| /* |
| * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org> |
| * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com> |
| * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org> |
| * |
| * Permission to use, copy, modify, and distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| * |
| */ |
| |
| /*************************************\ |
| * EEPROM access functions and helpers * |
| \*************************************/ |
| |
| #include "ath5k.h" |
| #include "reg.h" |
| #include "debug.h" |
| #include "base.h" |
| |
| /* |
| * Read from eeprom |
| */ |
| static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data) |
| { |
| u32 status, timeout; |
| |
| ATH5K_TRACE(ah->ah_sc); |
| /* |
| * Initialize EEPROM access |
| */ |
| if (ah->ah_version == AR5K_AR5210) { |
| AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE); |
| (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset)); |
| } else { |
| ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE); |
| AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD, |
| AR5K_EEPROM_CMD_READ); |
| } |
| |
| for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) { |
| status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS); |
| if (status & AR5K_EEPROM_STAT_RDDONE) { |
| if (status & AR5K_EEPROM_STAT_RDERR) |
| return -EIO; |
| *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) & |
| 0xffff); |
| return 0; |
| } |
| udelay(15); |
| } |
| |
| return -ETIMEDOUT; |
| } |
| |
| /* |
| * Translate binary channel representation in EEPROM to frequency |
| */ |
| static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin, |
| unsigned int mode) |
| { |
| u16 val; |
| |
| if (bin == AR5K_EEPROM_CHANNEL_DIS) |
| return bin; |
| |
| if (mode == AR5K_EEPROM_MODE_11A) { |
| if (ee->ee_version > AR5K_EEPROM_VERSION_3_2) |
| val = (5 * bin) + 4800; |
| else |
| val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 : |
| (bin * 10) + 5100; |
| } else { |
| if (ee->ee_version > AR5K_EEPROM_VERSION_3_2) |
| val = bin + 2300; |
| else |
| val = bin + 2400; |
| } |
| |
| return val; |
| } |
| |
| /* |
| * Initialize eeprom & capabilities structs |
| */ |
| static int |
| ath5k_eeprom_init_header(struct ath5k_hw *ah) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| int ret; |
| u16 val; |
| u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX; |
| |
| /* |
| * Read values from EEPROM and store them in the capability structure |
| */ |
| AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic); |
| AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect); |
| AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain); |
| AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version); |
| AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header); |
| |
| /* Return if we have an old EEPROM */ |
| if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0) |
| return 0; |
| |
| /* |
| * Validate the checksum of the EEPROM date. There are some |
| * devices with invalid EEPROMs. |
| */ |
| AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val); |
| if (val) { |
| eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) << |
| AR5K_EEPROM_SIZE_ENDLOC_SHIFT; |
| AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val); |
| eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE; |
| |
| /* |
| * Fail safe check to prevent stupid loops due |
| * to busted EEPROMs. XXX: This value is likely too |
| * big still, waiting on a better value. |
| */ |
| if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) { |
| ATH5K_ERR(ah->ah_sc, "Invalid max custom EEPROM size: " |
| "%d (0x%04x) max expected: %d (0x%04x)\n", |
| eep_max, eep_max, |
| 3 * AR5K_EEPROM_INFO_MAX, |
| 3 * AR5K_EEPROM_INFO_MAX); |
| return -EIO; |
| } |
| } |
| |
| for (cksum = 0, offset = 0; offset < eep_max; offset++) { |
| AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val); |
| cksum ^= val; |
| } |
| if (cksum != AR5K_EEPROM_INFO_CKSUM) { |
| ATH5K_ERR(ah->ah_sc, "Invalid EEPROM " |
| "checksum: 0x%04x eep_max: 0x%04x (%s)\n", |
| cksum, eep_max, |
| eep_max == AR5K_EEPROM_INFO_MAX ? |
| "default size" : "custom size"); |
| return -EIO; |
| } |
| |
| AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version), |
| ee_ant_gain); |
| |
| if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) { |
| AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0); |
| AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1); |
| |
| /* XXX: Don't know which versions include these two */ |
| AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2); |
| |
| if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) |
| AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3); |
| |
| if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) { |
| AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4); |
| AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5); |
| AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6); |
| } |
| } |
| |
| if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) { |
| AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val); |
| ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7; |
| ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7; |
| |
| AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val); |
| ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7; |
| ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7; |
| } |
| |
| AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val); |
| |
| if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val) |
| ee->ee_is_hb63 = true; |
| else |
| ee->ee_is_hb63 = false; |
| |
| AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val); |
| ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL); |
| ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false; |
| |
| /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION |
| * and enable serdes programming if needed. |
| * |
| * XXX: Serdes values seem to be fixed so |
| * no need to read them here, we write them |
| * during ath5k_hw_attach */ |
| AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val); |
| ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ? |
| true : false; |
| |
| return 0; |
| } |
| |
| |
| /* |
| * Read antenna infos from eeprom |
| */ |
| static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset, |
| unsigned int mode) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| u32 o = *offset; |
| u16 val; |
| int ret, i = 0; |
| |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_switch_settling[mode] = (val >> 8) & 0x7f; |
| ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f; |
| ee->ee_ant_control[mode][i] = (val << 4) & 0x3f; |
| |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf; |
| ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f; |
| ee->ee_ant_control[mode][i++] = val & 0x3f; |
| |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f; |
| ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f; |
| ee->ee_ant_control[mode][i] = (val << 2) & 0x3f; |
| |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3; |
| ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f; |
| ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f; |
| ee->ee_ant_control[mode][i] = (val << 4) & 0x3f; |
| |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf; |
| ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f; |
| ee->ee_ant_control[mode][i++] = val & 0x3f; |
| |
| /* Get antenna switch tables */ |
| ah->ah_ant_ctl[mode][AR5K_ANT_CTL] = |
| (ee->ee_ant_control[mode][0] << 4); |
| ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] = |
| ee->ee_ant_control[mode][1] | |
| (ee->ee_ant_control[mode][2] << 6) | |
| (ee->ee_ant_control[mode][3] << 12) | |
| (ee->ee_ant_control[mode][4] << 18) | |
| (ee->ee_ant_control[mode][5] << 24); |
| ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] = |
| ee->ee_ant_control[mode][6] | |
| (ee->ee_ant_control[mode][7] << 6) | |
| (ee->ee_ant_control[mode][8] << 12) | |
| (ee->ee_ant_control[mode][9] << 18) | |
| (ee->ee_ant_control[mode][10] << 24); |
| |
| /* return new offset */ |
| *offset = o; |
| |
| return 0; |
| } |
| |
| /* |
| * Read supported modes and some mode-specific calibration data |
| * from eeprom |
| */ |
| static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset, |
| unsigned int mode) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| u32 o = *offset; |
| u16 val; |
| int ret; |
| |
| ee->ee_n_piers[mode] = 0; |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff); |
| switch(mode) { |
| case AR5K_EEPROM_MODE_11A: |
| ee->ee_ob[mode][3] = (val >> 5) & 0x7; |
| ee->ee_db[mode][3] = (val >> 2) & 0x7; |
| ee->ee_ob[mode][2] = (val << 1) & 0x7; |
| |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_ob[mode][2] |= (val >> 15) & 0x1; |
| ee->ee_db[mode][2] = (val >> 12) & 0x7; |
| ee->ee_ob[mode][1] = (val >> 9) & 0x7; |
| ee->ee_db[mode][1] = (val >> 6) & 0x7; |
| ee->ee_ob[mode][0] = (val >> 3) & 0x7; |
| ee->ee_db[mode][0] = val & 0x7; |
| break; |
| case AR5K_EEPROM_MODE_11G: |
| case AR5K_EEPROM_MODE_11B: |
| ee->ee_ob[mode][1] = (val >> 4) & 0x7; |
| ee->ee_db[mode][1] = val & 0x7; |
| break; |
| } |
| |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff; |
| ee->ee_thr_62[mode] = val & 0xff; |
| |
| if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) |
| ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28; |
| |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff; |
| ee->ee_tx_frm2xpa_enable[mode] = val & 0xff; |
| |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff; |
| |
| if ((val & 0xff) & 0x80) |
| ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1); |
| else |
| ee->ee_noise_floor_thr[mode] = val & 0xff; |
| |
| if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) |
| ee->ee_noise_floor_thr[mode] = |
| mode == AR5K_EEPROM_MODE_11A ? -54 : -1; |
| |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_xlna_gain[mode] = (val >> 5) & 0xff; |
| ee->ee_x_gain[mode] = (val >> 1) & 0xf; |
| ee->ee_xpd[mode] = val & 0x1; |
| |
| if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) |
| ee->ee_fixed_bias[mode] = (val >> 13) & 0x1; |
| |
| if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) { |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_false_detect[mode] = (val >> 6) & 0x7f; |
| |
| if (mode == AR5K_EEPROM_MODE_11A) |
| ee->ee_xr_power[mode] = val & 0x3f; |
| else { |
| ee->ee_ob[mode][0] = val & 0x7; |
| ee->ee_db[mode][0] = (val >> 3) & 0x7; |
| } |
| } |
| |
| if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) { |
| ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN; |
| ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA; |
| } else { |
| ee->ee_i_gain[mode] = (val >> 13) & 0x7; |
| |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_i_gain[mode] |= (val << 3) & 0x38; |
| |
| if (mode == AR5K_EEPROM_MODE_11G) { |
| ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff; |
| if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6) |
| ee->ee_scaled_cck_delta = (val >> 11) & 0x1f; |
| } |
| } |
| |
| if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 && |
| mode == AR5K_EEPROM_MODE_11A) { |
| ee->ee_i_cal[mode] = (val >> 8) & 0x3f; |
| ee->ee_q_cal[mode] = (val >> 3) & 0x1f; |
| } |
| |
| if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0) |
| goto done; |
| |
| /* Note: >= v5 have bg freq piers on another location |
| * so these freq piers are ignored for >= v5 (should be 0xff |
| * anyway) */ |
| switch(mode) { |
| case AR5K_EEPROM_MODE_11A: |
| if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1) |
| break; |
| |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_margin_tx_rx[mode] = val & 0x3f; |
| break; |
| case AR5K_EEPROM_MODE_11B: |
| AR5K_EEPROM_READ(o++, val); |
| |
| ee->ee_pwr_cal_b[0].freq = |
| ath5k_eeprom_bin2freq(ee, val & 0xff, mode); |
| if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS) |
| ee->ee_n_piers[mode]++; |
| |
| ee->ee_pwr_cal_b[1].freq = |
| ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode); |
| if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS) |
| ee->ee_n_piers[mode]++; |
| |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_pwr_cal_b[2].freq = |
| ath5k_eeprom_bin2freq(ee, val & 0xff, mode); |
| if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS) |
| ee->ee_n_piers[mode]++; |
| |
| if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) |
| ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f; |
| break; |
| case AR5K_EEPROM_MODE_11G: |
| AR5K_EEPROM_READ(o++, val); |
| |
| ee->ee_pwr_cal_g[0].freq = |
| ath5k_eeprom_bin2freq(ee, val & 0xff, mode); |
| if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS) |
| ee->ee_n_piers[mode]++; |
| |
| ee->ee_pwr_cal_g[1].freq = |
| ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode); |
| if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS) |
| ee->ee_n_piers[mode]++; |
| |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_turbo_max_power[mode] = val & 0x7f; |
| ee->ee_xr_power[mode] = (val >> 7) & 0x3f; |
| |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_pwr_cal_g[2].freq = |
| ath5k_eeprom_bin2freq(ee, val & 0xff, mode); |
| if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS) |
| ee->ee_n_piers[mode]++; |
| |
| if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) |
| ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f; |
| |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_i_cal[mode] = (val >> 8) & 0x3f; |
| ee->ee_q_cal[mode] = (val >> 3) & 0x1f; |
| |
| if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) { |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_cck_ofdm_gain_delta = val & 0xff; |
| } |
| break; |
| } |
| |
| /* |
| * Read turbo mode information on newer EEPROM versions |
| */ |
| if (ee->ee_version < AR5K_EEPROM_VERSION_5_0) |
| goto done; |
| |
| switch (mode){ |
| case AR5K_EEPROM_MODE_11A: |
| ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f; |
| |
| ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7; |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3; |
| ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f; |
| |
| ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f; |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7; |
| ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff; |
| |
| if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2) |
| ee->ee_pd_gain_overlap = (val >> 9) & 0xf; |
| break; |
| case AR5K_EEPROM_MODE_11G: |
| ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f; |
| |
| ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7; |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1; |
| ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f; |
| |
| ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f; |
| AR5K_EEPROM_READ(o++, val); |
| ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5; |
| ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff; |
| break; |
| } |
| |
| done: |
| /* return new offset */ |
| *offset = o; |
| |
| return 0; |
| } |
| |
| /* Read mode-specific data (except power calibration data) */ |
| static int |
| ath5k_eeprom_init_modes(struct ath5k_hw *ah) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| u32 mode_offset[3]; |
| unsigned int mode; |
| u32 offset; |
| int ret; |
| |
| /* |
| * Get values for all modes |
| */ |
| mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version); |
| mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version); |
| mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version); |
| |
| ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] = |
| AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header); |
| |
| for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) { |
| offset = mode_offset[mode]; |
| |
| ret = ath5k_eeprom_read_ants(ah, &offset, mode); |
| if (ret) |
| return ret; |
| |
| ret = ath5k_eeprom_read_modes(ah, &offset, mode); |
| if (ret) |
| return ret; |
| } |
| |
| /* override for older eeprom versions for better performance */ |
| if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) { |
| ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15; |
| ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28; |
| ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28; |
| } |
| |
| return 0; |
| } |
| |
| /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff |
| * frequency mask) */ |
| static inline int |
| ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max, |
| struct ath5k_chan_pcal_info *pc, unsigned int mode) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| int o = *offset; |
| int i = 0; |
| u8 freq1, freq2; |
| int ret; |
| u16 val; |
| |
| ee->ee_n_piers[mode] = 0; |
| while(i < max) { |
| AR5K_EEPROM_READ(o++, val); |
| |
| freq1 = val & 0xff; |
| if (!freq1) |
| break; |
| |
| pc[i++].freq = ath5k_eeprom_bin2freq(ee, |
| freq1, mode); |
| ee->ee_n_piers[mode]++; |
| |
| freq2 = (val >> 8) & 0xff; |
| if (!freq2) |
| break; |
| |
| pc[i++].freq = ath5k_eeprom_bin2freq(ee, |
| freq2, mode); |
| ee->ee_n_piers[mode]++; |
| } |
| |
| /* return new offset */ |
| *offset = o; |
| |
| return 0; |
| } |
| |
| /* Read frequency piers for 802.11a */ |
| static int |
| ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a; |
| int i, ret; |
| u16 val; |
| u8 mask; |
| |
| if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) { |
| ath5k_eeprom_read_freq_list(ah, &offset, |
| AR5K_EEPROM_N_5GHZ_CHAN, pcal, |
| AR5K_EEPROM_MODE_11A); |
| } else { |
| mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version); |
| |
| AR5K_EEPROM_READ(offset++, val); |
| pcal[0].freq = (val >> 9) & mask; |
| pcal[1].freq = (val >> 2) & mask; |
| pcal[2].freq = (val << 5) & mask; |
| |
| AR5K_EEPROM_READ(offset++, val); |
| pcal[2].freq |= (val >> 11) & 0x1f; |
| pcal[3].freq = (val >> 4) & mask; |
| pcal[4].freq = (val << 3) & mask; |
| |
| AR5K_EEPROM_READ(offset++, val); |
| pcal[4].freq |= (val >> 13) & 0x7; |
| pcal[5].freq = (val >> 6) & mask; |
| pcal[6].freq = (val << 1) & mask; |
| |
| AR5K_EEPROM_READ(offset++, val); |
| pcal[6].freq |= (val >> 15) & 0x1; |
| pcal[7].freq = (val >> 8) & mask; |
| pcal[8].freq = (val >> 1) & mask; |
| pcal[9].freq = (val << 6) & mask; |
| |
| AR5K_EEPROM_READ(offset++, val); |
| pcal[9].freq |= (val >> 10) & 0x3f; |
| |
| /* Fixed number of piers */ |
| ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10; |
| |
| for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) { |
| pcal[i].freq = ath5k_eeprom_bin2freq(ee, |
| pcal[i].freq, AR5K_EEPROM_MODE_11A); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */ |
| static inline int |
| ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| struct ath5k_chan_pcal_info *pcal; |
| |
| switch(mode) { |
| case AR5K_EEPROM_MODE_11B: |
| pcal = ee->ee_pwr_cal_b; |
| break; |
| case AR5K_EEPROM_MODE_11G: |
| pcal = ee->ee_pwr_cal_g; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| ath5k_eeprom_read_freq_list(ah, &offset, |
| AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal, |
| mode); |
| |
| return 0; |
| } |
| |
| /* |
| * Read power calibration for RF5111 chips |
| * |
| * For RF5111 we have an XPD -eXternal Power Detector- curve |
| * for each calibrated channel. Each curve has 0,5dB Power steps |
| * on x axis and PCDAC steps (offsets) on y axis and looks like an |
| * exponential function. To recreate the curve we read 11 points |
| * here and interpolate later. |
| */ |
| |
| /* Used to match PCDAC steps with power values on RF5111 chips |
| * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC |
| * steps that match with the power values we read from eeprom. On |
| * older eeprom versions (< 3.2) these steps are equaly spaced at |
| * 10% of the pcdac curve -until the curve reaches it's maximum- |
| * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2) |
| * these 11 steps are spaced in a different way. This function returns |
| * the pcdac steps based on eeprom version and curve min/max so that we |
| * can have pcdac/pwr points. |
| */ |
| static inline void |
| ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp) |
| { |
| static const u16 intercepts3[] = |
| { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 }; |
| static const u16 intercepts3_2[] = |
| { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 }; |
| const u16 *ip; |
| int i; |
| |
| if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2) |
| ip = intercepts3_2; |
| else |
| ip = intercepts3; |
| |
| for (i = 0; i < ARRAY_SIZE(intercepts3); i++) |
| vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100; |
| } |
| |
| /* Convert RF5111 specific data to generic raw data |
| * used by interpolation code */ |
| static int |
| ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode, |
| struct ath5k_chan_pcal_info *chinfo) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| struct ath5k_chan_pcal_info_rf5111 *pcinfo; |
| struct ath5k_pdgain_info *pd; |
| u8 pier, point, idx; |
| u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; |
| |
| /* Fill raw data for each calibration pier */ |
| for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) { |
| |
| pcinfo = &chinfo[pier].rf5111_info; |
| |
| /* Allocate pd_curves for this cal pier */ |
| chinfo[pier].pd_curves = |
| kcalloc(AR5K_EEPROM_N_PD_CURVES, |
| sizeof(struct ath5k_pdgain_info), |
| GFP_KERNEL); |
| |
| if (!chinfo[pier].pd_curves) |
| return -ENOMEM; |
| |
| /* Only one curve for RF5111 |
| * find out which one and place |
| * in in pd_curves. |
| * Note: ee_x_gain is reversed here */ |
| for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) { |
| |
| if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) { |
| pdgain_idx[0] = idx; |
| break; |
| } |
| } |
| |
| ee->ee_pd_gains[mode] = 1; |
| |
| pd = &chinfo[pier].pd_curves[idx]; |
| |
| pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111; |
| |
| /* Allocate pd points for this curve */ |
| pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111, |
| sizeof(u8), GFP_KERNEL); |
| if (!pd->pd_step) |
| return -ENOMEM; |
| |
| pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111, |
| sizeof(s16), GFP_KERNEL); |
| if (!pd->pd_pwr) |
| return -ENOMEM; |
| |
| /* Fill raw dataset |
| * (convert power to 0.25dB units |
| * for RF5112 combatibility) */ |
| for (point = 0; point < pd->pd_points; point++) { |
| |
| /* Absolute values */ |
| pd->pd_pwr[point] = 2 * pcinfo->pwr[point]; |
| |
| /* Already sorted */ |
| pd->pd_step[point] = pcinfo->pcdac[point]; |
| } |
| |
| /* Set min/max pwr */ |
| chinfo[pier].min_pwr = pd->pd_pwr[0]; |
| chinfo[pier].max_pwr = pd->pd_pwr[10]; |
| |
| } |
| |
| return 0; |
| } |
| |
| /* Parse EEPROM data */ |
| static int |
| ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| struct ath5k_chan_pcal_info *pcal; |
| int offset, ret; |
| int i; |
| u16 val; |
| |
| offset = AR5K_EEPROM_GROUPS_START(ee->ee_version); |
| switch(mode) { |
| case AR5K_EEPROM_MODE_11A: |
| if (!AR5K_EEPROM_HDR_11A(ee->ee_header)) |
| return 0; |
| |
| ret = ath5k_eeprom_init_11a_pcal_freq(ah, |
| offset + AR5K_EEPROM_GROUP1_OFFSET); |
| if (ret < 0) |
| return ret; |
| |
| offset += AR5K_EEPROM_GROUP2_OFFSET; |
| pcal = ee->ee_pwr_cal_a; |
| break; |
| case AR5K_EEPROM_MODE_11B: |
| if (!AR5K_EEPROM_HDR_11B(ee->ee_header) && |
| !AR5K_EEPROM_HDR_11G(ee->ee_header)) |
| return 0; |
| |
| pcal = ee->ee_pwr_cal_b; |
| offset += AR5K_EEPROM_GROUP3_OFFSET; |
| |
| /* fixed piers */ |
| pcal[0].freq = 2412; |
| pcal[1].freq = 2447; |
| pcal[2].freq = 2484; |
| ee->ee_n_piers[mode] = 3; |
| break; |
| case AR5K_EEPROM_MODE_11G: |
| if (!AR5K_EEPROM_HDR_11G(ee->ee_header)) |
| return 0; |
| |
| pcal = ee->ee_pwr_cal_g; |
| offset += AR5K_EEPROM_GROUP4_OFFSET; |
| |
| /* fixed piers */ |
| pcal[0].freq = 2312; |
| pcal[1].freq = 2412; |
| pcal[2].freq = 2484; |
| ee->ee_n_piers[mode] = 3; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < ee->ee_n_piers[mode]; i++) { |
| struct ath5k_chan_pcal_info_rf5111 *cdata = |
| &pcal[i].rf5111_info; |
| |
| AR5K_EEPROM_READ(offset++, val); |
| cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M); |
| cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M); |
| cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M); |
| |
| AR5K_EEPROM_READ(offset++, val); |
| cdata->pwr[0] |= ((val >> 14) & 0x3); |
| cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M); |
| cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M); |
| cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M); |
| |
| AR5K_EEPROM_READ(offset++, val); |
| cdata->pwr[3] |= ((val >> 12) & 0xf); |
| cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M); |
| cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M); |
| |
| AR5K_EEPROM_READ(offset++, val); |
| cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M); |
| cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M); |
| cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M); |
| |
| AR5K_EEPROM_READ(offset++, val); |
| cdata->pwr[8] |= ((val >> 14) & 0x3); |
| cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M); |
| cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M); |
| |
| ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min, |
| cdata->pcdac_max, cdata->pcdac); |
| } |
| |
| return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal); |
| } |
| |
| |
| /* |
| * Read power calibration for RF5112 chips |
| * |
| * For RF5112 we have 4 XPD -eXternal Power Detector- curves |
| * for each calibrated channel on 0, -6, -12 and -18dbm but we only |
| * use the higher (3) and the lower (0) curves. Each curve has 0.5dB |
| * power steps on x axis and PCDAC steps on y axis and looks like a |
| * linear function. To recreate the curve and pass the power values |
| * on hw, we read 4 points for xpd 0 (lower gain -> max power) |
| * and 3 points for xpd 3 (higher gain -> lower power) here and |
| * interpolate later. |
| * |
| * Note: Many vendors just use xpd 0 so xpd 3 is zeroed. |
| */ |
| |
| /* Convert RF5112 specific data to generic raw data |
| * used by interpolation code */ |
| static int |
| ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode, |
| struct ath5k_chan_pcal_info *chinfo) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| struct ath5k_chan_pcal_info_rf5112 *pcinfo; |
| u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; |
| unsigned int pier, pdg, point; |
| |
| /* Fill raw data for each calibration pier */ |
| for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) { |
| |
| pcinfo = &chinfo[pier].rf5112_info; |
| |
| /* Allocate pd_curves for this cal pier */ |
| chinfo[pier].pd_curves = |
| kcalloc(AR5K_EEPROM_N_PD_CURVES, |
| sizeof(struct ath5k_pdgain_info), |
| GFP_KERNEL); |
| |
| if (!chinfo[pier].pd_curves) |
| return -ENOMEM; |
| |
| /* Fill pd_curves */ |
| for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) { |
| |
| u8 idx = pdgain_idx[pdg]; |
| struct ath5k_pdgain_info *pd = |
| &chinfo[pier].pd_curves[idx]; |
| |
| /* Lowest gain curve (max power) */ |
| if (pdg == 0) { |
| /* One more point for better accuracy */ |
| pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS; |
| |
| /* Allocate pd points for this curve */ |
| pd->pd_step = kcalloc(pd->pd_points, |
| sizeof(u8), GFP_KERNEL); |
| |
| if (!pd->pd_step) |
| return -ENOMEM; |
| |
| pd->pd_pwr = kcalloc(pd->pd_points, |
| sizeof(s16), GFP_KERNEL); |
| |
| if (!pd->pd_pwr) |
| return -ENOMEM; |
| |
| |
| /* Fill raw dataset |
| * (all power levels are in 0.25dB units) */ |
| pd->pd_step[0] = pcinfo->pcdac_x0[0]; |
| pd->pd_pwr[0] = pcinfo->pwr_x0[0]; |
| |
| for (point = 1; point < pd->pd_points; |
| point++) { |
| /* Absolute values */ |
| pd->pd_pwr[point] = |
| pcinfo->pwr_x0[point]; |
| |
| /* Deltas */ |
| pd->pd_step[point] = |
| pd->pd_step[point - 1] + |
| pcinfo->pcdac_x0[point]; |
| } |
| |
| /* Set min power for this frequency */ |
| chinfo[pier].min_pwr = pd->pd_pwr[0]; |
| |
| /* Highest gain curve (min power) */ |
| } else if (pdg == 1) { |
| |
| pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS; |
| |
| /* Allocate pd points for this curve */ |
| pd->pd_step = kcalloc(pd->pd_points, |
| sizeof(u8), GFP_KERNEL); |
| |
| if (!pd->pd_step) |
| return -ENOMEM; |
| |
| pd->pd_pwr = kcalloc(pd->pd_points, |
| sizeof(s16), GFP_KERNEL); |
| |
| if (!pd->pd_pwr) |
| return -ENOMEM; |
| |
| /* Fill raw dataset |
| * (all power levels are in 0.25dB units) */ |
| for (point = 0; point < pd->pd_points; |
| point++) { |
| /* Absolute values */ |
| pd->pd_pwr[point] = |
| pcinfo->pwr_x3[point]; |
| |
| /* Fixed points */ |
| pd->pd_step[point] = |
| pcinfo->pcdac_x3[point]; |
| } |
| |
| /* Since we have a higher gain curve |
| * override min power */ |
| chinfo[pier].min_pwr = pd->pd_pwr[0]; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Parse EEPROM data */ |
| static int |
| ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info; |
| struct ath5k_chan_pcal_info *gen_chan_info; |
| u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; |
| u32 offset; |
| u8 i, c; |
| u16 val; |
| int ret; |
| u8 pd_gains = 0; |
| |
| /* Count how many curves we have and |
| * identify them (which one of the 4 |
| * available curves we have on each count). |
| * Curves are stored from lower (x0) to |
| * higher (x3) gain */ |
| for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) { |
| /* ee_x_gain[mode] is x gain mask */ |
| if ((ee->ee_x_gain[mode] >> i) & 0x1) |
| pdgain_idx[pd_gains++] = i; |
| } |
| ee->ee_pd_gains[mode] = pd_gains; |
| |
| if (pd_gains == 0 || pd_gains > 2) |
| return -EINVAL; |
| |
| switch (mode) { |
| case AR5K_EEPROM_MODE_11A: |
| /* |
| * Read 5GHz EEPROM channels |
| */ |
| offset = AR5K_EEPROM_GROUPS_START(ee->ee_version); |
| ath5k_eeprom_init_11a_pcal_freq(ah, offset); |
| |
| offset += AR5K_EEPROM_GROUP2_OFFSET; |
| gen_chan_info = ee->ee_pwr_cal_a; |
| break; |
| case AR5K_EEPROM_MODE_11B: |
| offset = AR5K_EEPROM_GROUPS_START(ee->ee_version); |
| if (AR5K_EEPROM_HDR_11A(ee->ee_header)) |
| offset += AR5K_EEPROM_GROUP3_OFFSET; |
| |
| /* NB: frequency piers parsed during mode init */ |
| gen_chan_info = ee->ee_pwr_cal_b; |
| break; |
| case AR5K_EEPROM_MODE_11G: |
| offset = AR5K_EEPROM_GROUPS_START(ee->ee_version); |
| if (AR5K_EEPROM_HDR_11A(ee->ee_header)) |
| offset += AR5K_EEPROM_GROUP4_OFFSET; |
| else if (AR5K_EEPROM_HDR_11B(ee->ee_header)) |
| offset += AR5K_EEPROM_GROUP2_OFFSET; |
| |
| /* NB: frequency piers parsed during mode init */ |
| gen_chan_info = ee->ee_pwr_cal_g; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < ee->ee_n_piers[mode]; i++) { |
| chan_pcal_info = &gen_chan_info[i].rf5112_info; |
| |
| /* Power values in quarter dB |
| * for the lower xpd gain curve |
| * (0 dBm -> higher output power) */ |
| for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) { |
| AR5K_EEPROM_READ(offset++, val); |
| chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff); |
| chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff); |
| } |
| |
| /* PCDAC steps |
| * corresponding to the above power |
| * measurements */ |
| AR5K_EEPROM_READ(offset++, val); |
| chan_pcal_info->pcdac_x0[1] = (val & 0x1f); |
| chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f); |
| chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f); |
| |
| /* Power values in quarter dB |
| * for the higher xpd gain curve |
| * (18 dBm -> lower output power) */ |
| AR5K_EEPROM_READ(offset++, val); |
| chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff); |
| chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff); |
| |
| AR5K_EEPROM_READ(offset++, val); |
| chan_pcal_info->pwr_x3[2] = (val & 0xff); |
| |
| /* PCDAC steps |
| * corresponding to the above power |
| * measurements (fixed) */ |
| chan_pcal_info->pcdac_x3[0] = 20; |
| chan_pcal_info->pcdac_x3[1] = 35; |
| chan_pcal_info->pcdac_x3[2] = 63; |
| |
| if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) { |
| chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f); |
| |
| /* Last xpd0 power level is also channel maximum */ |
| gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3]; |
| } else { |
| chan_pcal_info->pcdac_x0[0] = 1; |
| gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff); |
| } |
| |
| } |
| |
| return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info); |
| } |
| |
| |
| /* |
| * Read power calibration for RF2413 chips |
| * |
| * For RF2413 we have a Power to PDDAC table (Power Detector) |
| * instead of a PCDAC and 4 pd gain curves for each calibrated channel. |
| * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y |
| * axis and looks like an exponential function like the RF5111 curve. |
| * |
| * To recreate the curves we read here the points and interpolate |
| * later. Note that in most cases only 2 (higher and lower) curves are |
| * used (like RF5112) but vendors have the oportunity to include all |
| * 4 curves on eeprom. The final curve (higher power) has an extra |
| * point for better accuracy like RF5112. |
| */ |
| |
| /* For RF2413 power calibration data doesn't start on a fixed location and |
| * if a mode is not supported, it's section is missing -not zeroed-. |
| * So we need to calculate the starting offset for each section by using |
| * these two functions */ |
| |
| /* Return the size of each section based on the mode and the number of pd |
| * gains available (maximum 4). */ |
| static inline unsigned int |
| ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode) |
| { |
| static const unsigned int pdgains_size[] = { 4, 6, 9, 12 }; |
| unsigned int sz; |
| |
| sz = pdgains_size[ee->ee_pd_gains[mode] - 1]; |
| sz *= ee->ee_n_piers[mode]; |
| |
| return sz; |
| } |
| |
| /* Return the starting offset for a section based on the modes supported |
| * and each section's size. */ |
| static unsigned int |
| ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode) |
| { |
| u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4); |
| |
| switch(mode) { |
| case AR5K_EEPROM_MODE_11G: |
| if (AR5K_EEPROM_HDR_11B(ee->ee_header)) |
| offset += ath5k_pdgains_size_2413(ee, |
| AR5K_EEPROM_MODE_11B) + |
| AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2; |
| /* fall through */ |
| case AR5K_EEPROM_MODE_11B: |
| if (AR5K_EEPROM_HDR_11A(ee->ee_header)) |
| offset += ath5k_pdgains_size_2413(ee, |
| AR5K_EEPROM_MODE_11A) + |
| AR5K_EEPROM_N_5GHZ_CHAN / 2; |
| /* fall through */ |
| case AR5K_EEPROM_MODE_11A: |
| break; |
| default: |
| break; |
| } |
| |
| return offset; |
| } |
| |
| /* Convert RF2413 specific data to generic raw data |
| * used by interpolation code */ |
| static int |
| ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode, |
| struct ath5k_chan_pcal_info *chinfo) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| struct ath5k_chan_pcal_info_rf2413 *pcinfo; |
| u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; |
| unsigned int pier, pdg, point; |
| |
| /* Fill raw data for each calibration pier */ |
| for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) { |
| |
| pcinfo = &chinfo[pier].rf2413_info; |
| |
| /* Allocate pd_curves for this cal pier */ |
| chinfo[pier].pd_curves = |
| kcalloc(AR5K_EEPROM_N_PD_CURVES, |
| sizeof(struct ath5k_pdgain_info), |
| GFP_KERNEL); |
| |
| if (!chinfo[pier].pd_curves) |
| return -ENOMEM; |
| |
| /* Fill pd_curves */ |
| for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) { |
| |
| u8 idx = pdgain_idx[pdg]; |
| struct ath5k_pdgain_info *pd = |
| &chinfo[pier].pd_curves[idx]; |
| |
| /* One more point for the highest power |
| * curve (lowest gain) */ |
| if (pdg == ee->ee_pd_gains[mode] - 1) |
| pd->pd_points = AR5K_EEPROM_N_PD_POINTS; |
| else |
| pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1; |
| |
| /* Allocate pd points for this curve */ |
| pd->pd_step = kcalloc(pd->pd_points, |
| sizeof(u8), GFP_KERNEL); |
| |
| if (!pd->pd_step) |
| return -ENOMEM; |
| |
| pd->pd_pwr = kcalloc(pd->pd_points, |
| sizeof(s16), GFP_KERNEL); |
| |
| if (!pd->pd_pwr) |
| return -ENOMEM; |
| |
| /* Fill raw dataset |
| * convert all pwr levels to |
| * quarter dB for RF5112 combatibility */ |
| pd->pd_step[0] = pcinfo->pddac_i[pdg]; |
| pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg]; |
| |
| for (point = 1; point < pd->pd_points; point++) { |
| |
| pd->pd_pwr[point] = pd->pd_pwr[point - 1] + |
| 2 * pcinfo->pwr[pdg][point - 1]; |
| |
| pd->pd_step[point] = pd->pd_step[point - 1] + |
| pcinfo->pddac[pdg][point - 1]; |
| |
| } |
| |
| /* Highest gain curve -> min power */ |
| if (pdg == 0) |
| chinfo[pier].min_pwr = pd->pd_pwr[0]; |
| |
| /* Lowest gain curve -> max power */ |
| if (pdg == ee->ee_pd_gains[mode] - 1) |
| chinfo[pier].max_pwr = |
| pd->pd_pwr[pd->pd_points - 1]; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Parse EEPROM data */ |
| static int |
| ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| struct ath5k_chan_pcal_info_rf2413 *pcinfo; |
| struct ath5k_chan_pcal_info *chinfo; |
| u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; |
| u32 offset; |
| int idx, i, ret; |
| u16 val; |
| u8 pd_gains = 0; |
| |
| /* Count how many curves we have and |
| * identify them (which one of the 4 |
| * available curves we have on each count). |
| * Curves are stored from higher to |
| * lower gain so we go backwards */ |
| for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) { |
| /* ee_x_gain[mode] is x gain mask */ |
| if ((ee->ee_x_gain[mode] >> idx) & 0x1) |
| pdgain_idx[pd_gains++] = idx; |
| |
| } |
| ee->ee_pd_gains[mode] = pd_gains; |
| |
| if (pd_gains == 0) |
| return -EINVAL; |
| |
| offset = ath5k_cal_data_offset_2413(ee, mode); |
| switch (mode) { |
| case AR5K_EEPROM_MODE_11A: |
| if (!AR5K_EEPROM_HDR_11A(ee->ee_header)) |
| return 0; |
| |
| ath5k_eeprom_init_11a_pcal_freq(ah, offset); |
| offset += AR5K_EEPROM_N_5GHZ_CHAN / 2; |
| chinfo = ee->ee_pwr_cal_a; |
| break; |
| case AR5K_EEPROM_MODE_11B: |
| if (!AR5K_EEPROM_HDR_11B(ee->ee_header)) |
| return 0; |
| |
| ath5k_eeprom_init_11bg_2413(ah, mode, offset); |
| offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2; |
| chinfo = ee->ee_pwr_cal_b; |
| break; |
| case AR5K_EEPROM_MODE_11G: |
| if (!AR5K_EEPROM_HDR_11G(ee->ee_header)) |
| return 0; |
| |
| ath5k_eeprom_init_11bg_2413(ah, mode, offset); |
| offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2; |
| chinfo = ee->ee_pwr_cal_g; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < ee->ee_n_piers[mode]; i++) { |
| pcinfo = &chinfo[i].rf2413_info; |
| |
| /* |
| * Read pwr_i, pddac_i and the first |
| * 2 pd points (pwr, pddac) |
| */ |
| AR5K_EEPROM_READ(offset++, val); |
| pcinfo->pwr_i[0] = val & 0x1f; |
| pcinfo->pddac_i[0] = (val >> 5) & 0x7f; |
| pcinfo->pwr[0][0] = (val >> 12) & 0xf; |
| |
| AR5K_EEPROM_READ(offset++, val); |
| pcinfo->pddac[0][0] = val & 0x3f; |
| pcinfo->pwr[0][1] = (val >> 6) & 0xf; |
| pcinfo->pddac[0][1] = (val >> 10) & 0x3f; |
| |
| AR5K_EEPROM_READ(offset++, val); |
| pcinfo->pwr[0][2] = val & 0xf; |
| pcinfo->pddac[0][2] = (val >> 4) & 0x3f; |
| |
| pcinfo->pwr[0][3] = 0; |
| pcinfo->pddac[0][3] = 0; |
| |
| if (pd_gains > 1) { |
| /* |
| * Pd gain 0 is not the last pd gain |
| * so it only has 2 pd points. |
| * Continue wih pd gain 1. |
| */ |
| pcinfo->pwr_i[1] = (val >> 10) & 0x1f; |
| |
| pcinfo->pddac_i[1] = (val >> 15) & 0x1; |
| AR5K_EEPROM_READ(offset++, val); |
| pcinfo->pddac_i[1] |= (val & 0x3F) << 1; |
| |
| pcinfo->pwr[1][0] = (val >> 6) & 0xf; |
| pcinfo->pddac[1][0] = (val >> 10) & 0x3f; |
| |
| AR5K_EEPROM_READ(offset++, val); |
| pcinfo->pwr[1][1] = val & 0xf; |
| pcinfo->pddac[1][1] = (val >> 4) & 0x3f; |
| pcinfo->pwr[1][2] = (val >> 10) & 0xf; |
| |
| pcinfo->pddac[1][2] = (val >> 14) & 0x3; |
| AR5K_EEPROM_READ(offset++, val); |
| pcinfo->pddac[1][2] |= (val & 0xF) << 2; |
| |
| pcinfo->pwr[1][3] = 0; |
| pcinfo->pddac[1][3] = 0; |
| } else if (pd_gains == 1) { |
| /* |
| * Pd gain 0 is the last one so |
| * read the extra point. |
| */ |
| pcinfo->pwr[0][3] = (val >> 10) & 0xf; |
| |
| pcinfo->pddac[0][3] = (val >> 14) & 0x3; |
| AR5K_EEPROM_READ(offset++, val); |
| pcinfo->pddac[0][3] |= (val & 0xF) << 2; |
| } |
| |
| /* |
| * Proceed with the other pd_gains |
| * as above. |
| */ |
| if (pd_gains > 2) { |
| pcinfo->pwr_i[2] = (val >> 4) & 0x1f; |
| pcinfo->pddac_i[2] = (val >> 9) & 0x7f; |
| |
| AR5K_EEPROM_READ(offset++, val); |
| pcinfo->pwr[2][0] = (val >> 0) & 0xf; |
| pcinfo->pddac[2][0] = (val >> 4) & 0x3f; |
| pcinfo->pwr[2][1] = (val >> 10) & 0xf; |
| |
| pcinfo->pddac[2][1] = (val >> 14) & 0x3; |
| AR5K_EEPROM_READ(offset++, val); |
| pcinfo->pddac[2][1] |= (val & 0xF) << 2; |
| |
| pcinfo->pwr[2][2] = (val >> 4) & 0xf; |
| pcinfo->pddac[2][2] = (val >> 8) & 0x3f; |
| |
| pcinfo->pwr[2][3] = 0; |
| pcinfo->pddac[2][3] = 0; |
| } else if (pd_gains == 2) { |
| pcinfo->pwr[1][3] = (val >> 4) & 0xf; |
| pcinfo->pddac[1][3] = (val >> 8) & 0x3f; |
| } |
| |
| if (pd_gains > 3) { |
| pcinfo->pwr_i[3] = (val >> 14) & 0x3; |
| AR5K_EEPROM_READ(offset++, val); |
| pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2; |
| |
| pcinfo->pddac_i[3] = (val >> 3) & 0x7f; |
| pcinfo->pwr[3][0] = (val >> 10) & 0xf; |
| pcinfo->pddac[3][0] = (val >> 14) & 0x3; |
| |
| AR5K_EEPROM_READ(offset++, val); |
| pcinfo->pddac[3][0] |= (val & 0xF) << 2; |
| pcinfo->pwr[3][1] = (val >> 4) & 0xf; |
| pcinfo->pddac[3][1] = (val >> 8) & 0x3f; |
| |
| pcinfo->pwr[3][2] = (val >> 14) & 0x3; |
| AR5K_EEPROM_READ(offset++, val); |
| pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2; |
| |
| pcinfo->pddac[3][2] = (val >> 2) & 0x3f; |
| pcinfo->pwr[3][3] = (val >> 8) & 0xf; |
| |
| pcinfo->pddac[3][3] = (val >> 12) & 0xF; |
| AR5K_EEPROM_READ(offset++, val); |
| pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4; |
| } else if (pd_gains == 3) { |
| pcinfo->pwr[2][3] = (val >> 14) & 0x3; |
| AR5K_EEPROM_READ(offset++, val); |
| pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2; |
| |
| pcinfo->pddac[2][3] = (val >> 2) & 0x3f; |
| } |
| } |
| |
| return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo); |
| } |
| |
| |
| /* |
| * Read per rate target power (this is the maximum tx power |
| * supported by the card). This info is used when setting |
| * tx power, no matter the channel. |
| * |
| * This also works for v5 EEPROMs. |
| */ |
| static int |
| ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| struct ath5k_rate_pcal_info *rate_pcal_info; |
| u8 *rate_target_pwr_num; |
| u32 offset; |
| u16 val; |
| int ret, i; |
| |
| offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1); |
| rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode]; |
| switch (mode) { |
| case AR5K_EEPROM_MODE_11A: |
| offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version); |
| rate_pcal_info = ee->ee_rate_tpwr_a; |
| ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN; |
| break; |
| case AR5K_EEPROM_MODE_11B: |
| offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version); |
| rate_pcal_info = ee->ee_rate_tpwr_b; |
| ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */ |
| break; |
| case AR5K_EEPROM_MODE_11G: |
| offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version); |
| rate_pcal_info = ee->ee_rate_tpwr_g; |
| ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* Different freq mask for older eeproms (<= v3.2) */ |
| if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) { |
| for (i = 0; i < (*rate_target_pwr_num); i++) { |
| AR5K_EEPROM_READ(offset++, val); |
| rate_pcal_info[i].freq = |
| ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode); |
| |
| rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f); |
| rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f; |
| |
| AR5K_EEPROM_READ(offset++, val); |
| |
| if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS || |
| val == 0) { |
| (*rate_target_pwr_num) = i; |
| break; |
| } |
| |
| rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7); |
| rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f); |
| rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f); |
| } |
| } else { |
| for (i = 0; i < (*rate_target_pwr_num); i++) { |
| AR5K_EEPROM_READ(offset++, val); |
| rate_pcal_info[i].freq = |
| ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode); |
| |
| rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f); |
| rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f; |
| |
| AR5K_EEPROM_READ(offset++, val); |
| |
| if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS || |
| val == 0) { |
| (*rate_target_pwr_num) = i; |
| break; |
| } |
| |
| rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf; |
| rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f); |
| rate_pcal_info[i].target_power_54 = (val & 0x3f); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Read per channel calibration info from EEPROM |
| * |
| * This info is used to calibrate the baseband power table. Imagine |
| * that for each channel there is a power curve that's hw specific |
| * (depends on amplifier etc) and we try to "correct" this curve using |
| * offsets we pass on to phy chip (baseband -> before amplifier) so that |
| * it can use accurate power values when setting tx power (takes amplifier's |
| * performance on each channel into account). |
| * |
| * EEPROM provides us with the offsets for some pre-calibrated channels |
| * and we have to interpolate to create the full table for these channels and |
| * also the table for any channel. |
| */ |
| static int |
| ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| int (*read_pcal)(struct ath5k_hw *hw, int mode); |
| int mode; |
| int err; |
| |
| if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) && |
| (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1)) |
| read_pcal = ath5k_eeprom_read_pcal_info_5112; |
| else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) && |
| (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2)) |
| read_pcal = ath5k_eeprom_read_pcal_info_2413; |
| else |
| read_pcal = ath5k_eeprom_read_pcal_info_5111; |
| |
| |
| for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; |
| mode++) { |
| err = read_pcal(ah, mode); |
| if (err) |
| return err; |
| |
| err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode); |
| if (err < 0) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| struct ath5k_chan_pcal_info *chinfo; |
| u8 pier, pdg; |
| |
| switch (mode) { |
| case AR5K_EEPROM_MODE_11A: |
| if (!AR5K_EEPROM_HDR_11A(ee->ee_header)) |
| return 0; |
| chinfo = ee->ee_pwr_cal_a; |
| break; |
| case AR5K_EEPROM_MODE_11B: |
| if (!AR5K_EEPROM_HDR_11B(ee->ee_header)) |
| return 0; |
| chinfo = ee->ee_pwr_cal_b; |
| break; |
| case AR5K_EEPROM_MODE_11G: |
| if (!AR5K_EEPROM_HDR_11G(ee->ee_header)) |
| return 0; |
| chinfo = ee->ee_pwr_cal_g; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) { |
| if (!chinfo[pier].pd_curves) |
| continue; |
| |
| for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) { |
| struct ath5k_pdgain_info *pd = |
| &chinfo[pier].pd_curves[pdg]; |
| |
| if (pd != NULL) { |
| kfree(pd->pd_step); |
| kfree(pd->pd_pwr); |
| } |
| } |
| |
| kfree(chinfo[pier].pd_curves); |
| } |
| |
| return 0; |
| } |
| |
| void |
| ath5k_eeprom_detach(struct ath5k_hw *ah) |
| { |
| u8 mode; |
| |
| for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) |
| ath5k_eeprom_free_pcal_info(ah, mode); |
| } |
| |
| /* Read conformance test limits used for regulatory control */ |
| static int |
| ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| struct ath5k_edge_power *rep; |
| unsigned int fmask, pmask; |
| unsigned int ctl_mode; |
| int ret, i, j; |
| u32 offset; |
| u16 val; |
| |
| pmask = AR5K_EEPROM_POWER_M; |
| fmask = AR5K_EEPROM_FREQ_M(ee->ee_version); |
| offset = AR5K_EEPROM_CTL(ee->ee_version); |
| ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version); |
| for (i = 0; i < ee->ee_ctls; i += 2) { |
| AR5K_EEPROM_READ(offset++, val); |
| ee->ee_ctl[i] = (val >> 8) & 0xff; |
| ee->ee_ctl[i + 1] = val & 0xff; |
| } |
| |
| offset = AR5K_EEPROM_GROUP8_OFFSET; |
| if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0) |
| offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) - |
| AR5K_EEPROM_GROUP5_OFFSET; |
| else |
| offset += AR5K_EEPROM_GROUPS_START(ee->ee_version); |
| |
| rep = ee->ee_ctl_pwr; |
| for(i = 0; i < ee->ee_ctls; i++) { |
| switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) { |
| case AR5K_CTL_11A: |
| case AR5K_CTL_TURBO: |
| ctl_mode = AR5K_EEPROM_MODE_11A; |
| break; |
| default: |
| ctl_mode = AR5K_EEPROM_MODE_11G; |
| break; |
| } |
| if (ee->ee_ctl[i] == 0) { |
| if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) |
| offset += 8; |
| else |
| offset += 7; |
| rep += AR5K_EEPROM_N_EDGES; |
| continue; |
| } |
| if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) { |
| for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) { |
| AR5K_EEPROM_READ(offset++, val); |
| rep[j].freq = (val >> 8) & fmask; |
| rep[j + 1].freq = val & fmask; |
| } |
| for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) { |
| AR5K_EEPROM_READ(offset++, val); |
| rep[j].edge = (val >> 8) & pmask; |
| rep[j].flag = (val >> 14) & 1; |
| rep[j + 1].edge = val & pmask; |
| rep[j + 1].flag = (val >> 6) & 1; |
| } |
| } else { |
| AR5K_EEPROM_READ(offset++, val); |
| rep[0].freq = (val >> 9) & fmask; |
| rep[1].freq = (val >> 2) & fmask; |
| rep[2].freq = (val << 5) & fmask; |
| |
| AR5K_EEPROM_READ(offset++, val); |
| rep[2].freq |= (val >> 11) & 0x1f; |
| rep[3].freq = (val >> 4) & fmask; |
| rep[4].freq = (val << 3) & fmask; |
| |
| AR5K_EEPROM_READ(offset++, val); |
| rep[4].freq |= (val >> 13) & 0x7; |
| rep[5].freq = (val >> 6) & fmask; |
| rep[6].freq = (val << 1) & fmask; |
| |
| AR5K_EEPROM_READ(offset++, val); |
| rep[6].freq |= (val >> 15) & 0x1; |
| rep[7].freq = (val >> 8) & fmask; |
| |
| rep[0].edge = (val >> 2) & pmask; |
| rep[1].edge = (val << 4) & pmask; |
| |
| AR5K_EEPROM_READ(offset++, val); |
| rep[1].edge |= (val >> 12) & 0xf; |
| rep[2].edge = (val >> 6) & pmask; |
| rep[3].edge = val & pmask; |
| |
| AR5K_EEPROM_READ(offset++, val); |
| rep[4].edge = (val >> 10) & pmask; |
| rep[5].edge = (val >> 4) & pmask; |
| rep[6].edge = (val << 2) & pmask; |
| |
| AR5K_EEPROM_READ(offset++, val); |
| rep[6].edge |= (val >> 14) & 0x3; |
| rep[7].edge = (val >> 8) & pmask; |
| } |
| for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) { |
| rep[j].freq = ath5k_eeprom_bin2freq(ee, |
| rep[j].freq, ctl_mode); |
| } |
| rep += AR5K_EEPROM_N_EDGES; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah) |
| { |
| struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| u32 offset; |
| u16 val; |
| int ret = 0, i; |
| |
| offset = AR5K_EEPROM_CTL(ee->ee_version) + |
| AR5K_EEPROM_N_CTLS(ee->ee_version); |
| |
| if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) { |
| /* No spur info for 5GHz */ |
| ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR; |
| /* 2 channels for 2GHz (2464/2420) */ |
| ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1; |
| ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2; |
| ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR; |
| } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) { |
| for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) { |
| AR5K_EEPROM_READ(offset, val); |
| ee->ee_spur_chans[i][0] = val; |
| AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS, |
| val); |
| ee->ee_spur_chans[i][1] = val; |
| offset++; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Initialize eeprom data structure |
| */ |
| int |
| ath5k_eeprom_init(struct ath5k_hw *ah) |
| { |
| int err; |
| |
| err = ath5k_eeprom_init_header(ah); |
| if (err < 0) |
| return err; |
| |
| err = ath5k_eeprom_init_modes(ah); |
| if (err < 0) |
| return err; |
| |
| err = ath5k_eeprom_read_pcal_info(ah); |
| if (err < 0) |
| return err; |
| |
| err = ath5k_eeprom_read_ctl_info(ah); |
| if (err < 0) |
| return err; |
| |
| err = ath5k_eeprom_read_spur_chans(ah); |
| if (err < 0) |
| return err; |
| |
| return 0; |
| } |
| |
| /* |
| * Read the MAC address from eeprom |
| */ |
| int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac) |
| { |
| u8 mac_d[ETH_ALEN] = {}; |
| u32 total, offset; |
| u16 data; |
| int octet, ret; |
| |
| ret = ath5k_hw_eeprom_read(ah, 0x20, &data); |
| if (ret) |
| return ret; |
| |
| for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) { |
| ret = ath5k_hw_eeprom_read(ah, offset, &data); |
| if (ret) |
| return ret; |
| |
| total += data; |
| mac_d[octet + 1] = data & 0xff; |
| mac_d[octet] = data >> 8; |
| octet += 2; |
| } |
| |
| if (!total || total == 3 * 0xffff) |
| return -EINVAL; |
| |
| memcpy(mac, mac_d, ETH_ALEN); |
| |
| return 0; |
| } |