| /* |
| * Copyright (c) 2012 Linutronix GmbH |
| * Author: Richard Weinberger <richard@nod.at> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See |
| * the GNU General Public License for more details. |
| * |
| */ |
| |
| #include <linux/crc32.h> |
| #include "ubi.h" |
| |
| /** |
| * ubi_calc_fm_size - calculates the fastmap size in bytes for an UBI device. |
| * @ubi: UBI device description object |
| */ |
| size_t ubi_calc_fm_size(struct ubi_device *ubi) |
| { |
| size_t size; |
| |
| size = sizeof(struct ubi_fm_sb) + \ |
| sizeof(struct ubi_fm_hdr) + \ |
| sizeof(struct ubi_fm_scan_pool) + \ |
| sizeof(struct ubi_fm_scan_pool) + \ |
| (ubi->peb_count * sizeof(struct ubi_fm_ec)) + \ |
| (sizeof(struct ubi_fm_eba) + \ |
| (ubi->peb_count * sizeof(__be32))) + \ |
| sizeof(struct ubi_fm_volhdr) * UBI_MAX_VOLUMES; |
| return roundup(size, ubi->leb_size); |
| } |
| |
| |
| /** |
| * new_fm_vhdr - allocate a new volume header for fastmap usage. |
| * @ubi: UBI device description object |
| * @vol_id: the VID of the new header |
| * |
| * Returns a new struct ubi_vid_hdr on success. |
| * NULL indicates out of memory. |
| */ |
| static struct ubi_vid_hdr *new_fm_vhdr(struct ubi_device *ubi, int vol_id) |
| { |
| struct ubi_vid_hdr *new; |
| |
| new = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); |
| if (!new) |
| goto out; |
| |
| new->vol_type = UBI_VID_DYNAMIC; |
| new->vol_id = cpu_to_be32(vol_id); |
| |
| /* UBI implementations without fastmap support have to delete the |
| * fastmap. |
| */ |
| new->compat = UBI_COMPAT_DELETE; |
| |
| out: |
| return new; |
| } |
| |
| /** |
| * add_aeb - create and add a attach erase block to a given list. |
| * @ai: UBI attach info object |
| * @list: the target list |
| * @pnum: PEB number of the new attach erase block |
| * @ec: erease counter of the new LEB |
| * @scrub: scrub this PEB after attaching |
| * |
| * Returns 0 on success, < 0 indicates an internal error. |
| */ |
| static int add_aeb(struct ubi_attach_info *ai, struct list_head *list, |
| int pnum, int ec, int scrub) |
| { |
| struct ubi_ainf_peb *aeb; |
| |
| aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); |
| if (!aeb) |
| return -ENOMEM; |
| |
| aeb->pnum = pnum; |
| aeb->ec = ec; |
| aeb->lnum = -1; |
| aeb->scrub = scrub; |
| aeb->copy_flag = aeb->sqnum = 0; |
| |
| ai->ec_sum += aeb->ec; |
| ai->ec_count++; |
| |
| if (ai->max_ec < aeb->ec) |
| ai->max_ec = aeb->ec; |
| |
| if (ai->min_ec > aeb->ec) |
| ai->min_ec = aeb->ec; |
| |
| list_add_tail(&aeb->u.list, list); |
| |
| return 0; |
| } |
| |
| /** |
| * add_vol - create and add a new volume to ubi_attach_info. |
| * @ai: ubi_attach_info object |
| * @vol_id: VID of the new volume |
| * @used_ebs: number of used EBS |
| * @data_pad: data padding value of the new volume |
| * @vol_type: volume type |
| * @last_eb_bytes: number of bytes in the last LEB |
| * |
| * Returns the new struct ubi_ainf_volume on success. |
| * NULL indicates an error. |
| */ |
| static struct ubi_ainf_volume *add_vol(struct ubi_attach_info *ai, int vol_id, |
| int used_ebs, int data_pad, u8 vol_type, |
| int last_eb_bytes) |
| { |
| struct ubi_ainf_volume *av; |
| struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; |
| |
| while (*p) { |
| parent = *p; |
| av = rb_entry(parent, struct ubi_ainf_volume, rb); |
| |
| if (vol_id > av->vol_id) |
| p = &(*p)->rb_left; |
| else |
| p = &(*p)->rb_right; |
| } |
| |
| av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL); |
| if (!av) |
| goto out; |
| |
| av->highest_lnum = av->leb_count = 0; |
| av->vol_id = vol_id; |
| av->used_ebs = used_ebs; |
| av->data_pad = data_pad; |
| av->last_data_size = last_eb_bytes; |
| av->compat = 0; |
| av->vol_type = vol_type; |
| av->root = RB_ROOT; |
| |
| dbg_bld("found volume (ID %i)", vol_id); |
| |
| rb_link_node(&av->rb, parent, p); |
| rb_insert_color(&av->rb, &ai->volumes); |
| |
| out: |
| return av; |
| } |
| |
| /** |
| * assign_aeb_to_av - assigns a SEB to a given ainf_volume and removes it |
| * from it's original list. |
| * @ai: ubi_attach_info object |
| * @aeb: the to be assigned SEB |
| * @av: target scan volume |
| */ |
| static void assign_aeb_to_av(struct ubi_attach_info *ai, |
| struct ubi_ainf_peb *aeb, |
| struct ubi_ainf_volume *av) |
| { |
| struct ubi_ainf_peb *tmp_aeb; |
| struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; |
| |
| p = &av->root.rb_node; |
| while (*p) { |
| parent = *p; |
| |
| tmp_aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb); |
| if (aeb->lnum != tmp_aeb->lnum) { |
| if (aeb->lnum < tmp_aeb->lnum) |
| p = &(*p)->rb_left; |
| else |
| p = &(*p)->rb_right; |
| |
| continue; |
| } else |
| break; |
| } |
| |
| list_del(&aeb->u.list); |
| av->leb_count++; |
| |
| rb_link_node(&aeb->u.rb, parent, p); |
| rb_insert_color(&aeb->u.rb, &av->root); |
| } |
| |
| /** |
| * update_vol - inserts or updates a LEB which was found a pool. |
| * @ubi: the UBI device object |
| * @ai: attach info object |
| * @av: the volume this LEB belongs to |
| * @new_vh: the volume header derived from new_aeb |
| * @new_aeb: the AEB to be examined |
| * |
| * Returns 0 on success, < 0 indicates an internal error. |
| */ |
| static int update_vol(struct ubi_device *ubi, struct ubi_attach_info *ai, |
| struct ubi_ainf_volume *av, struct ubi_vid_hdr *new_vh, |
| struct ubi_ainf_peb *new_aeb) |
| { |
| struct rb_node **p = &av->root.rb_node, *parent = NULL; |
| struct ubi_ainf_peb *aeb, *victim; |
| int cmp_res; |
| |
| while (*p) { |
| parent = *p; |
| aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb); |
| |
| if (be32_to_cpu(new_vh->lnum) != aeb->lnum) { |
| if (be32_to_cpu(new_vh->lnum) < aeb->lnum) |
| p = &(*p)->rb_left; |
| else |
| p = &(*p)->rb_right; |
| |
| continue; |
| } |
| |
| /* This case can happen if the fastmap gets written |
| * because of a volume change (creation, deletion, ..). |
| * Then a PEB can be within the persistent EBA and the pool. |
| */ |
| if (aeb->pnum == new_aeb->pnum) { |
| ubi_assert(aeb->lnum == new_aeb->lnum); |
| kmem_cache_free(ai->aeb_slab_cache, new_aeb); |
| |
| return 0; |
| } |
| |
| cmp_res = ubi_compare_lebs(ubi, aeb, new_aeb->pnum, new_vh); |
| if (cmp_res < 0) |
| return cmp_res; |
| |
| /* new_aeb is newer */ |
| if (cmp_res & 1) { |
| victim = kmem_cache_alloc(ai->aeb_slab_cache, |
| GFP_KERNEL); |
| if (!victim) |
| return -ENOMEM; |
| |
| victim->ec = aeb->ec; |
| victim->pnum = aeb->pnum; |
| list_add_tail(&victim->u.list, &ai->erase); |
| |
| if (av->highest_lnum == be32_to_cpu(new_vh->lnum)) |
| av->last_data_size = \ |
| be32_to_cpu(new_vh->data_size); |
| |
| dbg_bld("vol %i: AEB %i's PEB %i is the newer", |
| av->vol_id, aeb->lnum, new_aeb->pnum); |
| |
| aeb->ec = new_aeb->ec; |
| aeb->pnum = new_aeb->pnum; |
| aeb->copy_flag = new_vh->copy_flag; |
| aeb->scrub = new_aeb->scrub; |
| kmem_cache_free(ai->aeb_slab_cache, new_aeb); |
| |
| /* new_aeb is older */ |
| } else { |
| dbg_bld("vol %i: AEB %i's PEB %i is old, dropping it", |
| av->vol_id, aeb->lnum, new_aeb->pnum); |
| list_add_tail(&new_aeb->u.list, &ai->erase); |
| } |
| |
| return 0; |
| } |
| /* This LEB is new, let's add it to the volume */ |
| |
| if (av->highest_lnum <= be32_to_cpu(new_vh->lnum)) { |
| av->highest_lnum = be32_to_cpu(new_vh->lnum); |
| av->last_data_size = be32_to_cpu(new_vh->data_size); |
| } |
| |
| if (av->vol_type == UBI_STATIC_VOLUME) |
| av->used_ebs = be32_to_cpu(new_vh->used_ebs); |
| |
| av->leb_count++; |
| |
| rb_link_node(&new_aeb->u.rb, parent, p); |
| rb_insert_color(&new_aeb->u.rb, &av->root); |
| |
| return 0; |
| } |
| |
| /** |
| * process_pool_aeb - we found a non-empty PEB in a pool. |
| * @ubi: UBI device object |
| * @ai: attach info object |
| * @new_vh: the volume header derived from new_aeb |
| * @new_aeb: the AEB to be examined |
| * |
| * Returns 0 on success, < 0 indicates an internal error. |
| */ |
| static int process_pool_aeb(struct ubi_device *ubi, struct ubi_attach_info *ai, |
| struct ubi_vid_hdr *new_vh, |
| struct ubi_ainf_peb *new_aeb) |
| { |
| struct ubi_ainf_volume *av, *tmp_av = NULL; |
| struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; |
| int found = 0; |
| |
| if (be32_to_cpu(new_vh->vol_id) == UBI_FM_SB_VOLUME_ID || |
| be32_to_cpu(new_vh->vol_id) == UBI_FM_DATA_VOLUME_ID) { |
| kmem_cache_free(ai->aeb_slab_cache, new_aeb); |
| |
| return 0; |
| } |
| |
| /* Find the volume this SEB belongs to */ |
| while (*p) { |
| parent = *p; |
| tmp_av = rb_entry(parent, struct ubi_ainf_volume, rb); |
| |
| if (be32_to_cpu(new_vh->vol_id) > tmp_av->vol_id) |
| p = &(*p)->rb_left; |
| else if (be32_to_cpu(new_vh->vol_id) < tmp_av->vol_id) |
| p = &(*p)->rb_right; |
| else { |
| found = 1; |
| break; |
| } |
| } |
| |
| if (found) |
| av = tmp_av; |
| else { |
| ubi_err(ubi, "orphaned volume in fastmap pool!"); |
| kmem_cache_free(ai->aeb_slab_cache, new_aeb); |
| return UBI_BAD_FASTMAP; |
| } |
| |
| ubi_assert(be32_to_cpu(new_vh->vol_id) == av->vol_id); |
| |
| return update_vol(ubi, ai, av, new_vh, new_aeb); |
| } |
| |
| /** |
| * unmap_peb - unmap a PEB. |
| * If fastmap detects a free PEB in the pool it has to check whether |
| * this PEB has been unmapped after writing the fastmap. |
| * |
| * @ai: UBI attach info object |
| * @pnum: The PEB to be unmapped |
| */ |
| static void unmap_peb(struct ubi_attach_info *ai, int pnum) |
| { |
| struct ubi_ainf_volume *av; |
| struct rb_node *node, *node2; |
| struct ubi_ainf_peb *aeb; |
| |
| for (node = rb_first(&ai->volumes); node; node = rb_next(node)) { |
| av = rb_entry(node, struct ubi_ainf_volume, rb); |
| |
| for (node2 = rb_first(&av->root); node2; |
| node2 = rb_next(node2)) { |
| aeb = rb_entry(node2, struct ubi_ainf_peb, u.rb); |
| if (aeb->pnum == pnum) { |
| rb_erase(&aeb->u.rb, &av->root); |
| av->leb_count--; |
| kmem_cache_free(ai->aeb_slab_cache, aeb); |
| return; |
| } |
| } |
| } |
| } |
| |
| /** |
| * scan_pool - scans a pool for changed (no longer empty PEBs). |
| * @ubi: UBI device object |
| * @ai: attach info object |
| * @pebs: an array of all PEB numbers in the to be scanned pool |
| * @pool_size: size of the pool (number of entries in @pebs) |
| * @max_sqnum: pointer to the maximal sequence number |
| * @free: list of PEBs which are most likely free (and go into @ai->free) |
| * |
| * Returns 0 on success, if the pool is unusable UBI_BAD_FASTMAP is returned. |
| * < 0 indicates an internal error. |
| */ |
| static int scan_pool(struct ubi_device *ubi, struct ubi_attach_info *ai, |
| int *pebs, int pool_size, unsigned long long *max_sqnum, |
| struct list_head *free) |
| { |
| struct ubi_vid_hdr *vh; |
| struct ubi_ec_hdr *ech; |
| struct ubi_ainf_peb *new_aeb; |
| int i, pnum, err, ret = 0; |
| |
| ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); |
| if (!ech) |
| return -ENOMEM; |
| |
| vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); |
| if (!vh) { |
| kfree(ech); |
| return -ENOMEM; |
| } |
| |
| dbg_bld("scanning fastmap pool: size = %i", pool_size); |
| |
| /* |
| * Now scan all PEBs in the pool to find changes which have been made |
| * after the creation of the fastmap |
| */ |
| for (i = 0; i < pool_size; i++) { |
| int scrub = 0; |
| int image_seq; |
| |
| pnum = be32_to_cpu(pebs[i]); |
| |
| if (ubi_io_is_bad(ubi, pnum)) { |
| ubi_err(ubi, "bad PEB in fastmap pool!"); |
| ret = UBI_BAD_FASTMAP; |
| goto out; |
| } |
| |
| err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); |
| if (err && err != UBI_IO_BITFLIPS) { |
| ubi_err(ubi, "unable to read EC header! PEB:%i err:%i", |
| pnum, err); |
| ret = err > 0 ? UBI_BAD_FASTMAP : err; |
| goto out; |
| } else if (err == UBI_IO_BITFLIPS) |
| scrub = 1; |
| |
| /* |
| * Older UBI implementations have image_seq set to zero, so |
| * we shouldn't fail if image_seq == 0. |
| */ |
| image_seq = be32_to_cpu(ech->image_seq); |
| |
| if (image_seq && (image_seq != ubi->image_seq)) { |
| ubi_err(ubi, "bad image seq: 0x%x, expected: 0x%x", |
| be32_to_cpu(ech->image_seq), ubi->image_seq); |
| ret = UBI_BAD_FASTMAP; |
| goto out; |
| } |
| |
| err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); |
| if (err == UBI_IO_FF || err == UBI_IO_FF_BITFLIPS) { |
| unsigned long long ec = be64_to_cpu(ech->ec); |
| unmap_peb(ai, pnum); |
| dbg_bld("Adding PEB to free: %i", pnum); |
| if (err == UBI_IO_FF_BITFLIPS) |
| add_aeb(ai, free, pnum, ec, 1); |
| else |
| add_aeb(ai, free, pnum, ec, 0); |
| continue; |
| } else if (err == 0 || err == UBI_IO_BITFLIPS) { |
| dbg_bld("Found non empty PEB:%i in pool", pnum); |
| |
| if (err == UBI_IO_BITFLIPS) |
| scrub = 1; |
| |
| new_aeb = kmem_cache_alloc(ai->aeb_slab_cache, |
| GFP_KERNEL); |
| if (!new_aeb) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| new_aeb->ec = be64_to_cpu(ech->ec); |
| new_aeb->pnum = pnum; |
| new_aeb->lnum = be32_to_cpu(vh->lnum); |
| new_aeb->sqnum = be64_to_cpu(vh->sqnum); |
| new_aeb->copy_flag = vh->copy_flag; |
| new_aeb->scrub = scrub; |
| |
| if (*max_sqnum < new_aeb->sqnum) |
| *max_sqnum = new_aeb->sqnum; |
| |
| err = process_pool_aeb(ubi, ai, vh, new_aeb); |
| if (err) { |
| ret = err > 0 ? UBI_BAD_FASTMAP : err; |
| goto out; |
| } |
| } else { |
| /* We are paranoid and fall back to scanning mode */ |
| ubi_err(ubi, "fastmap pool PEBs contains damaged PEBs!"); |
| ret = err > 0 ? UBI_BAD_FASTMAP : err; |
| goto out; |
| } |
| |
| } |
| |
| out: |
| ubi_free_vid_hdr(ubi, vh); |
| kfree(ech); |
| return ret; |
| } |
| |
| /** |
| * count_fastmap_pebs - Counts the PEBs found by fastmap. |
| * @ai: The UBI attach info object |
| */ |
| static int count_fastmap_pebs(struct ubi_attach_info *ai) |
| { |
| struct ubi_ainf_peb *aeb; |
| struct ubi_ainf_volume *av; |
| struct rb_node *rb1, *rb2; |
| int n = 0; |
| |
| list_for_each_entry(aeb, &ai->erase, u.list) |
| n++; |
| |
| list_for_each_entry(aeb, &ai->free, u.list) |
| n++; |
| |
| ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) |
| ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) |
| n++; |
| |
| return n; |
| } |
| |
| /** |
| * ubi_attach_fastmap - creates ubi_attach_info from a fastmap. |
| * @ubi: UBI device object |
| * @ai: UBI attach info object |
| * @fm: the fastmap to be attached |
| * |
| * Returns 0 on success, UBI_BAD_FASTMAP if the found fastmap was unusable. |
| * < 0 indicates an internal error. |
| */ |
| static int ubi_attach_fastmap(struct ubi_device *ubi, |
| struct ubi_attach_info *ai, |
| struct ubi_fastmap_layout *fm) |
| { |
| struct list_head used, free; |
| struct ubi_ainf_volume *av; |
| struct ubi_ainf_peb *aeb, *tmp_aeb, *_tmp_aeb; |
| struct ubi_fm_sb *fmsb; |
| struct ubi_fm_hdr *fmhdr; |
| struct ubi_fm_scan_pool *fmpl1, *fmpl2; |
| struct ubi_fm_ec *fmec; |
| struct ubi_fm_volhdr *fmvhdr; |
| struct ubi_fm_eba *fm_eba; |
| int ret, i, j, pool_size, wl_pool_size; |
| size_t fm_pos = 0, fm_size = ubi->fm_size; |
| unsigned long long max_sqnum = 0; |
| void *fm_raw = ubi->fm_buf; |
| |
| INIT_LIST_HEAD(&used); |
| INIT_LIST_HEAD(&free); |
| ai->min_ec = UBI_MAX_ERASECOUNTER; |
| |
| fmsb = (struct ubi_fm_sb *)(fm_raw); |
| ai->max_sqnum = fmsb->sqnum; |
| fm_pos += sizeof(struct ubi_fm_sb); |
| if (fm_pos >= fm_size) |
| goto fail_bad; |
| |
| fmhdr = (struct ubi_fm_hdr *)(fm_raw + fm_pos); |
| fm_pos += sizeof(*fmhdr); |
| if (fm_pos >= fm_size) |
| goto fail_bad; |
| |
| if (be32_to_cpu(fmhdr->magic) != UBI_FM_HDR_MAGIC) { |
| ubi_err(ubi, "bad fastmap header magic: 0x%x, expected: 0x%x", |
| be32_to_cpu(fmhdr->magic), UBI_FM_HDR_MAGIC); |
| goto fail_bad; |
| } |
| |
| fmpl1 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); |
| fm_pos += sizeof(*fmpl1); |
| if (fm_pos >= fm_size) |
| goto fail_bad; |
| if (be32_to_cpu(fmpl1->magic) != UBI_FM_POOL_MAGIC) { |
| ubi_err(ubi, "bad fastmap pool magic: 0x%x, expected: 0x%x", |
| be32_to_cpu(fmpl1->magic), UBI_FM_POOL_MAGIC); |
| goto fail_bad; |
| } |
| |
| fmpl2 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); |
| fm_pos += sizeof(*fmpl2); |
| if (fm_pos >= fm_size) |
| goto fail_bad; |
| if (be32_to_cpu(fmpl2->magic) != UBI_FM_POOL_MAGIC) { |
| ubi_err(ubi, "bad fastmap pool magic: 0x%x, expected: 0x%x", |
| be32_to_cpu(fmpl2->magic), UBI_FM_POOL_MAGIC); |
| goto fail_bad; |
| } |
| |
| pool_size = be16_to_cpu(fmpl1->size); |
| wl_pool_size = be16_to_cpu(fmpl2->size); |
| fm->max_pool_size = be16_to_cpu(fmpl1->max_size); |
| fm->max_wl_pool_size = be16_to_cpu(fmpl2->max_size); |
| |
| if (pool_size > UBI_FM_MAX_POOL_SIZE || pool_size < 0) { |
| ubi_err(ubi, "bad pool size: %i", pool_size); |
| goto fail_bad; |
| } |
| |
| if (wl_pool_size > UBI_FM_MAX_POOL_SIZE || wl_pool_size < 0) { |
| ubi_err(ubi, "bad WL pool size: %i", wl_pool_size); |
| goto fail_bad; |
| } |
| |
| |
| if (fm->max_pool_size > UBI_FM_MAX_POOL_SIZE || |
| fm->max_pool_size < 0) { |
| ubi_err(ubi, "bad maximal pool size: %i", fm->max_pool_size); |
| goto fail_bad; |
| } |
| |
| if (fm->max_wl_pool_size > UBI_FM_MAX_POOL_SIZE || |
| fm->max_wl_pool_size < 0) { |
| ubi_err(ubi, "bad maximal WL pool size: %i", |
| fm->max_wl_pool_size); |
| goto fail_bad; |
| } |
| |
| /* read EC values from free list */ |
| for (i = 0; i < be32_to_cpu(fmhdr->free_peb_count); i++) { |
| fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| fm_pos += sizeof(*fmec); |
| if (fm_pos >= fm_size) |
| goto fail_bad; |
| |
| add_aeb(ai, &ai->free, be32_to_cpu(fmec->pnum), |
| be32_to_cpu(fmec->ec), 0); |
| } |
| |
| /* read EC values from used list */ |
| for (i = 0; i < be32_to_cpu(fmhdr->used_peb_count); i++) { |
| fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| fm_pos += sizeof(*fmec); |
| if (fm_pos >= fm_size) |
| goto fail_bad; |
| |
| add_aeb(ai, &used, be32_to_cpu(fmec->pnum), |
| be32_to_cpu(fmec->ec), 0); |
| } |
| |
| /* read EC values from scrub list */ |
| for (i = 0; i < be32_to_cpu(fmhdr->scrub_peb_count); i++) { |
| fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| fm_pos += sizeof(*fmec); |
| if (fm_pos >= fm_size) |
| goto fail_bad; |
| |
| add_aeb(ai, &used, be32_to_cpu(fmec->pnum), |
| be32_to_cpu(fmec->ec), 1); |
| } |
| |
| /* read EC values from erase list */ |
| for (i = 0; i < be32_to_cpu(fmhdr->erase_peb_count); i++) { |
| fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| fm_pos += sizeof(*fmec); |
| if (fm_pos >= fm_size) |
| goto fail_bad; |
| |
| add_aeb(ai, &ai->erase, be32_to_cpu(fmec->pnum), |
| be32_to_cpu(fmec->ec), 1); |
| } |
| |
| ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count); |
| ai->bad_peb_count = be32_to_cpu(fmhdr->bad_peb_count); |
| |
| /* Iterate over all volumes and read their EBA table */ |
| for (i = 0; i < be32_to_cpu(fmhdr->vol_count); i++) { |
| fmvhdr = (struct ubi_fm_volhdr *)(fm_raw + fm_pos); |
| fm_pos += sizeof(*fmvhdr); |
| if (fm_pos >= fm_size) |
| goto fail_bad; |
| |
| if (be32_to_cpu(fmvhdr->magic) != UBI_FM_VHDR_MAGIC) { |
| ubi_err(ubi, "bad fastmap vol header magic: 0x%x, expected: 0x%x", |
| be32_to_cpu(fmvhdr->magic), UBI_FM_VHDR_MAGIC); |
| goto fail_bad; |
| } |
| |
| av = add_vol(ai, be32_to_cpu(fmvhdr->vol_id), |
| be32_to_cpu(fmvhdr->used_ebs), |
| be32_to_cpu(fmvhdr->data_pad), |
| fmvhdr->vol_type, |
| be32_to_cpu(fmvhdr->last_eb_bytes)); |
| |
| if (!av) |
| goto fail_bad; |
| |
| ai->vols_found++; |
| if (ai->highest_vol_id < be32_to_cpu(fmvhdr->vol_id)) |
| ai->highest_vol_id = be32_to_cpu(fmvhdr->vol_id); |
| |
| fm_eba = (struct ubi_fm_eba *)(fm_raw + fm_pos); |
| fm_pos += sizeof(*fm_eba); |
| fm_pos += (sizeof(__be32) * be32_to_cpu(fm_eba->reserved_pebs)); |
| if (fm_pos >= fm_size) |
| goto fail_bad; |
| |
| if (be32_to_cpu(fm_eba->magic) != UBI_FM_EBA_MAGIC) { |
| ubi_err(ubi, "bad fastmap EBA header magic: 0x%x, expected: 0x%x", |
| be32_to_cpu(fm_eba->magic), UBI_FM_EBA_MAGIC); |
| goto fail_bad; |
| } |
| |
| for (j = 0; j < be32_to_cpu(fm_eba->reserved_pebs); j++) { |
| int pnum = be32_to_cpu(fm_eba->pnum[j]); |
| |
| if ((int)be32_to_cpu(fm_eba->pnum[j]) < 0) |
| continue; |
| |
| aeb = NULL; |
| list_for_each_entry(tmp_aeb, &used, u.list) { |
| if (tmp_aeb->pnum == pnum) { |
| aeb = tmp_aeb; |
| break; |
| } |
| } |
| |
| if (!aeb) { |
| ubi_err(ubi, "PEB %i is in EBA but not in used list", pnum); |
| goto fail_bad; |
| } |
| |
| aeb->lnum = j; |
| |
| if (av->highest_lnum <= aeb->lnum) |
| av->highest_lnum = aeb->lnum; |
| |
| assign_aeb_to_av(ai, aeb, av); |
| |
| dbg_bld("inserting PEB:%i (LEB %i) to vol %i", |
| aeb->pnum, aeb->lnum, av->vol_id); |
| } |
| } |
| |
| ret = scan_pool(ubi, ai, fmpl1->pebs, pool_size, &max_sqnum, &free); |
| if (ret) |
| goto fail; |
| |
| ret = scan_pool(ubi, ai, fmpl2->pebs, wl_pool_size, &max_sqnum, &free); |
| if (ret) |
| goto fail; |
| |
| if (max_sqnum > ai->max_sqnum) |
| ai->max_sqnum = max_sqnum; |
| |
| list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &free, u.list) |
| list_move_tail(&tmp_aeb->u.list, &ai->free); |
| |
| list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &used, u.list) |
| list_move_tail(&tmp_aeb->u.list, &ai->erase); |
| |
| ubi_assert(list_empty(&free)); |
| |
| /* |
| * If fastmap is leaking PEBs (must not happen), raise a |
| * fat warning and fall back to scanning mode. |
| * We do this here because in ubi_wl_init() it's too late |
| * and we cannot fall back to scanning. |
| */ |
| if (WARN_ON(count_fastmap_pebs(ai) != ubi->peb_count - |
| ai->bad_peb_count - fm->used_blocks)) |
| goto fail_bad; |
| |
| return 0; |
| |
| fail_bad: |
| ret = UBI_BAD_FASTMAP; |
| fail: |
| list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &used, u.list) { |
| list_del(&tmp_aeb->u.list); |
| kmem_cache_free(ai->aeb_slab_cache, tmp_aeb); |
| } |
| list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &free, u.list) { |
| list_del(&tmp_aeb->u.list); |
| kmem_cache_free(ai->aeb_slab_cache, tmp_aeb); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * ubi_scan_fastmap - scan the fastmap. |
| * @ubi: UBI device object |
| * @ai: UBI attach info to be filled |
| * @fm_anchor: The fastmap starts at this PEB |
| * |
| * Returns 0 on success, UBI_NO_FASTMAP if no fastmap was found, |
| * UBI_BAD_FASTMAP if one was found but is not usable. |
| * < 0 indicates an internal error. |
| */ |
| int ubi_scan_fastmap(struct ubi_device *ubi, struct ubi_attach_info *ai, |
| int fm_anchor) |
| { |
| struct ubi_fm_sb *fmsb, *fmsb2; |
| struct ubi_vid_hdr *vh; |
| struct ubi_ec_hdr *ech; |
| struct ubi_fastmap_layout *fm; |
| int i, used_blocks, pnum, ret = 0; |
| size_t fm_size; |
| __be32 crc, tmp_crc; |
| unsigned long long sqnum = 0; |
| |
| mutex_lock(&ubi->fm_mutex); |
| memset(ubi->fm_buf, 0, ubi->fm_size); |
| |
| fmsb = kmalloc(sizeof(*fmsb), GFP_KERNEL); |
| if (!fmsb) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| fm = kzalloc(sizeof(*fm), GFP_KERNEL); |
| if (!fm) { |
| ret = -ENOMEM; |
| kfree(fmsb); |
| goto out; |
| } |
| |
| ret = ubi_io_read(ubi, fmsb, fm_anchor, ubi->leb_start, sizeof(*fmsb)); |
| if (ret && ret != UBI_IO_BITFLIPS) |
| goto free_fm_sb; |
| else if (ret == UBI_IO_BITFLIPS) |
| fm->to_be_tortured[0] = 1; |
| |
| if (be32_to_cpu(fmsb->magic) != UBI_FM_SB_MAGIC) { |
| ubi_err(ubi, "bad super block magic: 0x%x, expected: 0x%x", |
| be32_to_cpu(fmsb->magic), UBI_FM_SB_MAGIC); |
| ret = UBI_BAD_FASTMAP; |
| goto free_fm_sb; |
| } |
| |
| if (fmsb->version != UBI_FM_FMT_VERSION) { |
| ubi_err(ubi, "bad fastmap version: %i, expected: %i", |
| fmsb->version, UBI_FM_FMT_VERSION); |
| ret = UBI_BAD_FASTMAP; |
| goto free_fm_sb; |
| } |
| |
| used_blocks = be32_to_cpu(fmsb->used_blocks); |
| if (used_blocks > UBI_FM_MAX_BLOCKS || used_blocks < 1) { |
| ubi_err(ubi, "number of fastmap blocks is invalid: %i", |
| used_blocks); |
| ret = UBI_BAD_FASTMAP; |
| goto free_fm_sb; |
| } |
| |
| fm_size = ubi->leb_size * used_blocks; |
| if (fm_size != ubi->fm_size) { |
| ubi_err(ubi, "bad fastmap size: %zi, expected: %zi", |
| fm_size, ubi->fm_size); |
| ret = UBI_BAD_FASTMAP; |
| goto free_fm_sb; |
| } |
| |
| ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); |
| if (!ech) { |
| ret = -ENOMEM; |
| goto free_fm_sb; |
| } |
| |
| vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); |
| if (!vh) { |
| ret = -ENOMEM; |
| goto free_hdr; |
| } |
| |
| for (i = 0; i < used_blocks; i++) { |
| int image_seq; |
| |
| pnum = be32_to_cpu(fmsb->block_loc[i]); |
| |
| if (ubi_io_is_bad(ubi, pnum)) { |
| ret = UBI_BAD_FASTMAP; |
| goto free_hdr; |
| } |
| |
| ret = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); |
| if (ret && ret != UBI_IO_BITFLIPS) { |
| ubi_err(ubi, "unable to read fastmap block# %i EC (PEB: %i)", |
| i, pnum); |
| if (ret > 0) |
| ret = UBI_BAD_FASTMAP; |
| goto free_hdr; |
| } else if (ret == UBI_IO_BITFLIPS) |
| fm->to_be_tortured[i] = 1; |
| |
| image_seq = be32_to_cpu(ech->image_seq); |
| if (!ubi->image_seq) |
| ubi->image_seq = image_seq; |
| |
| /* |
| * Older UBI implementations have image_seq set to zero, so |
| * we shouldn't fail if image_seq == 0. |
| */ |
| if (image_seq && (image_seq != ubi->image_seq)) { |
| ubi_err(ubi, "wrong image seq:%d instead of %d", |
| be32_to_cpu(ech->image_seq), ubi->image_seq); |
| ret = UBI_BAD_FASTMAP; |
| goto free_hdr; |
| } |
| |
| ret = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); |
| if (ret && ret != UBI_IO_BITFLIPS) { |
| ubi_err(ubi, "unable to read fastmap block# %i (PEB: %i)", |
| i, pnum); |
| goto free_hdr; |
| } |
| |
| if (i == 0) { |
| if (be32_to_cpu(vh->vol_id) != UBI_FM_SB_VOLUME_ID) { |
| ubi_err(ubi, "bad fastmap anchor vol_id: 0x%x, expected: 0x%x", |
| be32_to_cpu(vh->vol_id), |
| UBI_FM_SB_VOLUME_ID); |
| ret = UBI_BAD_FASTMAP; |
| goto free_hdr; |
| } |
| } else { |
| if (be32_to_cpu(vh->vol_id) != UBI_FM_DATA_VOLUME_ID) { |
| ubi_err(ubi, "bad fastmap data vol_id: 0x%x, expected: 0x%x", |
| be32_to_cpu(vh->vol_id), |
| UBI_FM_DATA_VOLUME_ID); |
| ret = UBI_BAD_FASTMAP; |
| goto free_hdr; |
| } |
| } |
| |
| if (sqnum < be64_to_cpu(vh->sqnum)) |
| sqnum = be64_to_cpu(vh->sqnum); |
| |
| ret = ubi_io_read(ubi, ubi->fm_buf + (ubi->leb_size * i), pnum, |
| ubi->leb_start, ubi->leb_size); |
| if (ret && ret != UBI_IO_BITFLIPS) { |
| ubi_err(ubi, "unable to read fastmap block# %i (PEB: %i, " |
| "err: %i)", i, pnum, ret); |
| goto free_hdr; |
| } |
| } |
| |
| kfree(fmsb); |
| fmsb = NULL; |
| |
| fmsb2 = (struct ubi_fm_sb *)(ubi->fm_buf); |
| tmp_crc = be32_to_cpu(fmsb2->data_crc); |
| fmsb2->data_crc = 0; |
| crc = crc32(UBI_CRC32_INIT, ubi->fm_buf, fm_size); |
| if (crc != tmp_crc) { |
| ubi_err(ubi, "fastmap data CRC is invalid"); |
| ubi_err(ubi, "CRC should be: 0x%x, calc: 0x%x", |
| tmp_crc, crc); |
| ret = UBI_BAD_FASTMAP; |
| goto free_hdr; |
| } |
| |
| fmsb2->sqnum = sqnum; |
| |
| fm->used_blocks = used_blocks; |
| |
| ret = ubi_attach_fastmap(ubi, ai, fm); |
| if (ret) { |
| if (ret > 0) |
| ret = UBI_BAD_FASTMAP; |
| goto free_hdr; |
| } |
| |
| for (i = 0; i < used_blocks; i++) { |
| struct ubi_wl_entry *e; |
| |
| e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); |
| if (!e) { |
| while (i--) |
| kfree(fm->e[i]); |
| |
| ret = -ENOMEM; |
| goto free_hdr; |
| } |
| |
| e->pnum = be32_to_cpu(fmsb2->block_loc[i]); |
| e->ec = be32_to_cpu(fmsb2->block_ec[i]); |
| fm->e[i] = e; |
| } |
| |
| ubi->fm = fm; |
| ubi->fm_pool.max_size = ubi->fm->max_pool_size; |
| ubi->fm_wl_pool.max_size = ubi->fm->max_wl_pool_size; |
| ubi_msg(ubi, "attached by fastmap"); |
| ubi_msg(ubi, "fastmap pool size: %d", ubi->fm_pool.max_size); |
| ubi_msg(ubi, "fastmap WL pool size: %d", |
| ubi->fm_wl_pool.max_size); |
| ubi->fm_disabled = 0; |
| |
| ubi_free_vid_hdr(ubi, vh); |
| kfree(ech); |
| out: |
| mutex_unlock(&ubi->fm_mutex); |
| if (ret == UBI_BAD_FASTMAP) |
| ubi_err(ubi, "Attach by fastmap failed, doing a full scan!"); |
| return ret; |
| |
| free_hdr: |
| ubi_free_vid_hdr(ubi, vh); |
| kfree(ech); |
| free_fm_sb: |
| kfree(fmsb); |
| kfree(fm); |
| goto out; |
| } |
| |
| /** |
| * ubi_write_fastmap - writes a fastmap. |
| * @ubi: UBI device object |
| * @new_fm: the to be written fastmap |
| * |
| * Returns 0 on success, < 0 indicates an internal error. |
| */ |
| static int ubi_write_fastmap(struct ubi_device *ubi, |
| struct ubi_fastmap_layout *new_fm) |
| { |
| size_t fm_pos = 0; |
| void *fm_raw; |
| struct ubi_fm_sb *fmsb; |
| struct ubi_fm_hdr *fmh; |
| struct ubi_fm_scan_pool *fmpl1, *fmpl2; |
| struct ubi_fm_ec *fec; |
| struct ubi_fm_volhdr *fvh; |
| struct ubi_fm_eba *feba; |
| struct rb_node *node; |
| struct ubi_wl_entry *wl_e; |
| struct ubi_volume *vol; |
| struct ubi_vid_hdr *avhdr, *dvhdr; |
| struct ubi_work *ubi_wrk; |
| int ret, i, j, free_peb_count, used_peb_count, vol_count; |
| int scrub_peb_count, erase_peb_count; |
| |
| fm_raw = ubi->fm_buf; |
| memset(ubi->fm_buf, 0, ubi->fm_size); |
| |
| avhdr = new_fm_vhdr(ubi, UBI_FM_SB_VOLUME_ID); |
| if (!avhdr) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| dvhdr = new_fm_vhdr(ubi, UBI_FM_DATA_VOLUME_ID); |
| if (!dvhdr) { |
| ret = -ENOMEM; |
| goto out_kfree; |
| } |
| |
| spin_lock(&ubi->volumes_lock); |
| spin_lock(&ubi->wl_lock); |
| |
| fmsb = (struct ubi_fm_sb *)fm_raw; |
| fm_pos += sizeof(*fmsb); |
| ubi_assert(fm_pos <= ubi->fm_size); |
| |
| fmh = (struct ubi_fm_hdr *)(fm_raw + fm_pos); |
| fm_pos += sizeof(*fmh); |
| ubi_assert(fm_pos <= ubi->fm_size); |
| |
| fmsb->magic = cpu_to_be32(UBI_FM_SB_MAGIC); |
| fmsb->version = UBI_FM_FMT_VERSION; |
| fmsb->used_blocks = cpu_to_be32(new_fm->used_blocks); |
| /* the max sqnum will be filled in while *reading* the fastmap */ |
| fmsb->sqnum = 0; |
| |
| fmh->magic = cpu_to_be32(UBI_FM_HDR_MAGIC); |
| free_peb_count = 0; |
| used_peb_count = 0; |
| scrub_peb_count = 0; |
| erase_peb_count = 0; |
| vol_count = 0; |
| |
| fmpl1 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); |
| fm_pos += sizeof(*fmpl1); |
| fmpl1->magic = cpu_to_be32(UBI_FM_POOL_MAGIC); |
| fmpl1->size = cpu_to_be16(ubi->fm_pool.size); |
| fmpl1->max_size = cpu_to_be16(ubi->fm_pool.max_size); |
| |
| for (i = 0; i < ubi->fm_pool.size; i++) |
| fmpl1->pebs[i] = cpu_to_be32(ubi->fm_pool.pebs[i]); |
| |
| fmpl2 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); |
| fm_pos += sizeof(*fmpl2); |
| fmpl2->magic = cpu_to_be32(UBI_FM_POOL_MAGIC); |
| fmpl2->size = cpu_to_be16(ubi->fm_wl_pool.size); |
| fmpl2->max_size = cpu_to_be16(ubi->fm_wl_pool.max_size); |
| |
| for (i = 0; i < ubi->fm_wl_pool.size; i++) |
| fmpl2->pebs[i] = cpu_to_be32(ubi->fm_wl_pool.pebs[i]); |
| |
| for (node = rb_first(&ubi->free); node; node = rb_next(node)) { |
| wl_e = rb_entry(node, struct ubi_wl_entry, u.rb); |
| fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| |
| fec->pnum = cpu_to_be32(wl_e->pnum); |
| fec->ec = cpu_to_be32(wl_e->ec); |
| |
| free_peb_count++; |
| fm_pos += sizeof(*fec); |
| ubi_assert(fm_pos <= ubi->fm_size); |
| } |
| fmh->free_peb_count = cpu_to_be32(free_peb_count); |
| |
| for (node = rb_first(&ubi->used); node; node = rb_next(node)) { |
| wl_e = rb_entry(node, struct ubi_wl_entry, u.rb); |
| fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| |
| fec->pnum = cpu_to_be32(wl_e->pnum); |
| fec->ec = cpu_to_be32(wl_e->ec); |
| |
| used_peb_count++; |
| fm_pos += sizeof(*fec); |
| ubi_assert(fm_pos <= ubi->fm_size); |
| } |
| |
| for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) { |
| list_for_each_entry(wl_e, &ubi->pq[i], u.list) { |
| fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| |
| fec->pnum = cpu_to_be32(wl_e->pnum); |
| fec->ec = cpu_to_be32(wl_e->ec); |
| |
| used_peb_count++; |
| fm_pos += sizeof(*fec); |
| ubi_assert(fm_pos <= ubi->fm_size); |
| } |
| } |
| fmh->used_peb_count = cpu_to_be32(used_peb_count); |
| |
| for (node = rb_first(&ubi->scrub); node; node = rb_next(node)) { |
| wl_e = rb_entry(node, struct ubi_wl_entry, u.rb); |
| fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| |
| fec->pnum = cpu_to_be32(wl_e->pnum); |
| fec->ec = cpu_to_be32(wl_e->ec); |
| |
| scrub_peb_count++; |
| fm_pos += sizeof(*fec); |
| ubi_assert(fm_pos <= ubi->fm_size); |
| } |
| fmh->scrub_peb_count = cpu_to_be32(scrub_peb_count); |
| |
| |
| list_for_each_entry(ubi_wrk, &ubi->works, list) { |
| if (ubi_is_erase_work(ubi_wrk)) { |
| wl_e = ubi_wrk->e; |
| ubi_assert(wl_e); |
| |
| fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| |
| fec->pnum = cpu_to_be32(wl_e->pnum); |
| fec->ec = cpu_to_be32(wl_e->ec); |
| |
| erase_peb_count++; |
| fm_pos += sizeof(*fec); |
| ubi_assert(fm_pos <= ubi->fm_size); |
| } |
| } |
| fmh->erase_peb_count = cpu_to_be32(erase_peb_count); |
| |
| for (i = 0; i < UBI_MAX_VOLUMES + UBI_INT_VOL_COUNT; i++) { |
| vol = ubi->volumes[i]; |
| |
| if (!vol) |
| continue; |
| |
| vol_count++; |
| |
| fvh = (struct ubi_fm_volhdr *)(fm_raw + fm_pos); |
| fm_pos += sizeof(*fvh); |
| ubi_assert(fm_pos <= ubi->fm_size); |
| |
| fvh->magic = cpu_to_be32(UBI_FM_VHDR_MAGIC); |
| fvh->vol_id = cpu_to_be32(vol->vol_id); |
| fvh->vol_type = vol->vol_type; |
| fvh->used_ebs = cpu_to_be32(vol->used_ebs); |
| fvh->data_pad = cpu_to_be32(vol->data_pad); |
| fvh->last_eb_bytes = cpu_to_be32(vol->last_eb_bytes); |
| |
| ubi_assert(vol->vol_type == UBI_DYNAMIC_VOLUME || |
| vol->vol_type == UBI_STATIC_VOLUME); |
| |
| feba = (struct ubi_fm_eba *)(fm_raw + fm_pos); |
| fm_pos += sizeof(*feba) + (sizeof(__be32) * vol->reserved_pebs); |
| ubi_assert(fm_pos <= ubi->fm_size); |
| |
| for (j = 0; j < vol->reserved_pebs; j++) |
| feba->pnum[j] = cpu_to_be32(vol->eba_tbl[j]); |
| |
| feba->reserved_pebs = cpu_to_be32(j); |
| feba->magic = cpu_to_be32(UBI_FM_EBA_MAGIC); |
| } |
| fmh->vol_count = cpu_to_be32(vol_count); |
| fmh->bad_peb_count = cpu_to_be32(ubi->bad_peb_count); |
| |
| avhdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| avhdr->lnum = 0; |
| |
| spin_unlock(&ubi->wl_lock); |
| spin_unlock(&ubi->volumes_lock); |
| |
| dbg_bld("writing fastmap SB to PEB %i", new_fm->e[0]->pnum); |
| ret = ubi_io_write_vid_hdr(ubi, new_fm->e[0]->pnum, avhdr); |
| if (ret) { |
| ubi_err(ubi, "unable to write vid_hdr to fastmap SB!"); |
| goto out_kfree; |
| } |
| |
| for (i = 0; i < new_fm->used_blocks; i++) { |
| fmsb->block_loc[i] = cpu_to_be32(new_fm->e[i]->pnum); |
| fmsb->block_ec[i] = cpu_to_be32(new_fm->e[i]->ec); |
| } |
| |
| fmsb->data_crc = 0; |
| fmsb->data_crc = cpu_to_be32(crc32(UBI_CRC32_INIT, fm_raw, |
| ubi->fm_size)); |
| |
| for (i = 1; i < new_fm->used_blocks; i++) { |
| dvhdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| dvhdr->lnum = cpu_to_be32(i); |
| dbg_bld("writing fastmap data to PEB %i sqnum %llu", |
| new_fm->e[i]->pnum, be64_to_cpu(dvhdr->sqnum)); |
| ret = ubi_io_write_vid_hdr(ubi, new_fm->e[i]->pnum, dvhdr); |
| if (ret) { |
| ubi_err(ubi, "unable to write vid_hdr to PEB %i!", |
| new_fm->e[i]->pnum); |
| goto out_kfree; |
| } |
| } |
| |
| for (i = 0; i < new_fm->used_blocks; i++) { |
| ret = ubi_io_write(ubi, fm_raw + (i * ubi->leb_size), |
| new_fm->e[i]->pnum, ubi->leb_start, ubi->leb_size); |
| if (ret) { |
| ubi_err(ubi, "unable to write fastmap to PEB %i!", |
| new_fm->e[i]->pnum); |
| goto out_kfree; |
| } |
| } |
| |
| ubi_assert(new_fm); |
| ubi->fm = new_fm; |
| |
| dbg_bld("fastmap written!"); |
| |
| out_kfree: |
| ubi_free_vid_hdr(ubi, avhdr); |
| ubi_free_vid_hdr(ubi, dvhdr); |
| out: |
| return ret; |
| } |
| |
| /** |
| * erase_block - Manually erase a PEB. |
| * @ubi: UBI device object |
| * @pnum: PEB to be erased |
| * |
| * Returns the new EC value on success, < 0 indicates an internal error. |
| */ |
| static int erase_block(struct ubi_device *ubi, int pnum) |
| { |
| int ret; |
| struct ubi_ec_hdr *ec_hdr; |
| long long ec; |
| |
| ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); |
| if (!ec_hdr) |
| return -ENOMEM; |
| |
| ret = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); |
| if (ret < 0) |
| goto out; |
| else if (ret && ret != UBI_IO_BITFLIPS) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ret = ubi_io_sync_erase(ubi, pnum, 0); |
| if (ret < 0) |
| goto out; |
| |
| ec = be64_to_cpu(ec_hdr->ec); |
| ec += ret; |
| if (ec > UBI_MAX_ERASECOUNTER) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ec_hdr->ec = cpu_to_be64(ec); |
| ret = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); |
| if (ret < 0) |
| goto out; |
| |
| ret = ec; |
| out: |
| kfree(ec_hdr); |
| return ret; |
| } |
| |
| /** |
| * invalidate_fastmap - destroys a fastmap. |
| * @ubi: UBI device object |
| * @fm: the fastmap to be destroyed |
| * |
| * Returns 0 on success, < 0 indicates an internal error. |
| */ |
| static int invalidate_fastmap(struct ubi_device *ubi, |
| struct ubi_fastmap_layout *fm) |
| { |
| int ret; |
| struct ubi_vid_hdr *vh; |
| |
| ret = erase_block(ubi, fm->e[0]->pnum); |
| if (ret < 0) |
| return ret; |
| |
| vh = new_fm_vhdr(ubi, UBI_FM_SB_VOLUME_ID); |
| if (!vh) |
| return -ENOMEM; |
| |
| /* deleting the current fastmap SB is not enough, an old SB may exist, |
| * so create a (corrupted) SB such that fastmap will find it and fall |
| * back to scanning mode in any case */ |
| vh->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| ret = ubi_io_write_vid_hdr(ubi, fm->e[0]->pnum, vh); |
| |
| return ret; |
| } |
| |
| /** |
| * ubi_update_fastmap - will be called by UBI if a volume changes or |
| * a fastmap pool becomes full. |
| * @ubi: UBI device object |
| * |
| * Returns 0 on success, < 0 indicates an internal error. |
| */ |
| int ubi_update_fastmap(struct ubi_device *ubi) |
| { |
| int ret, i; |
| struct ubi_fastmap_layout *new_fm, *old_fm; |
| struct ubi_wl_entry *tmp_e; |
| |
| mutex_lock(&ubi->fm_mutex); |
| |
| ubi_refill_pools(ubi); |
| |
| if (ubi->ro_mode || ubi->fm_disabled) { |
| mutex_unlock(&ubi->fm_mutex); |
| return 0; |
| } |
| |
| ret = ubi_ensure_anchor_pebs(ubi); |
| if (ret) { |
| mutex_unlock(&ubi->fm_mutex); |
| return ret; |
| } |
| |
| new_fm = kzalloc(sizeof(*new_fm), GFP_KERNEL); |
| if (!new_fm) { |
| mutex_unlock(&ubi->fm_mutex); |
| return -ENOMEM; |
| } |
| |
| new_fm->used_blocks = ubi->fm_size / ubi->leb_size; |
| old_fm = ubi->fm; |
| ubi->fm = NULL; |
| |
| if (new_fm->used_blocks > UBI_FM_MAX_BLOCKS) { |
| ubi_err(ubi, "fastmap too large"); |
| ret = -ENOSPC; |
| goto err; |
| } |
| |
| for (i = 1; i < new_fm->used_blocks; i++) { |
| spin_lock(&ubi->wl_lock); |
| tmp_e = ubi_wl_get_fm_peb(ubi, 0); |
| spin_unlock(&ubi->wl_lock); |
| |
| if (!tmp_e && !old_fm) { |
| int j; |
| ubi_err(ubi, "could not get any free erase block"); |
| |
| for (j = 1; j < i; j++) |
| ubi_wl_put_fm_peb(ubi, new_fm->e[j], j, 0); |
| |
| ret = -ENOSPC; |
| goto err; |
| } else if (!tmp_e && old_fm) { |
| ret = erase_block(ubi, old_fm->e[i]->pnum); |
| if (ret < 0) { |
| int j; |
| |
| for (j = 1; j < i; j++) |
| ubi_wl_put_fm_peb(ubi, new_fm->e[j], |
| j, 0); |
| |
| ubi_err(ubi, "could not erase old fastmap PEB"); |
| goto err; |
| } |
| new_fm->e[i] = old_fm->e[i]; |
| } else { |
| new_fm->e[i] = tmp_e; |
| |
| if (old_fm) |
| ubi_wl_put_fm_peb(ubi, old_fm->e[i], i, |
| old_fm->to_be_tortured[i]); |
| } |
| } |
| |
| spin_lock(&ubi->wl_lock); |
| tmp_e = ubi_wl_get_fm_peb(ubi, 1); |
| spin_unlock(&ubi->wl_lock); |
| |
| if (old_fm) { |
| /* no fresh anchor PEB was found, reuse the old one */ |
| if (!tmp_e) { |
| ret = erase_block(ubi, old_fm->e[0]->pnum); |
| if (ret < 0) { |
| int i; |
| ubi_err(ubi, "could not erase old anchor PEB"); |
| |
| for (i = 1; i < new_fm->used_blocks; i++) |
| ubi_wl_put_fm_peb(ubi, new_fm->e[i], |
| i, 0); |
| goto err; |
| } |
| new_fm->e[0] = old_fm->e[0]; |
| new_fm->e[0]->ec = ret; |
| } else { |
| /* we've got a new anchor PEB, return the old one */ |
| ubi_wl_put_fm_peb(ubi, old_fm->e[0], 0, |
| old_fm->to_be_tortured[0]); |
| new_fm->e[0] = tmp_e; |
| } |
| } else { |
| if (!tmp_e) { |
| int i; |
| ubi_err(ubi, "could not find any anchor PEB"); |
| |
| for (i = 1; i < new_fm->used_blocks; i++) |
| ubi_wl_put_fm_peb(ubi, new_fm->e[i], i, 0); |
| |
| ret = -ENOSPC; |
| goto err; |
| } |
| new_fm->e[0] = tmp_e; |
| } |
| |
| down_write(&ubi->work_sem); |
| down_write(&ubi->fm_sem); |
| ret = ubi_write_fastmap(ubi, new_fm); |
| up_write(&ubi->fm_sem); |
| up_write(&ubi->work_sem); |
| |
| if (ret) |
| goto err; |
| |
| out_unlock: |
| mutex_unlock(&ubi->fm_mutex); |
| kfree(old_fm); |
| return ret; |
| |
| err: |
| kfree(new_fm); |
| |
| ubi_warn(ubi, "Unable to write new fastmap, err=%i", ret); |
| |
| ret = 0; |
| if (old_fm) { |
| ret = invalidate_fastmap(ubi, old_fm); |
| if (ret < 0) { |
| ubi_err(ubi, "Unable to invalidiate current fastmap!"); |
| ubi_ro_mode(ubi); |
| } |
| else if (ret) |
| ret = 0; |
| } |
| goto out_unlock; |
| } |