free_fib = fibptr; |
| } |
| spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); |
| } |
| |
| /** |
| * aac_fib_init - initialise a fib |
| * @fibptr: The fib to initialize |
| * |
| * Set up the generic fib fields ready for use |
| */ |
| |
| void aac_fib_init(struct fib *fibptr) |
| { |
| struct hw_fib *hw_fib = fibptr->hw_fib; |
| |
| hw_fib->header.StructType = FIB_MAGIC; |
| hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); |
| hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); |
| hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */ |
| hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); |
| hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); |
| } |
| |
| /** |
| * fib_deallocate - deallocate a fib |
| * @fibptr: fib to deallocate |
| * |
| * Will deallocate and return to the free pool the FIB pointed to by the |
| * caller. |
| */ |
| |
| static void fib_dealloc(struct fib * fibptr) |
| { |
| struct hw_fib *hw_fib = fibptr->hw_fib; |
| if(hw_fib->header.StructType != FIB_MAGIC) |
| BUG(); |
| hw_fib->header.XferState = 0; |
| } |
| |
| /* |
| * Commuication primitives define and support the queuing method we use to |
| * support host to adapter commuication. All queue accesses happen through |
| * these routines and are the only routines which have a knowledge of the |
| * how these queues are implemented. |
| */ |
| |
| /** |
| * aac_get_entry - get a queue entry |
| * @dev: Adapter |
| * @qid: Queue Number |
| * @entry: Entry return |
| * @index: Index return |
| * @nonotify: notification control |
| * |
| * With a priority the routine returns a queue entry if the queue has free entries. If the queue |
| * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is |
| * returned. |
| */ |
| |
| static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) |
| { |
| struct aac_queue * q; |
| unsigned long idx; |
| |
| /* |
| * All of the queues wrap when they reach the end, so we check |
| * to see if they have reached the end and if they have we just |
| * set the index back to zero. This is a wrap. You could or off |
| * the high bits in all updates but this is a bit faster I think. |
| */ |
| |
| q = &dev->queues->queue[qid]; |
| |
| idx = *index = le32_to_cpu(*(q->headers.producer)); |
| /* Interrupt Moderation, only interrupt for first two entries */ |
| if (idx != le32_to_cpu(*(q->headers.consumer))) { |
| if (--idx == 0) { |
| if (qid == AdapNormCmdQueue) |
| idx = ADAP_NORM_CMD_ENTRIES; |
| else |
| idx = ADAP_NORM_RESP_ENTRIES; |
| } |
| if (idx != le32_to_cpu(*(q->headers.consumer))) |
| *nonotify = 1; |
| } |
| |
| if (qid == AdapNormCmdQueue) { |
| if (*index >= ADAP_NORM_CMD_ENTRIES) |
| *index = 0; /* Wrap to front of the Producer Queue. */ |
| } else { |
| if (*index >= ADAP_NORM_RESP_ENTRIES) |
| *index = 0; /* Wrap to front of the Producer Queue. */ |
| } |
| |
| if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */ |
| printk(KERN_WARNING "Queue %d full, %u outstanding.\n", |
| qid, q->numpending); |
| return 0; |
| } else { |
| *entry = q->base + *index; |
| return 1; |
| } |
| } |
| |
| /** |
| * aac_queue_get - get the next free QE |
| * @dev: Adapter |
| * @index: Returned index |
| * @priority: Priority of fib |
| * @fib: Fib to associate with the queue entry |
| * @wait: Wait if queue full |
| * @fibptr: Driver fib object to go with fib |
| * @nonotify: Don't notify the adapter |
| * |
| * Gets the next free QE off the requested priorty adapter command |
| * queue and associates the Fib with the QE. The QE represented by |
| * index is ready to insert on the queue when this routine returns |
| * success. |
| */ |
| |
| static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) |
| { |
| struct aac_entry * entry = NULL; |
| int map = 0; |
| |
| if (qid == AdapNormCmdQueue) { |
| /* if no entries wait for some if caller wants to */ |
| while (!aac_get_entry(dev, qid, &entry, index, nonotify)) |
| { |
| printk(KERN_ERR "GetEntries failed\n"); |
| } |
| /* |
| * Setup queue entry with a command, status and fib mapped |
| */ |
| entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); |
| map = 1; |
| } else { |
| while(!aac_get_entry(dev, qid, &entry, index, nonotify)) |
| { |
| /* if no entries wait for some if caller wants to */ |
| } |
| /* |
| * Setup queue entry with command, status and fib mapped |
| */ |
| entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); |
| entry->addr = hw_fib->header.SenderFibAddress; |
| /* Restore adapters pointer to the FIB */ |
| hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ |
| map = 0; |
| } |
| /* |
| * If MapFib is true than we need to map the Fib and put pointers |
| * in the queue entry. |
| */ |
| if (map) |
| entry->addr = cpu_to_le32(fibptr->hw_fib_pa); |
| return 0; |
| } |
| |
| /* |
| * Define the highest level of host to adapter communication routines. |
| * These routines will support host to adapter FS commuication. These |
| * routines have no knowledge of the commuication method used. This level |
| * sends and receives FIBs. This level has no knowledge of how these FIBs |
| * get passed back and forth. |
| */ |
| |
| /** |
| * aac_fib_send - send a fib to the adapter |
| * @command: Command to send |
| * @fibptr: The fib |
| * @size: Size of fib data area |
| * @priority: Priority of Fib |
| * @wait: Async/sync select |
| * @reply: True if a reply is wanted |
| * @callback: Called with reply |
| * @callback_data: Passed to callback |
| * |
| * Sends the requested FIB to the adapter and optionally will wait for a |
| * response FIB. If the caller does not wish to wait for a response than |
| * an event to wait on must be supplied. This event will be set when a |
| * response FIB is received from the adapter. |
| */ |
| |
| int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, |
| int priority, int wait, int reply, fib_callback callback, |
| void *callback_data) |
| { |
| struct aac_dev * dev = fibptr->dev; |
| struct hw_fib * hw_fib = fibptr->hw_fib; |
| struct aac_queue * q; |
| unsigned long flags = 0; |
| unsigned long qflags; |
| |
| if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) |
| return -EBUSY; |
| /* |
| * There are 5 cases with the wait and reponse requested flags. |
| * The only invalid cases are if the caller requests to wait and |
| * does not request a response and if the caller does not want a |
| * response and the Fib is not allocated from pool. If a response |
| * is not requesed the Fib will just be deallocaed by the DPC |
| * routine when the response comes back from the adapter. No |
| * further processing will be done besides deleting the Fib. We |
| * will have a debug mode where the adapter can notify the host |
| * it had a problem and the host can log that fact. |
| */ |
| if (wait && !reply) { |
| return -EINVAL; |
| } else if (!wait && reply) { |
| hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); |
| FIB_COUNTER_INCREMENT(aac_config.AsyncSent); |
| } else if (!wait && !reply) { |
| hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); |
| FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); |
| } else if (wait && reply) { |
| hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); |
| FIB_COUNTER_INCREMENT(aac_config.NormalSent); |
| } |
| /* |
| * Map the fib into 32bits by using the fib number |
| */ |
| |
| hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); |
| hw_fib->header.SenderData = (u32)(fibptr - dev->fibs); |
| /* |
| * Set FIB state to indicate where it came from and if we want a |
| * response from the adapter. Also load the command from the |
| * caller. |
| * |
| * Map the hw fib pointer as a 32bit value |
| */ |
| hw_fib->header.Command = cpu_to_le16(command); |
| hw_fib->header.XferState |= cpu_to_le32(SentFromHost); |
| fibptr->hw_fib->header.Flags = 0; /* 0 the flags field - internal only*/ |
| /* |
| * Set the size of the Fib we want to send to the adapter |
| */ |
| hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); |
| if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { |
| return -EMSGSIZE; |
| } |
| /* |
| * Get a queue entry connect the FIB to it and send an notify |
| * the adapter a command is ready. |
| */ |
| hw_fib->header.XferState |= cpu_to_le32(NormalPriority); |
| |
| /* |
| * Fill in the Callback and CallbackContext if we are not |
| * going to wait. |
| */ |
| if (!wait) { |
| fibptr->callback = callback; |
| fibptr->callback_data = callback_data; |
| } |
| |
| fibptr->done = 0; |
| fibptr->flags = 0; |
| |
| FIB_COUNTER_INCREMENT(aac_config.FibsSent); |
| |
| dprintk((KERN_DEBUG "Fib contents:.\n")); |
| dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); |
| dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); |
| dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); |
| dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib)); |
| dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); |
| dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); |
| |
| q = &dev->queues->queue[AdapNormCmdQueue]; |
| |
| if(wait) |
| spin_lock_irqsave(&fibptr->event_lock, flags); |
| spin_lock_irqsave(q->lock, qflags); |
| if (dev->new_comm_interface) { |
| unsigned long count = 10000000L; /* 50 seconds */ |
| list_add_tail(&fibptr->queue, &q->pendingq); |
| q->numpending++; |
| spin_unlock_irqrestore(q->lock, qflags); |
| while (aac_adapter_send(fibptr) != 0) { |
| if (--count == 0) { |
| if (wait) |
| spin_unlock_irqrestore(&fibptr->event_lock, flags); |
| spin_lock_irqsave(q->lock, qflags); |
| q->numpending--; |
| list_del(&fibptr->queue); |
| spin_unlock_irqrestore(q->lock, qflags); |
| return -ETIMEDOUT; |
| } |
| udelay(5); |
| } |
| } else { |
| u32 index; |
| unsigned long nointr = 0; |
| aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr); |
| |
| list_add_tail(&fibptr->queue, &q->pendingq); |
| q->numpending++; |
| *(q->headers.producer) = cpu_to_le32(index + 1); |
| spin_unlock_irqrestore(q->lock, qflags); |
| dprintk((KERN_DEBUG "aac_fib_send: inserting a queue entry at index %d.\n",index)); |
| if (!(nointr & aac_config.irq_mod)) |
| aac_adapter_notify(dev, AdapNormCmdQueue); |
| } |
| |
| /* |
| * If the caller wanted us to wait for response wait now. |
| */ |
| |
| if (wait) { |
| spin_unlock_irqrestore(&fibptr->event_lock, flags); |
| /* Only set for first known interruptable command */ |
| if (wait < 0) { |
| /* |
| * *VERY* Dangerous to time out a command, the |
| * assumption is made that we have no hope of |
| * functioning because an interrupt routing or other |
| * hardware failure has occurred. |
| */ |
| unsigned long count = 36000000L; /* 3 minutes */ |
| while (down_trylock(&fibptr->event_wait)) { |
| if (--count == 0) { |
| spin_lock_irqsave(q->lock, qflags); |
| q->numpending--; |
| list_del(&fibptr->queue); |
| spin_unlock_irqrestore(q->lock, qflags); |
| if (wait == -1) { |
| printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" |
| "Usually a result of a PCI interrupt routing problem;\n" |
| "update mother board BIOS or consider utilizing one of\n" |
| "the SAFE mode kernel options (acpi, apic etc)\n"); |
| } |
| return -ETIMEDOUT; |
| } |
| udelay(5); |
| } |
| } else |
| down(&fibptr->event_wait); |
| if(fibptr->done == 0) |
| BUG(); |
| |
| if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){ |
| return -ETIMEDOUT; |
| } else { |
| return 0; |
| } |
| } |
| /* |
| * If the user does not want a response than return success otherwise |
| * return pending |
| */ |
| if (reply) |
| return -EINPROGRESS; |
| else |
| return 0; |
| } |
| |
| /** |
| * aac_consumer_get - get the top of the queue |
| * @dev: Adapter |
| * @q: Queue |
| * @entry: Return entry |
| * |
| * Will return a pointer to the entry on the top of the queue requested that |
| * we are a consumer of, and return the address of the queue entry. It does |
| * not change the state of the queue. |
| */ |
| |
| int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) |
| { |
| u32 index; |
| int status; |
| if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { |
| status = 0; |
| } else { |
| /* |
| * The consumer index must be wrapped if we have reached |
| * the end of the queue, else we just use the entry |
| * pointed to by the header index |
| */ |
| if (le32_to_cpu(*q->headers.consumer) >= q->entries) |
| index = 0; |
| else |
| index = le32_to_cpu(*q->headers.consumer); |
| *entry = q->base + index; |
| status = 1; |
| } |
| return(status); |
| } |
| |
| /** |
| * aac_consumer_free - free consumer entry |
| * @dev: Adapter |
| * @q: Queue |
| * @qid: Queue ident |
| * |
| * Frees up the current top of the queue we are a consumer of. If the |
| * queue was full notify the producer that the queue is no longer full. |
| */ |
| |
| void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) |
| { |
| int wasfull = 0; |
| u32 notify; |
| |
| if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) |
| wasfull = 1; |
| |
| if (le32_to_cpu(*q->headers.consumer) >= q->entries) |
| *q->headers.consumer = cpu_to_le32(1); |
| else |
| *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1); |
| |
| if (wasfull) { |
| switch (qid) { |
| |
| case HostNormCmdQueue: |
| notify = HostNormCmdNotFull; |
| break; |
| case HostNormRespQueue: |
| notify = HostNormRespNotFull; |
| break; |
| default: |
| BUG(); |
| return; |
| } |
| aac_adapter_notify(dev, notify); |
| } |
| } |
| |
| /** |
| * aac_fib_adapter_complete - complete adapter issued fib |
| * @fibptr: fib to complete |
| * @size: size of fib |
| * |
| * Will do all necessary work to complete a FIB that was sent from |
| * the adapter. |
| */ |
| |
| int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) |
| { |
| struct hw_fib * hw_fib = fibptr->hw_fib; |
| struct aac_dev * dev = fibptr->dev; |
| struct aac_queue * q; |
| unsigned long nointr = 0; |
| unsigned long qflags; |
| |
| if (hw_fib->header.XferState == 0) { |
| if (dev->new_comm_interface) |
| kfree (hw_fib); |
| return 0; |
| } |
| /* |
| * If we plan to do anything check the structure type first. |
| */ |
| if ( hw_fib->header.StructType != FIB_MAGIC ) { |
| if (dev->new_comm_interface) |
| kfree (hw_fib); |
| return -EINVAL; |
| } |
| /* |
| * This block handles the case where the adapter had sent us a |
| * command and we have finished processing the command. We |
| * call completeFib when we are done processing the command |
| * and want to send a response back to the adapter. This will |
| * send the completed cdb to the adapter. |
| */ |
| if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { |
| if (dev->new_comm_interface) { |
| kfree (hw_fib); |
| } else { |
| u32 index; |
| hw_fib->header.XferState |= cpu_to_le32(HostProcessed); |
| if (size) { |
| size += sizeof(struct aac_fibhdr); |
| if (size > le16_to_cpu(hw_fib->header.SenderSize)) |
| return -EMSGSIZE; |
| hw_fib->header.Size = cpu_to_le16(size); |
| } |
| q = &dev->queues->queue[AdapNormRespQueue]; |
| spin_lock_irqsave(q->lock, qflags); |
| aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); |
| *(q->headers.producer) = cpu_to_le32(index + 1); |
| spin_unlock_irqrestore(q->lock, qflags); |
| if (!(nointr & (int)aac_config.irq_mod)) |
| aac_adapter_notify(dev, AdapNormRespQueue); |
| } |
| } |
| else |
| { |
| printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n"); |
| BUG(); |
| } |
| return 0; |
| } |
| |
| /** |
| * aac_fib_complete - fib completion handler |
| * @fib: FIB to complete |
| * |
| * Will do all necessary work to complete a FIB. |
| */ |
| |
| int aac_fib_complete(struct fib *fibptr) |
| { |
| struct hw_fib * hw_fib = fibptr->hw_fib; |
| |
| /* |
| * Check for a fib which has already been completed |
| */ |
| |
| if (hw_fib->header.XferState == 0) |
| return 0; |
| /* |
| * If we plan to do anything check the structure type first. |
| */ |
| |
| if (hw_fib->header.StructType != FIB_MAGIC) |
| return -EINVAL; |
| /* |
| * This block completes a cdb which orginated on the host and we |
| * just need to deallocate the cdb or reinit it. At this point the |
| * command is complete that we had sent to the adapter and this |
| * cdb could be reused. |
| */ |
| if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && |
| (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) |
| { |
| fib_dealloc(fibptr); |
| } |
| else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) |
| { |
| /* |
| * This handles the case when the host has aborted the I/O |
| * to the adapter because the adapter is not responding |
| */ |
| fib_dealloc(fibptr); |
| } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { |
| fib_dealloc(fibptr); |
| } else { |
| BUG(); |
| } |
| return 0; |
| } |
| |
| /** |
| * aac_printf - handle printf from firmware |
| * @dev: Adapter |
| * @val: Message info |
| * |
| * Print a message passed to us by the controller firmware on the |
| * Adaptec board |
| */ |
| |
| void aac_printf(struct aac_dev *dev, u32 val) |
| { |
| char *cp = dev->printfbuf; |
| if (dev->printf_enabled) |
| { |
| int length = val & 0xffff; |
| int level = (val >> 16) & 0xffff; |
| |
| /* |
| * The size of the printfbuf is set in port.c |
| * There is no variable or define for it |
| */ |
| if (length > 255) |
| length = 255; |
| if (cp[length] != 0) |
| cp[length] = 0; |
| if (level == LOG_AAC_HIGH_ERROR) |
| printk(KERN_WARNING "aacraid:%s", cp); |
| else |
| printk(KERN_INFO "aacraid:%s", cp); |
| } |
| memset(cp, 0, 256); |
| } |
| |
| |
| /** |
| * aac_handle_aif - Handle a message from the firmware |
| * @dev: Which adapter this fib is from |
| * @fibptr: Pointer to fibptr from adapter |
| * |
| * This routine handles a driver notify fib from the adapter and |
| * dispatches it to the appropriate routine for handling. |
| */ |
| |
| static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) |
| { |
| struct hw_fib * hw_fib = fibptr->hw_fib; |
| struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; |
| int busy; |
| u32 container; |
| struct scsi_device *device; |
| enum { |
| NOTHING, |
| DELETE, |
| ADD, |
| CHANGE |
| } device_config_needed; |
| |
| /* Sniff for container changes */ |
| |
| if (!dev) |
| return; |
| container = (u32)-1; |
| |
| /* |
| * We have set this up to try and minimize the number of |
| * re-configures that take place. As a result of this when |
| * certain AIF's come in we will set a flag waiting for another |
| * type of AIF before setting the re-config flag. |
| */ |
| switch (le32_to_cpu(aifcmd->command)) { |
| case AifCmdDriverNotify: |
| switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) { |
| /* |
| * Morph or Expand complete |
| */ |
| case AifDenMorphComplete: |
| case AifDenVolumeExtendComplete: |
| container = le32_to_cpu(((u32 *)aifcmd->data)[1]); |
| if (container >= dev->maximum_num_containers) |
| break; |
| |
| /* |
| * Find the scsi_device associated with the SCSI |
| * address. Make sure we have the right array, and if |
| * so set the flag to initiate a new re-config once we |
| * see an AifEnConfigChange AIF come through. |
| */ |
| |
| if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { |
| device = scsi_device_lookup(dev->scsi_host_ptr, |
| CONTAINER_TO_CHANNEL(container), |
| CONTAINER_TO_ID(container), |
| CONTAINER_TO_LUN(container)); |
| if (device) { |
| dev->fsa_dev[container].config_needed = CHANGE; |
| dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; |
| scsi_device_put(device); |
| } |
| } |
| } |
| |
| /* |
| * If we are waiting on something and this happens to be |
| * that thing then set the re-configure flag. |
| */ |
| if (container != (u32)-1) { |
| if (container >= dev->maximum_num_containers) |
| break; |
| if (dev->fsa_dev[container].config_waiting_on == |
| le32_to_cpu(*(u32 *)aifcmd->data)) |
| dev->fsa_dev[container].config_waiting_on = 0; |
| } else for (container = 0; |
| container < dev->maximum_num_containers; ++container) { |
| if (dev->fsa_dev[container].config_waiting_on == |
| le32_to_cpu(*(u32 *)aifcmd->data)) |
| dev->fsa_dev[container].config_waiting_on = 0; |
| } |
| break; |
| |
| case AifCmdEventNotify: |
| switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) { |
| /* |
| * Add an Array. |
| */ |
| case AifEnAddContainer: |
| container = le32_to_cpu(((u32 *)aifcmd->data)[1]); |
| if (container >= dev->maximum_num_containers) |
| break; |
| dev->fsa_dev[container].config_needed = ADD; |
| dev->fsa_dev[container].config_waiting_on = |
| AifEnConfigChange; |
| break; |
| |
| /* |
| * Delete an Array. |
| */ |
| case AifEnDeleteContainer: |
| container = le32_to_cpu(((u32 *)aifcmd->data)[1]); |
| if (container >= dev->maximum_num_containers) |
| break; |
| dev->fsa_dev[container].config_needed = DELETE; |
| dev->fsa_dev[container].config_waiting_on = |
| AifEnConfigChange; |
| break; |
| |
| /* |
| * Container change detected. If we currently are not |
| * waiting on something else, setup to wait on a Config Change. |
| */ |
| case AifEnContainerChange: |
| container = le32_to_cpu(((u32 *)aifcmd->data)[1]); |
| if (container >= dev->maximum_num_containers) |
| break; |
| if (dev->fsa_dev[container].config_waiting_on) |
| break; |
| dev->fsa_dev[container].config_needed = CHANGE; |
| dev->fsa_dev[container].config_waiting_on = |
| AifEnConfigChange; |
| break; |
| |
| case AifEnConfigChange: |
| break; |
| |
| } |
| |
| /* |
| * If we are waiting on something and this happens to be |
| * that thing then set the re-configure flag. |
| */ |
| if (container != (u32)-1) { |
| if (container >= dev->maximum_num_containers) |
| break; |
| if (dev->fsa_dev[container].config_waiting_on == |
| le32_to_cpu(*(u32 *)aifcmd->data)) |
| dev->fsa_dev[container].config_waiting_on = 0; |
| } else for (container = 0; |
| container < dev->maximum_num_containers; ++container) { |
| if (dev->fsa_dev[container].config_waiting_on == |
| le32_to_cpu(*(u32 *)aifcmd->data)) |
| dev->fsa_dev[container].config_waiting_on = 0; |
| } |
| break; |
| |
| case AifCmdJobProgress: |
| /* |
| * These are job progress AIF's. When a Clear is being |
| * done on a container it is initially created then hidden from |
| * the OS. When the clear completes we don't get a config |
| * change so we monitor the job status complete on a clear then |
| * wait for a container change. |
| */ |
| |
| if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero)) |
| && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5]) |
| || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) { |
| for (container = 0; |
| container < dev->maximum_num_containers; |
| ++container) { |
| /* |
| * Stomp on all config sequencing for all |
| * containers? |
| */ |
| dev->fsa_dev[container].config_waiting_on = |
| AifEnContainerChange; |
| dev->fsa_dev[container].config_needed = ADD; |
| } |
| } |
| if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero)) |
| && (((u32 *)aifcmd->data)[6] == 0) |
| && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) { |
| for (container = 0; |
| container < dev->maximum_num_containers; |
| ++container) { |
| /* |
| * Stomp on all config sequencing for all |
| * containers? |
| */ |
| dev->fsa_dev[container].config_waiting_on = |
| AifEnContainerChange; |
| dev->fsa_dev[container].config_needed = DELETE; |
| } |
| } |
| break; |
| } |
| |
| device_config_needed = NOTHING; |
| for (container = 0; container < dev->maximum_num_containers; |
| ++container) { |
| if ((dev->fsa_dev[container].config_waiting_on == 0) |
| && (dev->fsa_dev[container].config_needed != NOTHING)) { |
| device_config_needed = |
| dev->fsa_dev[container].config_needed; |
| dev->fsa_dev[container].config_needed = NOTHING; |
| break; |
| } |
| } |
| if (device_config_needed == NOTHING) |
| return; |
| |
| /* |
| * If we decided that a re-configuration needs to be done, |
| * schedule it here on the way out the door, please close the door |
| * behind you. |
| */ |
| |
| busy = 0; |
| |
| |
| /* |
| * Find the scsi_device associated with the SCSI address, |
| * and mark it as changed, invalidating the cache. This deals |
| * with changes to existing device IDs. |
| */ |
| |
| if (!dev || !dev->scsi_host_ptr) |
| return; |
| /* |
| * force reload of disk info via aac_probe_container |
| */ |
| if ((device_config_needed == CHANGE) |
| && (dev->fsa_dev[container].valid == 1)) |
| dev->fsa_dev[container].valid = 2; |
| if ((device_config_needed == CHANGE) || |
| (device_config_needed == ADD)) |
| aac_probe_container(dev, container); |
| device = scsi_device_lookup(dev->scsi_host_ptr, |
| CONTAINER_TO_CHANNEL(container), |
| CONTAINER_TO_ID(container), |
| CONTAINER_TO_LUN(container)); |
| if (device) { |
| switch (device_config_needed) { |
| case DELETE: |
| scsi_remove_device(device); |
| break; |
| case CHANGE: |
| if (!dev->fsa_dev[container].valid) { |
| scsi_remove_device(device); |
| break; |
| } |
| scsi_rescan_device(&device->sdev_gendev); |
| |
| default: |
| break; |
| } |
| scsi_device_put(device); |
| } |
| if (device_config_needed == ADD) { |
| scsi_add_device(dev->scsi_host_ptr, |
| CONTAINER_TO_CHANNEL(container), |
| CONTAINER_TO_ID(container), |
| CONTAINER_TO_LUN(container)); |
| } |
| |
| } |
| |
| /** |
| * aac_command_thread - command processing thread |
| * @dev: Adapter to monitor |
| * |
| * Waits on the commandready event in it's queue. When the event gets set |
| * it will pull FIBs off it's queue. It will continue to pull FIBs off |
| * until the queue is empty. When the queue is empty it will wait for |
| * more FIBs. |
| */ |
| |
| int aac_command_thread(struct aac_dev * dev) |
| { |
| struct hw_fib *hw_fib, *hw_newfib; |
| struct fib *fib, *newfib; |
| struct aac_fib_context *fibctx; |
| unsigned long flags; |
| DECLARE_WAITQUEUE(wait, current); |
| |
| /* |
| * We can only have one thread per adapter for AIF's. |
| */ |
| if (dev->aif_thread) |
| return -EINVAL; |
| /* |
| * Set up the name that will appear in 'ps' |
| * stored in task_struct.comm[16]. |
| */ |
| daemonize("aacraid"); |
| allow_signal(SIGKILL); |
| /* |
| * Let the DPC know it has a place to send the AIF's to. |
| */ |
| dev->aif_thread = 1; |
| add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); |
| set_current_state(TASK_INTERRUPTIBLE); |
| dprintk ((KERN_INFO "aac_command_thread start\n")); |
| while(1) |
| { |
| spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); |
| while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { |
| struct list_head *entry; |
| struct aac_aifcmd * aifcmd; |
| |
| set_current_state(TASK_RUNNING); |
| |
| entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; |
| list_del(entry); |
| |
| spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); |
| fib = list_entry(entry, struct fib, fiblink); |
| /* |
| * We will process the FIB here or pass it to a |
| * worker thread that is TBD. We Really can't |
| * do anything at this point since we don't have |
| * anything defined for this thread to do. |
| */ |
| hw_fib = fib->hw_fib; |
| memset(fib, 0, sizeof(struct fib)); |
| fib->type = FSAFS_NTC_FIB_CONTEXT; |
| fib->size = sizeof( struct fib ); |
| fib->hw_fib = hw_fib; |
| fib->data = hw_fib->data; |
| fib->dev = dev; |
| /* |
| * We only handle AifRequest fibs from the adapter. |
| */ |
| aifcmd = (struct aac_aifcmd *) hw_fib->data; |
| if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { |
| /* Handle Driver Notify Events */ |
| aac_handle_aif(dev, fib); |
| *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); |
| aac_fib_adapter_complete(fib, (u16)sizeof(u32)); |
| } else { |
| struct list_head *entry; |
| /* The u32 here is important and intended. We are using |
| 32bit wrapping time to fit the adapter field */ |
| |
| u32 time_now, time_last; |
| unsigned long flagv; |
| unsigned num; |
| struct hw_fib ** hw_fib_pool, ** hw_fib_p; |
| struct fib ** fib_pool, ** fib_p; |
| |
| /* Sniff events */ |
| if ((aifcmd->command == |
| cpu_to_le32(AifCmdEventNotify)) || |
| (aifcmd->command == |
| cpu_to_le32(AifCmdJobProgress))) { |
| aac_handle_aif(dev, fib); |
| } |
| |
| time_now = jiffies/HZ; |
| |
| /* |
| * Warning: no sleep allowed while |
| * holding spinlock. We take the estimate |
| * and pre-allocate a set of fibs outside the |
| * lock. |
| */ |
| num = le32_to_cpu(dev->init->AdapterFibsSize) |
| / sizeof(struct hw_fib); /* some extra */ |
| spin_lock_irqsave(&dev->fib_lock, flagv); |
| entry = dev->fib_list.next; |
| while (entry != &dev->fib_list) { |
| entry = entry->next; |
| ++num; |
| } |
| spin_unlock_irqrestore(&dev->fib_lock, flagv); |
| hw_fib_pool = NULL; |
| fib_pool = NULL; |
| if (num |
| && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL))) |
| && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) { |
| hw_fib_p = hw_fib_pool; |
| fib_p = fib_pool; |
| while (hw_fib_p < &hw_fib_pool[num]) { |
| if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) { |
| --hw_fib_p; |
| break; |
| } |
| if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) { |
| kfree(*(--hw_fib_p)); |
| break; |
| } |
| } |
| if ((num = hw_fib_p - hw_fib_pool) == 0) { |
| kfree(fib_pool); |
| fib_pool = NULL; |
| kfree(hw_fib_pool); |
| hw_fib_pool = NULL; |
| } |
| } else { |
| kfree(hw_fib_pool); |
| hw_fib_pool = NULL; |
| } |
| spin_lock_irqsave(&dev->fib_lock, flagv); |
| entry = dev->fib_list.next; |
| /* |
| * For each Context that is on the |
| * fibctxList, make a copy of the |
| * fib, and then set the event to wake up the |
| * thread that is waiting for it. |
| */ |
| hw_fib_p = hw_fib_pool; |
| fib_p = fib_pool; |
| while (entry != &dev->fib_list) { |
| /* |
| * Extract the fibctx |
| */ |
| fibctx = list_entry(entry, struct aac_fib_context, next); |
| /* |
| * Check if the queue is getting |
| * backlogged |
| */ |
| if (fibctx->count > 20) |
| { |
| /* |
| * It's *not* jiffies folks, |
| * but jiffies / HZ so do not |
| * panic ... |
| */ |
| time_last = fibctx->jiffies; |
| /* |
| * Has it been > 2 minutes |
| * since the last read off |
| * the queue? |
| */ |
| if ((time_now - time_last) > 120) { |
| entry = entry->next; |
| aac_close_fib_context(dev, fibctx); |
| continue; |
| } |
| } |
| /* |
| * Warning: no sleep allowed while |
| * holding spinlock |
| */ |
| if (hw_fib_p < &hw_fib_pool[num]) { |
| hw_newfib = *hw_fib_p; |
| *(hw_fib_p++) = NULL; |
| newfib = *fib_p; |
| *(fib_p++) = NULL; |
| /* |
| * Make the copy of the FIB |
| */ |
| memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); |
| memcpy(newfib, fib, sizeof(struct fib)); |
| newfib->hw_fib = hw_newfib; |
| /* |
| * Put the FIB onto the |
| * fibctx's fibs |
| */ |
| list_add_tail(&newfib->fiblink, &fibctx->fib_list); |
| fibctx->count++; |
| /* |
| * Set the event to wake up the |
| * thread that is waiting. |
| */ |
| up(&fibctx->wait_sem); |
| } else { |
| printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); |
| } |
| entry = entry->next; |
| } |
| /* |
| * Set the status of this FIB |
| */ |
| *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); |
| aac_fib_adapter_complete(fib, sizeof(u32)); |
| spin_unlock_irqrestore(&dev->fib_lock, flagv); |
| /* Free up the remaining resources */ |
| hw_fib_p = hw_fib_pool; |
| fib_p = fib_pool; |
| while (hw_fib_p < &hw_fib_pool[num]) { |
| kfree(*hw_fib_p); |
| kfree(*fib_p); |
| ++fib_p; |
| ++hw_fib_p; |
| } |
| kfree(hw_fib_pool); |
| kfree(fib_pool); |
| } |
| kfree(fib); |
| spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); |
| } |
| /* |
| * There are no more AIF's |
| */ |
| spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); |
| schedule(); |
| |
| if(signal_pending(current)) |
| break; |
| set_current_state(TASK_INTERRUPTIBLE); |
| } |
| if (dev->queues) |
| remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); |
| dev->aif_thread = 0; |
| complete_and_exit(&dev->aif_completion, 0); |
| return 0; |
| } |