| /* |
| * linux/mm/page_isolation.c |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/page-isolation.h> |
| #include <linux/pageblock-flags.h> |
| #include <linux/memory.h> |
| #include <linux/hugetlb.h> |
| #include <linux/page_owner.h> |
| #include "internal.h" |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/page_isolation.h> |
| |
| static int set_migratetype_isolate(struct page *page, |
| bool skip_hwpoisoned_pages) |
| { |
| struct zone *zone; |
| unsigned long flags, pfn; |
| struct memory_isolate_notify arg; |
| int notifier_ret; |
| int ret = -EBUSY; |
| |
| zone = page_zone(page); |
| |
| spin_lock_irqsave(&zone->lock, flags); |
| |
| pfn = page_to_pfn(page); |
| arg.start_pfn = pfn; |
| arg.nr_pages = pageblock_nr_pages; |
| arg.pages_found = 0; |
| |
| /* |
| * It may be possible to isolate a pageblock even if the |
| * migratetype is not MIGRATE_MOVABLE. The memory isolation |
| * notifier chain is used by balloon drivers to return the |
| * number of pages in a range that are held by the balloon |
| * driver to shrink memory. If all the pages are accounted for |
| * by balloons, are free, or on the LRU, isolation can continue. |
| * Later, for example, when memory hotplug notifier runs, these |
| * pages reported as "can be isolated" should be isolated(freed) |
| * by the balloon driver through the memory notifier chain. |
| */ |
| notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); |
| notifier_ret = notifier_to_errno(notifier_ret); |
| if (notifier_ret) |
| goto out; |
| /* |
| * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. |
| * We just check MOVABLE pages. |
| */ |
| if (!has_unmovable_pages(zone, page, arg.pages_found, |
| skip_hwpoisoned_pages)) |
| ret = 0; |
| |
| /* |
| * immobile means "not-on-lru" paes. If immobile is larger than |
| * removable-by-driver pages reported by notifier, we'll fail. |
| */ |
| |
| out: |
| if (!ret) { |
| unsigned long nr_pages; |
| int migratetype = get_pageblock_migratetype(page); |
| |
| set_pageblock_migratetype(page, MIGRATE_ISOLATE); |
| zone->nr_isolate_pageblock++; |
| nr_pages = move_freepages_block(zone, page, MIGRATE_ISOLATE); |
| |
| __mod_zone_freepage_state(zone, -nr_pages, migratetype); |
| } |
| |
| spin_unlock_irqrestore(&zone->lock, flags); |
| if (!ret) |
| drain_all_pages(zone); |
| return ret; |
| } |
| |
| static void unset_migratetype_isolate(struct page *page, unsigned migratetype) |
| { |
| struct zone *zone; |
| unsigned long flags, nr_pages; |
| struct page *isolated_page = NULL; |
| unsigned int order; |
| unsigned long page_idx, buddy_idx; |
| struct page *buddy; |
| |
| zone = page_zone(page); |
| spin_lock_irqsave(&zone->lock, flags); |
| if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) |
| goto out; |
| |
| /* |
| * Because freepage with more than pageblock_order on isolated |
| * pageblock is restricted to merge due to freepage counting problem, |
| * it is possible that there is free buddy page. |
| * move_freepages_block() doesn't care of merge so we need other |
| * approach in order to merge them. Isolation and free will make |
| * these pages to be merged. |
| */ |
| if (PageBuddy(page)) { |
| order = page_order(page); |
| if (order >= pageblock_order) { |
| page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); |
| buddy_idx = __find_buddy_index(page_idx, order); |
| buddy = page + (buddy_idx - page_idx); |
| |
| if (pfn_valid_within(page_to_pfn(buddy)) && |
| !is_migrate_isolate_page(buddy)) { |
| __isolate_free_page(page, order); |
| isolated_page = page; |
| } |
| } |
| } |
| |
| /* |
| * If we isolate freepage with more than pageblock_order, there |
| * should be no freepage in the range, so we could avoid costly |
| * pageblock scanning for freepage moving. |
| */ |
| if (!isolated_page) { |
| nr_pages = move_freepages_block(zone, page, migratetype); |
| __mod_zone_freepage_state(zone, nr_pages, migratetype); |
| } |
| set_pageblock_migratetype(page, migratetype); |
| zone->nr_isolate_pageblock--; |
| out: |
| spin_unlock_irqrestore(&zone->lock, flags); |
| if (isolated_page) { |
| kernel_map_pages(page, (1 << order), 1); |
| set_page_refcounted(page); |
| set_page_owner(page, order, __GFP_MOVABLE); |
| __free_pages(isolated_page, order); |
| } |
| } |
| |
| static inline struct page * |
| __first_valid_page(unsigned long pfn, unsigned long nr_pages) |
| { |
| int i; |
| for (i = 0; i < nr_pages; i++) |
| if (pfn_valid_within(pfn + i)) |
| break; |
| if (unlikely(i == nr_pages)) |
| return NULL; |
| return pfn_to_page(pfn + i); |
| } |
| |
| /* |
| * start_isolate_page_range() -- make page-allocation-type of range of pages |
| * to be MIGRATE_ISOLATE. |
| * @start_pfn: The lower PFN of the range to be isolated. |
| * @end_pfn: The upper PFN of the range to be isolated. |
| * @migratetype: migrate type to set in error recovery. |
| * |
| * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in |
| * the range will never be allocated. Any free pages and pages freed in the |
| * future will not be allocated again. |
| * |
| * start_pfn/end_pfn must be aligned to pageblock_order. |
| * Returns 0 on success and -EBUSY if any part of range cannot be isolated. |
| */ |
| int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn, |
| unsigned migratetype, bool skip_hwpoisoned_pages) |
| { |
| unsigned long pfn; |
| unsigned long undo_pfn; |
| struct page *page; |
| |
| BUG_ON(!IS_ALIGNED(start_pfn, pageblock_nr_pages)); |
| BUG_ON(!IS_ALIGNED(end_pfn, pageblock_nr_pages)); |
| |
| for (pfn = start_pfn; |
| pfn < end_pfn; |
| pfn += pageblock_nr_pages) { |
| page = __first_valid_page(pfn, pageblock_nr_pages); |
| if (page && |
| set_migratetype_isolate(page, skip_hwpoisoned_pages)) { |
| undo_pfn = pfn; |
| goto undo; |
| } |
| } |
| return 0; |
| undo: |
| for (pfn = start_pfn; |
| pfn < undo_pfn; |
| pfn += pageblock_nr_pages) |
| unset_migratetype_isolate(pfn_to_page(pfn), migratetype); |
| |
| return -EBUSY; |
| } |
| |
| /* |
| * Make isolated pages available again. |
| */ |
| int undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn, |
| unsigned migratetype) |
| { |
| unsigned long pfn; |
| struct page *page; |
| |
| BUG_ON(!IS_ALIGNED(start_pfn, pageblock_nr_pages)); |
| BUG_ON(!IS_ALIGNED(end_pfn, pageblock_nr_pages)); |
| |
| for (pfn = start_pfn; |
| pfn < end_pfn; |
| pfn += pageblock_nr_pages) { |
| page = __first_valid_page(pfn, pageblock_nr_pages); |
| if (!page || get_pageblock_migratetype(page) != MIGRATE_ISOLATE) |
| continue; |
| unset_migratetype_isolate(page, migratetype); |
| } |
| return 0; |
| } |
| /* |
| * Test all pages in the range is free(means isolated) or not. |
| * all pages in [start_pfn...end_pfn) must be in the same zone. |
| * zone->lock must be held before call this. |
| * |
| * Returns the last tested pfn. |
| */ |
| static unsigned long |
| __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn, |
| bool skip_hwpoisoned_pages) |
| { |
| struct page *page; |
| |
| while (pfn < end_pfn) { |
| if (!pfn_valid_within(pfn)) { |
| pfn++; |
| continue; |
| } |
| page = pfn_to_page(pfn); |
| if (PageBuddy(page)) |
| /* |
| * If the page is on a free list, it has to be on |
| * the correct MIGRATE_ISOLATE freelist. There is no |
| * simple way to verify that as VM_BUG_ON(), though. |
| */ |
| pfn += 1 << page_order(page); |
| else if (skip_hwpoisoned_pages && PageHWPoison(page)) |
| /* A HWPoisoned page cannot be also PageBuddy */ |
| pfn++; |
| else |
| break; |
| } |
| |
| return pfn; |
| } |
| |
| /* Caller should ensure that requested range is in a single zone */ |
| int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn, |
| bool skip_hwpoisoned_pages) |
| { |
| unsigned long pfn, flags; |
| struct page *page; |
| struct zone *zone; |
| |
| /* |
| * Note: pageblock_nr_pages != MAX_ORDER. Then, chunks of free pages |
| * are not aligned to pageblock_nr_pages. |
| * Then we just check migratetype first. |
| */ |
| for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { |
| page = __first_valid_page(pfn, pageblock_nr_pages); |
| if (page && get_pageblock_migratetype(page) != MIGRATE_ISOLATE) |
| break; |
| } |
| page = __first_valid_page(start_pfn, end_pfn - start_pfn); |
| if ((pfn < end_pfn) || !page) |
| return -EBUSY; |
| /* Check all pages are free or marked as ISOLATED */ |
| zone = page_zone(page); |
| spin_lock_irqsave(&zone->lock, flags); |
| pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn, |
| skip_hwpoisoned_pages); |
| spin_unlock_irqrestore(&zone->lock, flags); |
| |
| trace_test_pages_isolated(start_pfn, end_pfn, pfn); |
| |
| return pfn < end_pfn ? -EBUSY : 0; |
| } |
| |
| struct page *alloc_migrate_target(struct page *page, unsigned long private, |
| int **resultp) |
| { |
| gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE; |
| |
| /* |
| * TODO: allocate a destination hugepage from a nearest neighbor node, |
| * accordance with memory policy of the user process if possible. For |
| * now as a simple work-around, we use the next node for destination. |
| */ |
| if (PageHuge(page)) |
| return alloc_huge_page_node(page_hstate(compound_head(page)), |
| next_node_in(page_to_nid(page), |
| node_online_map)); |
| |
| if (PageHighMem(page)) |
| gfp_mask |= __GFP_HIGHMEM; |
| |
| return alloc_page(gfp_mask); |
| } |