| /* |
| * FarSync WAN driver for Linux (2.6.x kernel version) |
| * |
| * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards |
| * |
| * Copyright (C) 2001-2004 FarSite Communications Ltd. |
| * www.farsite.co.uk |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk> |
| * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk> |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/version.h> |
| #include <linux/pci.h> |
| #include <linux/ioport.h> |
| #include <linux/init.h> |
| #include <linux/if.h> |
| #include <linux/hdlc.h> |
| #include <asm/io.h> |
| #include <asm/uaccess.h> |
| |
| #include "farsync.h" |
| |
| /* |
| * Module info |
| */ |
| MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>"); |
| MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd."); |
| MODULE_LICENSE("GPL"); |
| |
| /* Driver configuration and global parameters |
| * ========================================== |
| */ |
| |
| /* Number of ports (per card) and cards supported |
| */ |
| #define FST_MAX_PORTS 4 |
| #define FST_MAX_CARDS 32 |
| |
| /* Default parameters for the link |
| */ |
| #define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is |
| * useful */ |
| #define FST_TXQ_DEPTH 16 /* This one is for the buffering |
| * of frames on the way down to the card |
| * so that we can keep the card busy |
| * and maximise throughput |
| */ |
| #define FST_HIGH_WATER_MARK 12 /* Point at which we flow control |
| * network layer */ |
| #define FST_LOW_WATER_MARK 8 /* Point at which we remove flow |
| * control from network layer */ |
| #define FST_MAX_MTU 8000 /* Huge but possible */ |
| #define FST_DEF_MTU 1500 /* Common sane value */ |
| |
| #define FST_TX_TIMEOUT (2*HZ) |
| |
| #ifdef ARPHRD_RAWHDLC |
| #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */ |
| #else |
| #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */ |
| #endif |
| |
| /* |
| * Modules parameters and associated variables |
| */ |
| static int fst_txq_low = FST_LOW_WATER_MARK; |
| static int fst_txq_high = FST_HIGH_WATER_MARK; |
| static int fst_max_reads = 7; |
| static int fst_excluded_cards = 0; |
| static int fst_excluded_list[FST_MAX_CARDS]; |
| |
| module_param(fst_txq_low, int, 0); |
| module_param(fst_txq_high, int, 0); |
| module_param(fst_max_reads, int, 0); |
| module_param(fst_excluded_cards, int, 0); |
| module_param_array(fst_excluded_list, int, NULL, 0); |
| |
| /* Card shared memory layout |
| * ========================= |
| */ |
| #pragma pack(1) |
| |
| /* This information is derived in part from the FarSite FarSync Smc.h |
| * file. Unfortunately various name clashes and the non-portability of the |
| * bit field declarations in that file have meant that I have chosen to |
| * recreate the information here. |
| * |
| * The SMC (Shared Memory Configuration) has a version number that is |
| * incremented every time there is a significant change. This number can |
| * be used to check that we have not got out of step with the firmware |
| * contained in the .CDE files. |
| */ |
| #define SMC_VERSION 24 |
| |
| #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */ |
| |
| #define SMC_BASE 0x00002000L /* Base offset of the shared memory window main |
| * configuration structure */ |
| #define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA |
| * buffers */ |
| |
| #define LEN_TX_BUFFER 8192 /* Size of packet buffers */ |
| #define LEN_RX_BUFFER 8192 |
| |
| #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */ |
| #define LEN_SMALL_RX_BUFFER 256 |
| |
| #define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */ |
| #define NUM_RX_BUFFER 8 |
| |
| /* Interrupt retry time in milliseconds */ |
| #define INT_RETRY_TIME 2 |
| |
| /* The Am186CH/CC processors support a SmartDMA mode using circular pools |
| * of buffer descriptors. The structure is almost identical to that used |
| * in the LANCE Ethernet controllers. Details available as PDF from the |
| * AMD web site: http://www.amd.com/products/epd/processors/\ |
| * 2.16bitcont/3.am186cxfa/a21914/21914.pdf |
| */ |
| struct txdesc { /* Transmit descriptor */ |
| volatile u16 ladr; /* Low order address of packet. This is a |
| * linear address in the Am186 memory space |
| */ |
| volatile u8 hadr; /* High order address. Low 4 bits only, high 4 |
| * bits must be zero |
| */ |
| volatile u8 bits; /* Status and config */ |
| volatile u16 bcnt; /* 2s complement of packet size in low 15 bits. |
| * Transmit terminal count interrupt enable in |
| * top bit. |
| */ |
| u16 unused; /* Not used in Tx */ |
| }; |
| |
| struct rxdesc { /* Receive descriptor */ |
| volatile u16 ladr; /* Low order address of packet */ |
| volatile u8 hadr; /* High order address */ |
| volatile u8 bits; /* Status and config */ |
| volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits. |
| * Receive terminal count interrupt enable in |
| * top bit. |
| */ |
| volatile u16 mcnt; /* Message byte count (15 bits) */ |
| }; |
| |
| /* Convert a length into the 15 bit 2's complement */ |
| /* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */ |
| /* Since we need to set the high bit to enable the completion interrupt this |
| * can be made a lot simpler |
| */ |
| #define cnv_bcnt(len) (-(len)) |
| |
| /* Status and config bits for the above */ |
| #define DMA_OWN 0x80 /* SmartDMA owns the descriptor */ |
| #define TX_STP 0x02 /* Tx: start of packet */ |
| #define TX_ENP 0x01 /* Tx: end of packet */ |
| #define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */ |
| #define RX_FRAM 0x20 /* Rx: framing error */ |
| #define RX_OFLO 0x10 /* Rx: overflow error */ |
| #define RX_CRC 0x08 /* Rx: CRC error */ |
| #define RX_HBUF 0x04 /* Rx: buffer error */ |
| #define RX_STP 0x02 /* Rx: start of packet */ |
| #define RX_ENP 0x01 /* Rx: end of packet */ |
| |
| /* Interrupts from the card are caused by various events which are presented |
| * in a circular buffer as several events may be processed on one physical int |
| */ |
| #define MAX_CIRBUFF 32 |
| |
| struct cirbuff { |
| u8 rdindex; /* read, then increment and wrap */ |
| u8 wrindex; /* write, then increment and wrap */ |
| u8 evntbuff[MAX_CIRBUFF]; |
| }; |
| |
| /* Interrupt event codes. |
| * Where appropriate the two low order bits indicate the port number |
| */ |
| #define CTLA_CHG 0x18 /* Control signal changed */ |
| #define CTLB_CHG 0x19 |
| #define CTLC_CHG 0x1A |
| #define CTLD_CHG 0x1B |
| |
| #define INIT_CPLT 0x20 /* Initialisation complete */ |
| #define INIT_FAIL 0x21 /* Initialisation failed */ |
| |
| #define ABTA_SENT 0x24 /* Abort sent */ |
| #define ABTB_SENT 0x25 |
| #define ABTC_SENT 0x26 |
| #define ABTD_SENT 0x27 |
| |
| #define TXA_UNDF 0x28 /* Transmission underflow */ |
| #define TXB_UNDF 0x29 |
| #define TXC_UNDF 0x2A |
| #define TXD_UNDF 0x2B |
| |
| #define F56_INT 0x2C |
| #define M32_INT 0x2D |
| |
| #define TE1_ALMA 0x30 |
| |
| /* Port physical configuration. See farsync.h for field values */ |
| struct port_cfg { |
| u16 lineInterface; /* Physical interface type */ |
| u8 x25op; /* Unused at present */ |
| u8 internalClock; /* 1 => internal clock, 0 => external */ |
| u8 transparentMode; /* 1 => on, 0 => off */ |
| u8 invertClock; /* 0 => normal, 1 => inverted */ |
| u8 padBytes[6]; /* Padding */ |
| u32 lineSpeed; /* Speed in bps */ |
| }; |
| |
| /* TE1 port physical configuration */ |
| struct su_config { |
| u32 dataRate; |
| u8 clocking; |
| u8 framing; |
| u8 structure; |
| u8 interface; |
| u8 coding; |
| u8 lineBuildOut; |
| u8 equalizer; |
| u8 transparentMode; |
| u8 loopMode; |
| u8 range; |
| u8 txBufferMode; |
| u8 rxBufferMode; |
| u8 startingSlot; |
| u8 losThreshold; |
| u8 enableIdleCode; |
| u8 idleCode; |
| u8 spare[44]; |
| }; |
| |
| /* TE1 Status */ |
| struct su_status { |
| u32 receiveBufferDelay; |
| u32 framingErrorCount; |
| u32 codeViolationCount; |
| u32 crcErrorCount; |
| u32 lineAttenuation; |
| u8 portStarted; |
| u8 lossOfSignal; |
| u8 receiveRemoteAlarm; |
| u8 alarmIndicationSignal; |
| u8 spare[40]; |
| }; |
| |
| /* Finally sling all the above together into the shared memory structure. |
| * Sorry it's a hodge podge of arrays, structures and unused bits, it's been |
| * evolving under NT for some time so I guess we're stuck with it. |
| * The structure starts at offset SMC_BASE. |
| * See farsync.h for some field values. |
| */ |
| struct fst_shared { |
| /* DMA descriptor rings */ |
| struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER]; |
| struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER]; |
| |
| /* Obsolete small buffers */ |
| u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER]; |
| u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER]; |
| |
| u8 taskStatus; /* 0x00 => initialising, 0x01 => running, |
| * 0xFF => halted |
| */ |
| |
| u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt, |
| * set to 0xEE by host to acknowledge interrupt |
| */ |
| |
| u16 smcVersion; /* Must match SMC_VERSION */ |
| |
| u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major |
| * version, RR = revision and BB = build |
| */ |
| |
| u16 txa_done; /* Obsolete completion flags */ |
| u16 rxa_done; |
| u16 txb_done; |
| u16 rxb_done; |
| u16 txc_done; |
| u16 rxc_done; |
| u16 txd_done; |
| u16 rxd_done; |
| |
| u16 mailbox[4]; /* Diagnostics mailbox. Not used */ |
| |
| struct cirbuff interruptEvent; /* interrupt causes */ |
| |
| u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */ |
| u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */ |
| |
| struct port_cfg portConfig[FST_MAX_PORTS]; |
| |
| u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */ |
| |
| u16 cableStatus; /* lsb: 0=> present, 1=> absent */ |
| |
| u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */ |
| u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */ |
| |
| u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */ |
| u16 cardMailbox[4]; /* Not used */ |
| |
| /* Number of times the card thinks the host has |
| * missed an interrupt by not acknowledging |
| * within 2mS (I guess NT has problems) |
| */ |
| u32 interruptRetryCount; |
| |
| /* Driver private data used as an ID. We'll not |
| * use this as I'd rather keep such things |
| * in main memory rather than on the PCI bus |
| */ |
| u32 portHandle[FST_MAX_PORTS]; |
| |
| /* Count of Tx underflows for stats */ |
| u32 transmitBufferUnderflow[FST_MAX_PORTS]; |
| |
| /* Debounced V.24 control input status */ |
| u32 v24DebouncedSts[FST_MAX_PORTS]; |
| |
| /* Adapter debounce timers. Don't touch */ |
| u32 ctsTimer[FST_MAX_PORTS]; |
| u32 ctsTimerRun[FST_MAX_PORTS]; |
| u32 dcdTimer[FST_MAX_PORTS]; |
| u32 dcdTimerRun[FST_MAX_PORTS]; |
| |
| u32 numberOfPorts; /* Number of ports detected at startup */ |
| |
| u16 _reserved[64]; |
| |
| u16 cardMode; /* Bit-mask to enable features: |
| * Bit 0: 1 enables LED identify mode |
| */ |
| |
| u16 portScheduleOffset; |
| |
| struct su_config suConfig; /* TE1 Bits */ |
| struct su_status suStatus; |
| |
| u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of |
| * the structure and marks the end of shared |
| * memory. Adapter code initializes it as |
| * END_SIG. |
| */ |
| }; |
| |
| /* endOfSmcSignature value */ |
| #define END_SIG 0x12345678 |
| |
| /* Mailbox values. (portMailbox) */ |
| #define NOP 0 /* No operation */ |
| #define ACK 1 /* Positive acknowledgement to PC driver */ |
| #define NAK 2 /* Negative acknowledgement to PC driver */ |
| #define STARTPORT 3 /* Start an HDLC port */ |
| #define STOPPORT 4 /* Stop an HDLC port */ |
| #define ABORTTX 5 /* Abort the transmitter for a port */ |
| #define SETV24O 6 /* Set V24 outputs */ |
| |
| /* PLX Chip Register Offsets */ |
| #define CNTRL_9052 0x50 /* Control Register */ |
| #define CNTRL_9054 0x6c /* Control Register */ |
| |
| #define INTCSR_9052 0x4c /* Interrupt control/status register */ |
| #define INTCSR_9054 0x68 /* Interrupt control/status register */ |
| |
| /* 9054 DMA Registers */ |
| /* |
| * Note that we will be using DMA Channel 0 for copying rx data |
| * and Channel 1 for copying tx data |
| */ |
| #define DMAMODE0 0x80 |
| #define DMAPADR0 0x84 |
| #define DMALADR0 0x88 |
| #define DMASIZ0 0x8c |
| #define DMADPR0 0x90 |
| #define DMAMODE1 0x94 |
| #define DMAPADR1 0x98 |
| #define DMALADR1 0x9c |
| #define DMASIZ1 0xa0 |
| #define DMADPR1 0xa4 |
| #define DMACSR0 0xa8 |
| #define DMACSR1 0xa9 |
| #define DMAARB 0xac |
| #define DMATHR 0xb0 |
| #define DMADAC0 0xb4 |
| #define DMADAC1 0xb8 |
| #define DMAMARBR 0xac |
| |
| #define FST_MIN_DMA_LEN 64 |
| #define FST_RX_DMA_INT 0x01 |
| #define FST_TX_DMA_INT 0x02 |
| #define FST_CARD_INT 0x04 |
| |
| /* Larger buffers are positioned in memory at offset BFM_BASE */ |
| struct buf_window { |
| u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER]; |
| u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER]; |
| }; |
| |
| /* Calculate offset of a buffer object within the shared memory window */ |
| #define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X)) |
| |
| #pragma pack() |
| |
| /* Device driver private information |
| * ================================= |
| */ |
| /* Per port (line or channel) information |
| */ |
| struct fst_port_info { |
| struct net_device *dev; /* Device struct - must be first */ |
| struct fst_card_info *card; /* Card we're associated with */ |
| int index; /* Port index on the card */ |
| int hwif; /* Line hardware (lineInterface copy) */ |
| int run; /* Port is running */ |
| int mode; /* Normal or FarSync raw */ |
| int rxpos; /* Next Rx buffer to use */ |
| int txpos; /* Next Tx buffer to use */ |
| int txipos; /* Next Tx buffer to check for free */ |
| int start; /* Indication of start/stop to network */ |
| /* |
| * A sixteen entry transmit queue |
| */ |
| int txqs; /* index to get next buffer to tx */ |
| int txqe; /* index to queue next packet */ |
| struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */ |
| int rxqdepth; |
| }; |
| |
| /* Per card information |
| */ |
| struct fst_card_info { |
| char __iomem *mem; /* Card memory mapped to kernel space */ |
| char __iomem *ctlmem; /* Control memory for PCI cards */ |
| unsigned int phys_mem; /* Physical memory window address */ |
| unsigned int phys_ctlmem; /* Physical control memory address */ |
| unsigned int irq; /* Interrupt request line number */ |
| unsigned int nports; /* Number of serial ports */ |
| unsigned int type; /* Type index of card */ |
| unsigned int state; /* State of card */ |
| spinlock_t card_lock; /* Lock for SMP access */ |
| unsigned short pci_conf; /* PCI card config in I/O space */ |
| /* Per port info */ |
| struct fst_port_info ports[FST_MAX_PORTS]; |
| struct pci_dev *device; /* Information about the pci device */ |
| int card_no; /* Inst of the card on the system */ |
| int family; /* TxP or TxU */ |
| int dmarx_in_progress; |
| int dmatx_in_progress; |
| unsigned long int_count; |
| unsigned long int_time_ave; |
| void *rx_dma_handle_host; |
| dma_addr_t rx_dma_handle_card; |
| void *tx_dma_handle_host; |
| dma_addr_t tx_dma_handle_card; |
| struct sk_buff *dma_skb_rx; |
| struct fst_port_info *dma_port_rx; |
| struct fst_port_info *dma_port_tx; |
| int dma_len_rx; |
| int dma_len_tx; |
| int dma_txpos; |
| int dma_rxpos; |
| }; |
| |
| /* Convert an HDLC device pointer into a port info pointer and similar */ |
| #define dev_to_port(D) (dev_to_hdlc(D)->priv) |
| #define port_to_dev(P) ((P)->dev) |
| |
| |
| /* |
| * Shared memory window access macros |
| * |
| * We have a nice memory based structure above, which could be directly |
| * mapped on i386 but might not work on other architectures unless we use |
| * the readb,w,l and writeb,w,l macros. Unfortunately these macros take |
| * physical offsets so we have to convert. The only saving grace is that |
| * this should all collapse back to a simple indirection eventually. |
| */ |
| #define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X)) |
| |
| #define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E)) |
| #define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E)) |
| #define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E)) |
| |
| #define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E)) |
| #define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E)) |
| #define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E)) |
| |
| /* |
| * Debug support |
| */ |
| #if FST_DEBUG |
| |
| static int fst_debug_mask = { FST_DEBUG }; |
| |
| /* Most common debug activity is to print something if the corresponding bit |
| * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to |
| * support variable numbers of macro parameters. The inverted if prevents us |
| * eating someone else's else clause. |
| */ |
| #define dbg(F,fmt,A...) if ( ! ( fst_debug_mask & (F))) \ |
| ; \ |
| else \ |
| printk ( KERN_DEBUG FST_NAME ": " fmt, ## A ) |
| |
| #else |
| #define dbg(X...) /* NOP */ |
| #endif |
| |
| /* Printing short cuts |
| */ |
| #define printk_err(fmt,A...) printk ( KERN_ERR FST_NAME ": " fmt, ## A ) |
| #define printk_warn(fmt,A...) printk ( KERN_WARNING FST_NAME ": " fmt, ## A ) |
| #define printk_info(fmt,A...) printk ( KERN_INFO FST_NAME ": " fmt, ## A ) |
| |
| /* |
| * PCI ID lookup table |
| */ |
| static struct pci_device_id fst_pci_dev_id[] __devinitdata = { |
| {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID, |
| PCI_ANY_ID, 0, 0, FST_TYPE_T2P}, |
| |
| {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID, |
| PCI_ANY_ID, 0, 0, FST_TYPE_T4P}, |
| |
| {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID, |
| PCI_ANY_ID, 0, 0, FST_TYPE_T1U}, |
| |
| {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID, |
| PCI_ANY_ID, 0, 0, FST_TYPE_T2U}, |
| |
| {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID, |
| PCI_ANY_ID, 0, 0, FST_TYPE_T4U}, |
| |
| {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID, |
| PCI_ANY_ID, 0, 0, FST_TYPE_TE1}, |
| |
| {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID, |
| PCI_ANY_ID, 0, 0, FST_TYPE_TE1}, |
| {0,} /* End */ |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, fst_pci_dev_id); |
| |
| /* |
| * Device Driver Work Queues |
| * |
| * So that we don't spend too much time processing events in the |
| * Interrupt Service routine, we will declare a work queue per Card |
| * and make the ISR schedule a task in the queue for later execution. |
| * In the 2.4 Kernel we used to use the immediate queue for BH's |
| * Now that they are gone, tasklets seem to be much better than work |
| * queues. |
| */ |
| |
| static void do_bottom_half_tx(struct fst_card_info *card); |
| static void do_bottom_half_rx(struct fst_card_info *card); |
| static void fst_process_tx_work_q(unsigned long work_q); |
| static void fst_process_int_work_q(unsigned long work_q); |
| |
| static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0); |
| static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0); |
| |
| static struct fst_card_info *fst_card_array[FST_MAX_CARDS]; |
| static spinlock_t fst_work_q_lock; |
| static u64 fst_work_txq; |
| static u64 fst_work_intq; |
| |
| static void |
| fst_q_work_item(u64 * queue, int card_index) |
| { |
| unsigned long flags; |
| u64 mask; |
| |
| /* |
| * Grab the queue exclusively |
| */ |
| spin_lock_irqsave(&fst_work_q_lock, flags); |
| |
| /* |
| * Making an entry in the queue is simply a matter of setting |
| * a bit for the card indicating that there is work to do in the |
| * bottom half for the card. Note the limitation of 64 cards. |
| * That ought to be enough |
| */ |
| mask = 1 << card_index; |
| *queue |= mask; |
| spin_unlock_irqrestore(&fst_work_q_lock, flags); |
| } |
| |
| static void |
| fst_process_tx_work_q(unsigned long /*void **/work_q) |
| { |
| unsigned long flags; |
| u64 work_txq; |
| int i; |
| |
| /* |
| * Grab the queue exclusively |
| */ |
| dbg(DBG_TX, "fst_process_tx_work_q\n"); |
| spin_lock_irqsave(&fst_work_q_lock, flags); |
| work_txq = fst_work_txq; |
| fst_work_txq = 0; |
| spin_unlock_irqrestore(&fst_work_q_lock, flags); |
| |
| /* |
| * Call the bottom half for each card with work waiting |
| */ |
| for (i = 0; i < FST_MAX_CARDS; i++) { |
| if (work_txq & 0x01) { |
| if (fst_card_array[i] != NULL) { |
| dbg(DBG_TX, "Calling tx bh for card %d\n", i); |
| do_bottom_half_tx(fst_card_array[i]); |
| } |
| } |
| work_txq = work_txq >> 1; |
| } |
| } |
| |
| static void |
| fst_process_int_work_q(unsigned long /*void **/work_q) |
| { |
| unsigned long flags; |
| u64 work_intq; |
| int i; |
| |
| /* |
| * Grab the queue exclusively |
| */ |
| dbg(DBG_INTR, "fst_process_int_work_q\n"); |
| spin_lock_irqsave(&fst_work_q_lock, flags); |
| work_intq = fst_work_intq; |
| fst_work_intq = 0; |
| spin_unlock_irqrestore(&fst_work_q_lock, flags); |
| |
| /* |
| * Call the bottom half for each card with work waiting |
| */ |
| for (i = 0; i < FST_MAX_CARDS; i++) { |
| if (work_intq & 0x01) { |
| if (fst_card_array[i] != NULL) { |
| dbg(DBG_INTR, |
| "Calling rx & tx bh for card %d\n", i); |
| do_bottom_half_rx(fst_card_array[i]); |
| do_bottom_half_tx(fst_card_array[i]); |
| } |
| } |
| work_intq = work_intq >> 1; |
| } |
| } |
| |
| /* Card control functions |
| * ====================== |
| */ |
| /* Place the processor in reset state |
| * |
| * Used to be a simple write to card control space but a glitch in the latest |
| * AMD Am186CH processor means that we now have to do it by asserting and de- |
| * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register |
| * at offset 9052_CNTRL. Note the updates for the TXU. |
| */ |
| static inline void |
| fst_cpureset(struct fst_card_info *card) |
| { |
| unsigned char interrupt_line_register; |
| unsigned long j = jiffies + 1; |
| unsigned int regval; |
| |
| if (card->family == FST_FAMILY_TXU) { |
| if (pci_read_config_byte |
| (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) { |
| dbg(DBG_ASS, |
| "Error in reading interrupt line register\n"); |
| } |
| /* |
| * Assert PLX software reset and Am186 hardware reset |
| * and then deassert the PLX software reset but 186 still in reset |
| */ |
| outw(0x440f, card->pci_conf + CNTRL_9054 + 2); |
| outw(0x040f, card->pci_conf + CNTRL_9054 + 2); |
| /* |
| * We are delaying here to allow the 9054 to reset itself |
| */ |
| j = jiffies + 1; |
| while (jiffies < j) |
| /* Do nothing */ ; |
| outw(0x240f, card->pci_conf + CNTRL_9054 + 2); |
| /* |
| * We are delaying here to allow the 9054 to reload its eeprom |
| */ |
| j = jiffies + 1; |
| while (jiffies < j) |
| /* Do nothing */ ; |
| outw(0x040f, card->pci_conf + CNTRL_9054 + 2); |
| |
| if (pci_write_config_byte |
| (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) { |
| dbg(DBG_ASS, |
| "Error in writing interrupt line register\n"); |
| } |
| |
| } else { |
| regval = inl(card->pci_conf + CNTRL_9052); |
| |
| outl(regval | 0x40000000, card->pci_conf + CNTRL_9052); |
| outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052); |
| } |
| } |
| |
| /* Release the processor from reset |
| */ |
| static inline void |
| fst_cpurelease(struct fst_card_info *card) |
| { |
| if (card->family == FST_FAMILY_TXU) { |
| /* |
| * Force posted writes to complete |
| */ |
| (void) readb(card->mem); |
| |
| /* |
| * Release LRESET DO = 1 |
| * Then release Local Hold, DO = 1 |
| */ |
| outw(0x040e, card->pci_conf + CNTRL_9054 + 2); |
| outw(0x040f, card->pci_conf + CNTRL_9054 + 2); |
| } else { |
| (void) readb(card->ctlmem); |
| } |
| } |
| |
| /* Clear the cards interrupt flag |
| */ |
| static inline void |
| fst_clear_intr(struct fst_card_info *card) |
| { |
| if (card->family == FST_FAMILY_TXU) { |
| (void) readb(card->ctlmem); |
| } else { |
| /* Poke the appropriate PLX chip register (same as enabling interrupts) |
| */ |
| outw(0x0543, card->pci_conf + INTCSR_9052); |
| } |
| } |
| |
| /* Enable card interrupts |
| */ |
| static inline void |
| fst_enable_intr(struct fst_card_info *card) |
| { |
| if (card->family == FST_FAMILY_TXU) { |
| outl(0x0f0c0900, card->pci_conf + INTCSR_9054); |
| } else { |
| outw(0x0543, card->pci_conf + INTCSR_9052); |
| } |
| } |
| |
| /* Disable card interrupts |
| */ |
| static inline void |
| fst_disable_intr(struct fst_card_info *card) |
| { |
| if (card->family == FST_FAMILY_TXU) { |
| outl(0x00000000, card->pci_conf + INTCSR_9054); |
| } else { |
| outw(0x0000, card->pci_conf + INTCSR_9052); |
| } |
| } |
| |
| /* Process the result of trying to pass a received frame up the stack |
| */ |
| static void |
| fst_process_rx_status(int rx_status, char *name) |
| { |
| switch (rx_status) { |
| case NET_RX_SUCCESS: |
| { |
| /* |
| * Nothing to do here |
| */ |
| break; |
| } |
| case NET_RX_DROP: |
| { |
| dbg(DBG_ASS, "%s: Received packet dropped\n", name); |
| break; |
| } |
| } |
| } |
| |
| /* Initilaise DMA for PLX 9054 |
| */ |
| static inline void |
| fst_init_dma(struct fst_card_info *card) |
| { |
| /* |
| * This is only required for the PLX 9054 |
| */ |
| if (card->family == FST_FAMILY_TXU) { |
| pci_set_master(card->device); |
| outl(0x00020441, card->pci_conf + DMAMODE0); |
| outl(0x00020441, card->pci_conf + DMAMODE1); |
| outl(0x0, card->pci_conf + DMATHR); |
| } |
| } |
| |
| /* Tx dma complete interrupt |
| */ |
| static void |
| fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port, |
| int len, int txpos) |
| { |
| struct net_device *dev = port_to_dev(port); |
| |
| /* |
| * Everything is now set, just tell the card to go |
| */ |
| dbg(DBG_TX, "fst_tx_dma_complete\n"); |
| FST_WRB(card, txDescrRing[port->index][txpos].bits, |
| DMA_OWN | TX_STP | TX_ENP); |
| dev->stats.tx_packets++; |
| dev->stats.tx_bytes += len; |
| dev->trans_start = jiffies; |
| } |
| |
| /* |
| * Mark it for our own raw sockets interface |
| */ |
| static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev) |
| { |
| skb->dev = dev; |
| skb_reset_mac_header(skb); |
| skb->pkt_type = PACKET_HOST; |
| return htons(ETH_P_CUST); |
| } |
| |
| /* Rx dma complete interrupt |
| */ |
| static void |
| fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port, |
| int len, struct sk_buff *skb, int rxp) |
| { |
| struct net_device *dev = port_to_dev(port); |
| int pi; |
| int rx_status; |
| |
| dbg(DBG_TX, "fst_rx_dma_complete\n"); |
| pi = port->index; |
| memcpy(skb_put(skb, len), card->rx_dma_handle_host, len); |
| |
| /* Reset buffer descriptor */ |
| FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); |
| |
| /* Update stats */ |
| dev->stats.rx_packets++; |
| dev->stats.rx_bytes += len; |
| |
| /* Push upstream */ |
| dbg(DBG_RX, "Pushing the frame up the stack\n"); |
| if (port->mode == FST_RAW) |
| skb->protocol = farsync_type_trans(skb, dev); |
| else |
| skb->protocol = hdlc_type_trans(skb, dev); |
| rx_status = netif_rx(skb); |
| fst_process_rx_status(rx_status, port_to_dev(port)->name); |
| if (rx_status == NET_RX_DROP) |
| dev->stats.rx_dropped++; |
| } |
| |
| /* |
| * Receive a frame through the DMA |
| */ |
| static inline void |
| fst_rx_dma(struct fst_card_info *card, unsigned char *skb, |
| unsigned char *mem, int len) |
| { |
| /* |
| * This routine will setup the DMA and start it |
| */ |
| |
| dbg(DBG_RX, "In fst_rx_dma %p %p %d\n", skb, mem, len); |
| if (card->dmarx_in_progress) { |
| dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n"); |
| } |
| |
| outl((unsigned long) skb, card->pci_conf + DMAPADR0); /* Copy to here */ |
| outl((unsigned long) mem, card->pci_conf + DMALADR0); /* from here */ |
| outl(len, card->pci_conf + DMASIZ0); /* for this length */ |
| outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */ |
| |
| /* |
| * We use the dmarx_in_progress flag to flag the channel as busy |
| */ |
| card->dmarx_in_progress = 1; |
| outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */ |
| } |
| |
| /* |
| * Send a frame through the DMA |
| */ |
| static inline void |
| fst_tx_dma(struct fst_card_info *card, unsigned char *skb, |
| unsigned char *mem, int len) |
| { |
| /* |
| * This routine will setup the DMA and start it. |
| */ |
| |
| dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len); |
| if (card->dmatx_in_progress) { |
| dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n"); |
| } |
| |
| outl((unsigned long) skb, card->pci_conf + DMAPADR1); /* Copy from here */ |
| outl((unsigned long) mem, card->pci_conf + DMALADR1); /* to here */ |
| outl(len, card->pci_conf + DMASIZ1); /* for this length */ |
| outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */ |
| |
| /* |
| * We use the dmatx_in_progress to flag the channel as busy |
| */ |
| card->dmatx_in_progress = 1; |
| outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */ |
| } |
| |
| /* Issue a Mailbox command for a port. |
| * Note we issue them on a fire and forget basis, not expecting to see an |
| * error and not waiting for completion. |
| */ |
| static void |
| fst_issue_cmd(struct fst_port_info *port, unsigned short cmd) |
| { |
| struct fst_card_info *card; |
| unsigned short mbval; |
| unsigned long flags; |
| int safety; |
| |
| card = port->card; |
| spin_lock_irqsave(&card->card_lock, flags); |
| mbval = FST_RDW(card, portMailbox[port->index][0]); |
| |
| safety = 0; |
| /* Wait for any previous command to complete */ |
| while (mbval > NAK) { |
| spin_unlock_irqrestore(&card->card_lock, flags); |
| schedule_timeout_uninterruptible(1); |
| spin_lock_irqsave(&card->card_lock, flags); |
| |
| if (++safety > 2000) { |
| printk_err("Mailbox safety timeout\n"); |
| break; |
| } |
| |
| mbval = FST_RDW(card, portMailbox[port->index][0]); |
| } |
| if (safety > 0) { |
| dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety); |
| } |
| if (mbval == NAK) { |
| dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n"); |
| } |
| |
| FST_WRW(card, portMailbox[port->index][0], cmd); |
| |
| if (cmd == ABORTTX || cmd == STARTPORT) { |
| port->txpos = 0; |
| port->txipos = 0; |
| port->start = 0; |
| } |
| |
| spin_unlock_irqrestore(&card->card_lock, flags); |
| } |
| |
| /* Port output signals control |
| */ |
| static inline void |
| fst_op_raise(struct fst_port_info *port, unsigned int outputs) |
| { |
| outputs |= FST_RDL(port->card, v24OpSts[port->index]); |
| FST_WRL(port->card, v24OpSts[port->index], outputs); |
| |
| if (port->run) |
| fst_issue_cmd(port, SETV24O); |
| } |
| |
| static inline void |
| fst_op_lower(struct fst_port_info *port, unsigned int outputs) |
| { |
| outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]); |
| FST_WRL(port->card, v24OpSts[port->index], outputs); |
| |
| if (port->run) |
| fst_issue_cmd(port, SETV24O); |
| } |
| |
| /* |
| * Setup port Rx buffers |
| */ |
| static void |
| fst_rx_config(struct fst_port_info *port) |
| { |
| int i; |
| int pi; |
| unsigned int offset; |
| unsigned long flags; |
| struct fst_card_info *card; |
| |
| pi = port->index; |
| card = port->card; |
| spin_lock_irqsave(&card->card_lock, flags); |
| for (i = 0; i < NUM_RX_BUFFER; i++) { |
| offset = BUF_OFFSET(rxBuffer[pi][i][0]); |
| |
| FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset); |
| FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16)); |
| FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER)); |
| FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER); |
| FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN); |
| } |
| port->rxpos = 0; |
| spin_unlock_irqrestore(&card->card_lock, flags); |
| } |
| |
| /* |
| * Setup port Tx buffers |
| */ |
| static void |
| fst_tx_config(struct fst_port_info *port) |
| { |
| int i; |
| int pi; |
| unsigned int offset; |
| unsigned long flags; |
| struct fst_card_info *card; |
| |
| pi = port->index; |
| card = port->card; |
| spin_lock_irqsave(&card->card_lock, flags); |
| for (i = 0; i < NUM_TX_BUFFER; i++) { |
| offset = BUF_OFFSET(txBuffer[pi][i][0]); |
| |
| FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset); |
| FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16)); |
| FST_WRW(card, txDescrRing[pi][i].bcnt, 0); |
| FST_WRB(card, txDescrRing[pi][i].bits, 0); |
| } |
| port->txpos = 0; |
| port->txipos = 0; |
| port->start = 0; |
| spin_unlock_irqrestore(&card->card_lock, flags); |
| } |
| |
| /* TE1 Alarm change interrupt event |
| */ |
| static void |
| fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port) |
| { |
| u8 los; |
| u8 rra; |
| u8 ais; |
| |
| los = FST_RDB(card, suStatus.lossOfSignal); |
| rra = FST_RDB(card, suStatus.receiveRemoteAlarm); |
| ais = FST_RDB(card, suStatus.alarmIndicationSignal); |
| |
| if (los) { |
| /* |
| * Lost the link |
| */ |
| if (netif_carrier_ok(port_to_dev(port))) { |
| dbg(DBG_INTR, "Net carrier off\n"); |
| netif_carrier_off(port_to_dev(port)); |
| } |
| } else { |
| /* |
| * Link available |
| */ |
| if (!netif_carrier_ok(port_to_dev(port))) { |
| dbg(DBG_INTR, "Net carrier on\n"); |
| netif_carrier_on(port_to_dev(port)); |
| } |
| } |
| |
| if (los) |
| dbg(DBG_INTR, "Assert LOS Alarm\n"); |
| else |
| dbg(DBG_INTR, "De-assert LOS Alarm\n"); |
| if (rra) |
| dbg(DBG_INTR, "Assert RRA Alarm\n"); |
| else |
| dbg(DBG_INTR, "De-assert RRA Alarm\n"); |
| |
| if (ais) |
| dbg(DBG_INTR, "Assert AIS Alarm\n"); |
| else |
| dbg(DBG_INTR, "De-assert AIS Alarm\n"); |
| } |
| |
| /* Control signal change interrupt event |
| */ |
| static void |
| fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port) |
| { |
| int signals; |
| |
| signals = FST_RDL(card, v24DebouncedSts[port->index]); |
| |
| if (signals & (((port->hwif == X21) || (port->hwif == X21D)) |
| ? IPSTS_INDICATE : IPSTS_DCD)) { |
| if (!netif_carrier_ok(port_to_dev(port))) { |
| dbg(DBG_INTR, "DCD active\n"); |
| netif_carrier_on(port_to_dev(port)); |
| } |
| } else { |
| if (netif_carrier_ok(port_to_dev(port))) { |
| dbg(DBG_INTR, "DCD lost\n"); |
| netif_carrier_off(port_to_dev(port)); |
| } |
| } |
| } |
| |
| /* Log Rx Errors |
| */ |
| static void |
| fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port, |
| unsigned char dmabits, int rxp, unsigned short len) |
| { |
| struct net_device *dev = port_to_dev(port); |
| |
| /* |
| * Increment the appropriate error counter |
| */ |
| dev->stats.rx_errors++; |
| if (dmabits & RX_OFLO) { |
| dev->stats.rx_fifo_errors++; |
| dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n", |
| card->card_no, port->index, rxp); |
| } |
| if (dmabits & RX_CRC) { |
| dev->stats.rx_crc_errors++; |
| dbg(DBG_ASS, "Rx crc error on card %d port %d\n", |
| card->card_no, port->index); |
| } |
| if (dmabits & RX_FRAM) { |
| dev->stats.rx_frame_errors++; |
| dbg(DBG_ASS, "Rx frame error on card %d port %d\n", |
| card->card_no, port->index); |
| } |
| if (dmabits == (RX_STP | RX_ENP)) { |
| dev->stats.rx_length_errors++; |
| dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n", |
| len, card->card_no, port->index); |
| } |
| } |
| |
| /* Rx Error Recovery |
| */ |
| static void |
| fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port, |
| unsigned char dmabits, int rxp, unsigned short len) |
| { |
| int i; |
| int pi; |
| |
| pi = port->index; |
| /* |
| * Discard buffer descriptors until we see the start of the |
| * next frame. Note that for long frames this could be in |
| * a subsequent interrupt. |
| */ |
| i = 0; |
| while ((dmabits & (DMA_OWN | RX_STP)) == 0) { |
| FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); |
| rxp = (rxp+1) % NUM_RX_BUFFER; |
| if (++i > NUM_RX_BUFFER) { |
| dbg(DBG_ASS, "intr_rx: Discarding more bufs" |
| " than we have\n"); |
| break; |
| } |
| dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits); |
| dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits); |
| } |
| dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i); |
| |
| /* Discard the terminal buffer */ |
| if (!(dmabits & DMA_OWN)) { |
| FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); |
| rxp = (rxp+1) % NUM_RX_BUFFER; |
| } |
| port->rxpos = rxp; |
| return; |
| |
| } |
| |
| /* Rx complete interrupt |
| */ |
| static void |
| fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port) |
| { |
| unsigned char dmabits; |
| int pi; |
| int rxp; |
| int rx_status; |
| unsigned short len; |
| struct sk_buff *skb; |
| struct net_device *dev = port_to_dev(port); |
| |
| /* Check we have a buffer to process */ |
| pi = port->index; |
| rxp = port->rxpos; |
| dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits); |
| if (dmabits & DMA_OWN) { |
| dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n", |
| pi, rxp); |
| return; |
| } |
| if (card->dmarx_in_progress) { |
| return; |
| } |
| |
| /* Get buffer length */ |
| len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt); |
| /* Discard the CRC */ |
| len -= 2; |
| if (len == 0) { |
| /* |
| * This seems to happen on the TE1 interface sometimes |
| * so throw the frame away and log the event. |
| */ |
| printk_err("Frame received with 0 length. Card %d Port %d\n", |
| card->card_no, port->index); |
| /* Return descriptor to card */ |
| FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); |
| |
| rxp = (rxp+1) % NUM_RX_BUFFER; |
| port->rxpos = rxp; |
| return; |
| } |
| |
| /* Check buffer length and for other errors. We insist on one packet |
| * in one buffer. This simplifies things greatly and since we've |
| * allocated 8K it shouldn't be a real world limitation |
| */ |
| dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len); |
| if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) { |
| fst_log_rx_error(card, port, dmabits, rxp, len); |
| fst_recover_rx_error(card, port, dmabits, rxp, len); |
| return; |
| } |
| |
| /* Allocate SKB */ |
| if ((skb = dev_alloc_skb(len)) == NULL) { |
| dbg(DBG_RX, "intr_rx: can't allocate buffer\n"); |
| |
| dev->stats.rx_dropped++; |
| |
| /* Return descriptor to card */ |
| FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); |
| |
| rxp = (rxp+1) % NUM_RX_BUFFER; |
| port->rxpos = rxp; |
| return; |
| } |
| |
| /* |
| * We know the length we need to receive, len. |
| * It's not worth using the DMA for reads of less than |
| * FST_MIN_DMA_LEN |
| */ |
| |
| if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) { |
| memcpy_fromio(skb_put(skb, len), |
| card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]), |
| len); |
| |
| /* Reset buffer descriptor */ |
| FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); |
| |
| /* Update stats */ |
| dev->stats.rx_packets++; |
| dev->stats.rx_bytes += len; |
| |
| /* Push upstream */ |
| dbg(DBG_RX, "Pushing frame up the stack\n"); |
| if (port->mode == FST_RAW) |
| skb->protocol = farsync_type_trans(skb, dev); |
| else |
| skb->protocol = hdlc_type_trans(skb, dev); |
| rx_status = netif_rx(skb); |
| fst_process_rx_status(rx_status, port_to_dev(port)->name); |
| if (rx_status == NET_RX_DROP) |
| dev->stats.rx_dropped++; |
| } else { |
| card->dma_skb_rx = skb; |
| card->dma_port_rx = port; |
| card->dma_len_rx = len; |
| card->dma_rxpos = rxp; |
| fst_rx_dma(card, (char *) card->rx_dma_handle_card, |
| (char *) BUF_OFFSET(rxBuffer[pi][rxp][0]), len); |
| } |
| if (rxp != port->rxpos) { |
| dbg(DBG_ASS, "About to increment rxpos by more than 1\n"); |
| dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos); |
| } |
| rxp = (rxp+1) % NUM_RX_BUFFER; |
| port->rxpos = rxp; |
| } |
| |
| /* |
| * The bottom halfs to the ISR |
| * |
| */ |
| |
| static void |
| do_bottom_half_tx(struct fst_card_info *card) |
| { |
| struct fst_port_info *port; |
| int pi; |
| int txq_length; |
| struct sk_buff *skb; |
| unsigned long flags; |
| struct net_device *dev; |
| |
| /* |
| * Find a free buffer for the transmit |
| * Step through each port on this card |
| */ |
| |
| dbg(DBG_TX, "do_bottom_half_tx\n"); |
| for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) { |
| if (!port->run) |
| continue; |
| |
| dev = port_to_dev(port); |
| while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) & |
| DMA_OWN) |
| && !(card->dmatx_in_progress)) { |
| /* |
| * There doesn't seem to be a txdone event per-se |
| * We seem to have to deduce it, by checking the DMA_OWN |
| * bit on the next buffer we think we can use |
| */ |
| spin_lock_irqsave(&card->card_lock, flags); |
| if ((txq_length = port->txqe - port->txqs) < 0) { |
| /* |
| * This is the case where one has wrapped and the |
| * maths gives us a negative number |
| */ |
| txq_length = txq_length + FST_TXQ_DEPTH; |
| } |
| spin_unlock_irqrestore(&card->card_lock, flags); |
| if (txq_length > 0) { |
| /* |
| * There is something to send |
| */ |
| spin_lock_irqsave(&card->card_lock, flags); |
| skb = port->txq[port->txqs]; |
| port->txqs++; |
| if (port->txqs == FST_TXQ_DEPTH) { |
| port->txqs = 0; |
| } |
| spin_unlock_irqrestore(&card->card_lock, flags); |
| /* |
| * copy the data and set the required indicators on the |
| * card. |
| */ |
| FST_WRW(card, txDescrRing[pi][port->txpos].bcnt, |
| cnv_bcnt(skb->len)); |
| if ((skb->len < FST_MIN_DMA_LEN) |
| || (card->family == FST_FAMILY_TXP)) { |
| /* Enqueue the packet with normal io */ |
| memcpy_toio(card->mem + |
| BUF_OFFSET(txBuffer[pi] |
| [port-> |
| txpos][0]), |
| skb->data, skb->len); |
| FST_WRB(card, |
| txDescrRing[pi][port->txpos]. |
| bits, |
| DMA_OWN | TX_STP | TX_ENP); |
| dev->stats.tx_packets++; |
| dev->stats.tx_bytes += skb->len; |
| dev->trans_start = jiffies; |
| } else { |
| /* Or do it through dma */ |
| memcpy(card->tx_dma_handle_host, |
| skb->data, skb->len); |
| card->dma_port_tx = port; |
| card->dma_len_tx = skb->len; |
| card->dma_txpos = port->txpos; |
| fst_tx_dma(card, |
| (char *) card-> |
| tx_dma_handle_card, |
| (char *) |
| BUF_OFFSET(txBuffer[pi] |
| [port->txpos][0]), |
| skb->len); |
| } |
| if (++port->txpos >= NUM_TX_BUFFER) |
| port->txpos = 0; |
| /* |
| * If we have flow control on, can we now release it? |
| */ |
| if (port->start) { |
| if (txq_length < fst_txq_low) { |
| netif_wake_queue(port_to_dev |
| (port)); |
| port->start = 0; |
| } |
| } |
| dev_kfree_skb(skb); |
| } else { |
| /* |
| * Nothing to send so break out of the while loop |
| */ |
| break; |
| } |
| } |
| } |
| } |
| |
| static void |
| do_bottom_half_rx(struct fst_card_info *card) |
| { |
| struct fst_port_info *port; |
| int pi; |
| int rx_count = 0; |
| |
| /* Check for rx completions on all ports on this card */ |
| dbg(DBG_RX, "do_bottom_half_rx\n"); |
| for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) { |
| if (!port->run) |
| continue; |
| |
| while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits) |
| & DMA_OWN) && !(card->dmarx_in_progress)) { |
| if (rx_count > fst_max_reads) { |
| /* |
| * Don't spend forever in receive processing |
| * Schedule another event |
| */ |
| fst_q_work_item(&fst_work_intq, card->card_no); |
| tasklet_schedule(&fst_int_task); |
| break; /* Leave the loop */ |
| } |
| fst_intr_rx(card, port); |
| rx_count++; |
| } |
| } |
| } |
| |
| /* |
| * The interrupt service routine |
| * Dev_id is our fst_card_info pointer |
| */ |
| static irqreturn_t |
| fst_intr(int dummy, void *dev_id) |
| { |
| struct fst_card_info *card = dev_id; |
| struct fst_port_info *port; |
| int rdidx; /* Event buffer indices */ |
| int wridx; |
| int event; /* Actual event for processing */ |
| unsigned int dma_intcsr = 0; |
| unsigned int do_card_interrupt; |
| unsigned int int_retry_count; |
| |
| /* |
| * Check to see if the interrupt was for this card |
| * return if not |
| * Note that the call to clear the interrupt is important |
| */ |
| dbg(DBG_INTR, "intr: %d %p\n", card->irq, card); |
| if (card->state != FST_RUNNING) { |
| printk_err |
| ("Interrupt received for card %d in a non running state (%d)\n", |
| card->card_no, card->state); |
| |
| /* |
| * It is possible to really be running, i.e. we have re-loaded |
| * a running card |
| * Clear and reprime the interrupt source |
| */ |
| fst_clear_intr(card); |
| return IRQ_HANDLED; |
| } |
| |
| /* Clear and reprime the interrupt source */ |
| fst_clear_intr(card); |
| |
| /* |
| * Is the interrupt for this card (handshake == 1) |
| */ |
| do_card_interrupt = 0; |
| if (FST_RDB(card, interruptHandshake) == 1) { |
| do_card_interrupt += FST_CARD_INT; |
| /* Set the software acknowledge */ |
| FST_WRB(card, interruptHandshake, 0xEE); |
| } |
| if (card->family == FST_FAMILY_TXU) { |
| /* |
| * Is it a DMA Interrupt |
| */ |
| dma_intcsr = inl(card->pci_conf + INTCSR_9054); |
| if (dma_intcsr & 0x00200000) { |
| /* |
| * DMA Channel 0 (Rx transfer complete) |
| */ |
| dbg(DBG_RX, "DMA Rx xfer complete\n"); |
| outb(0x8, card->pci_conf + DMACSR0); |
| fst_rx_dma_complete(card, card->dma_port_rx, |
| card->dma_len_rx, card->dma_skb_rx, |
| card->dma_rxpos); |
| card->dmarx_in_progress = 0; |
| do_card_interrupt += FST_RX_DMA_INT; |
| } |
| if (dma_intcsr & 0x00400000) { |
| /* |
| * DMA Channel 1 (Tx transfer complete) |
| */ |
| dbg(DBG_TX, "DMA Tx xfer complete\n"); |
| outb(0x8, card->pci_conf + DMACSR1); |
| fst_tx_dma_complete(card, card->dma_port_tx, |
| card->dma_len_tx, card->dma_txpos); |
| card->dmatx_in_progress = 0; |
| do_card_interrupt += FST_TX_DMA_INT; |
| } |
| } |
| |
| /* |
| * Have we been missing Interrupts |
| */ |
| int_retry_count = FST_RDL(card, interruptRetryCount); |
| if (int_retry_count) { |
| dbg(DBG_ASS, "Card %d int_retry_count is %d\n", |
| card->card_no, int_retry_count); |
| FST_WRL(card, interruptRetryCount, 0); |
| } |
| |
| if (!do_card_interrupt) { |
| return IRQ_HANDLED; |
| } |
| |
| /* Scehdule the bottom half of the ISR */ |
| fst_q_work_item(&fst_work_intq, card->card_no); |
| tasklet_schedule(&fst_int_task); |
| |
| /* Drain the event queue */ |
| rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f; |
| wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f; |
| while (rdidx != wridx) { |
| event = FST_RDB(card, interruptEvent.evntbuff[rdidx]); |
| port = &card->ports[event & 0x03]; |
| |
| dbg(DBG_INTR, "Processing Interrupt event: %x\n", event); |
| |
| switch (event) { |
| case TE1_ALMA: |
| dbg(DBG_INTR, "TE1 Alarm intr\n"); |
| if (port->run) |
| fst_intr_te1_alarm(card, port); |
| break; |
| |
| case CTLA_CHG: |
| case CTLB_CHG: |
| case CTLC_CHG: |
| case CTLD_CHG: |
| if (port->run) |
| fst_intr_ctlchg(card, port); |
| break; |
| |
| case ABTA_SENT: |
| case ABTB_SENT: |
| case ABTC_SENT: |
| case ABTD_SENT: |
| dbg(DBG_TX, "Abort complete port %d\n", port->index); |
| break; |
| |
| case TXA_UNDF: |
| case TXB_UNDF: |
| case TXC_UNDF: |
| case TXD_UNDF: |
| /* Difficult to see how we'd get this given that we |
| * always load up the entire packet for DMA. |
| */ |
| dbg(DBG_TX, "Tx underflow port %d\n", port->index); |
| port_to_dev(port)->stats.tx_errors++; |
| port_to_dev(port)->stats.tx_fifo_errors++; |
| dbg(DBG_ASS, "Tx underflow on card %d port %d\n", |
| card->card_no, port->index); |
| break; |
| |
| case INIT_CPLT: |
| dbg(DBG_INIT, "Card init OK intr\n"); |
| break; |
| |
| case INIT_FAIL: |
| dbg(DBG_INIT, "Card init FAILED intr\n"); |
| card->state = FST_IFAILED; |
| break; |
| |
| default: |
| printk_err("intr: unknown card event %d. ignored\n", |
| event); |
| break; |
| } |
| |
| /* Bump and wrap the index */ |
| if (++rdidx >= MAX_CIRBUFF) |
| rdidx = 0; |
| } |
| FST_WRB(card, interruptEvent.rdindex, rdidx); |
| return IRQ_HANDLED; |
| } |
| |
| /* Check that the shared memory configuration is one that we can handle |
| * and that some basic parameters are correct |
| */ |
| static void |
| check_started_ok(struct fst_card_info *card) |
| { |
| int i; |
| |
| /* Check structure version and end marker */ |
| if (FST_RDW(card, smcVersion) != SMC_VERSION) { |
| printk_err("Bad shared memory version %d expected %d\n", |
| FST_RDW(card, smcVersion), SMC_VERSION); |
| card->state = FST_BADVERSION; |
| return; |
| } |
| if (FST_RDL(card, endOfSmcSignature) != END_SIG) { |
| printk_err("Missing shared memory signature\n"); |
| card->state = FST_BADVERSION; |
| return; |
| } |
| /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */ |
| if ((i = FST_RDB(card, taskStatus)) == 0x01) { |
| card->state = FST_RUNNING; |
| } else if (i == 0xFF) { |
| printk_err("Firmware initialisation failed. Card halted\n"); |
| card->state = FST_HALTED; |
| return; |
| } else if (i != 0x00) { |
| printk_err("Unknown firmware status 0x%x\n", i); |
| card->state = FST_HALTED; |
| return; |
| } |
| |
| /* Finally check the number of ports reported by firmware against the |
| * number we assumed at card detection. Should never happen with |
| * existing firmware etc so we just report it for the moment. |
| */ |
| if (FST_RDL(card, numberOfPorts) != card->nports) { |
| printk_warn("Port count mismatch on card %d." |
| " Firmware thinks %d we say %d\n", card->card_no, |
| FST_RDL(card, numberOfPorts), card->nports); |
| } |
| } |
| |
| static int |
| set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port, |
| struct fstioc_info *info) |
| { |
| int err; |
| unsigned char my_framing; |
| |
| /* Set things according to the user set valid flags |
| * Several of the old options have been invalidated/replaced by the |
| * generic hdlc package. |
| */ |
| err = 0; |
| if (info->valid & FSTVAL_PROTO) { |
| if (info->proto == FST_RAW) |
| port->mode = FST_RAW; |
| else |
| port->mode = FST_GEN_HDLC; |
| } |
| |
| if (info->valid & FSTVAL_CABLE) |
| err = -EINVAL; |
| |
| if (info->valid & FSTVAL_SPEED) |
| err = -EINVAL; |
| |
| if (info->valid & FSTVAL_PHASE) |
| FST_WRB(card, portConfig[port->index].invertClock, |
| info->invertClock); |
| if (info->valid & FSTVAL_MODE) |
| FST_WRW(card, cardMode, info->cardMode); |
| if (info->valid & FSTVAL_TE1) { |
| FST_WRL(card, suConfig.dataRate, info->lineSpeed); |
| FST_WRB(card, suConfig.clocking, info->clockSource); |
| my_framing = FRAMING_E1; |
| if (info->framing == E1) |
| my_framing = FRAMING_E1; |
| if (info->framing == T1) |
| my_framing = FRAMING_T1; |
| if (info->framing == J1) |
| my_framing = FRAMING_J1; |
| FST_WRB(card, suConfig.framing, my_framing); |
| FST_WRB(card, suConfig.structure, info->structure); |
| FST_WRB(card, suConfig.interface, info->interface); |
| FST_WRB(card, suConfig.coding, info->coding); |
| FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut); |
| FST_WRB(card, suConfig.equalizer, info->equalizer); |
| FST_WRB(card, suConfig.transparentMode, info->transparentMode); |
| FST_WRB(card, suConfig.loopMode, info->loopMode); |
| FST_WRB(card, suConfig.range, info->range); |
| FST_WRB(card, suConfig.txBufferMode, info->txBufferMode); |
| FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode); |
| FST_WRB(card, suConfig.startingSlot, info->startingSlot); |
| FST_WRB(card, suConfig.losThreshold, info->losThreshold); |
| if (info->idleCode) |
| FST_WRB(card, suConfig.enableIdleCode, 1); |
| else |
| FST_WRB(card, suConfig.enableIdleCode, 0); |
| FST_WRB(card, suConfig.idleCode, info->idleCode); |
| #if FST_DEBUG |
| if (info->valid & FSTVAL_TE1) { |
| printk("Setting TE1 data\n"); |
| printk("Line Speed = %d\n", info->lineSpeed); |
| printk("Start slot = %d\n", info->startingSlot); |
| printk("Clock source = %d\n", info->clockSource); |
| printk("Framing = %d\n", my_framing); |
| printk("Structure = %d\n", info->structure); |
| printk("interface = %d\n", info->interface); |
| printk("Coding = %d\n", info->coding); |
| printk("Line build out = %d\n", info->lineBuildOut); |
| printk("Equaliser = %d\n", info->equalizer); |
| printk("Transparent mode = %d\n", |
| info->transparentMode); |
| printk("Loop mode = %d\n", info->loopMode); |
| printk("Range = %d\n", info->range); |
| printk("Tx Buffer mode = %d\n", info->txBufferMode); |
| printk("Rx Buffer mode = %d\n", info->rxBufferMode); |
| printk("LOS Threshold = %d\n", info->losThreshold); |
| printk("Idle Code = %d\n", info->idleCode); |
| } |
| #endif |
| } |
| #if FST_DEBUG |
| if (info->valid & FSTVAL_DEBUG) { |
| fst_debug_mask = info->debug; |
| } |
| #endif |
| |
| return err; |
| } |
| |
| static void |
| gather_conf_info(struct fst_card_info *card, struct fst_port_info *port, |
| struct fstioc_info *info) |
| { |
| int i; |
| |
| memset(info, 0, sizeof (struct fstioc_info)); |
| |
| i = port->index; |
| info->kernelVersion = LINUX_VERSION_CODE; |
| info->nports = card->nports; |
| info->type = card->type; |
| info->state = card->state; |
| info->proto = FST_GEN_HDLC; |
| info->index = i; |
| #if FST_DEBUG |
| info->debug = fst_debug_mask; |
| #endif |
| |
| /* Only mark information as valid if card is running. |
| * Copy the data anyway in case it is useful for diagnostics |
| */ |
| info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD) |
| #if FST_DEBUG |
| | FSTVAL_DEBUG |
| #endif |
| ; |
| |
| info->lineInterface = FST_RDW(card, portConfig[i].lineInterface); |
| info->internalClock = FST_RDB(card, portConfig[i].internalClock); |
| info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed); |
| info->invertClock = FST_RDB(card, portConfig[i].invertClock); |
| info->v24IpSts = FST_RDL(card, v24IpSts[i]); |
| info->v24OpSts = FST_RDL(card, v24OpSts[i]); |
| info->clockStatus = FST_RDW(card, clockStatus[i]); |
| info->cableStatus = FST_RDW(card, cableStatus); |
| info->cardMode = FST_RDW(card, cardMode); |
| info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion); |
| |
| /* |
| * The T2U can report cable presence for both A or B |
| * in bits 0 and 1 of cableStatus. See which port we are and |
| * do the mapping. |
| */ |
| if (card->family == FST_FAMILY_TXU) { |
| if (port->index == 0) { |
| /* |
| * Port A |
| */ |
| info->cableStatus = info->cableStatus & 1; |
| } else { |
| /* |
| * Port B |
| */ |
| info->cableStatus = info->cableStatus >> 1; |
| info->cableStatus = info->cableStatus & 1; |
| } |
| } |
| /* |
| * Some additional bits if we are TE1 |
| */ |
| if (card->type == FST_TYPE_TE1) { |
| info->lineSpeed = FST_RDL(card, suConfig.dataRate); |
| info->clockSource = FST_RDB(card, suConfig.clocking); |
| info->framing = FST_RDB(card, suConfig.framing); |
| info->structure = FST_RDB(card, suConfig.structure); |
| info->interface = FST_RDB(card, suConfig.interface); |
| info->coding = FST_RDB(card, suConfig.coding); |
| info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut); |
| info->equalizer = FST_RDB(card, suConfig.equalizer); |
| info->loopMode = FST_RDB(card, suConfig.loopMode); |
| info->range = FST_RDB(card, suConfig.range); |
| info->txBufferMode = FST_RDB(card, suConfig.txBufferMode); |
| info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode); |
| info->startingSlot = FST_RDB(card, suConfig.startingSlot); |
| info->losThreshold = FST_RDB(card, suConfig.losThreshold); |
| if (FST_RDB(card, suConfig.enableIdleCode)) |
| info->idleCode = FST_RDB(card, suConfig.idleCode); |
| else |
| info->idleCode = 0; |
| info->receiveBufferDelay = |
| FST_RDL(card, suStatus.receiveBufferDelay); |
| info->framingErrorCount = |
| FST_RDL(card, suStatus.framingErrorCount); |
| info->codeViolationCount = |
| FST_RDL(card, suStatus.codeViolationCount); |
| info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount); |
| info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation); |
| info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal); |
| info->receiveRemoteAlarm = |
| FST_RDB(card, suStatus.receiveRemoteAlarm); |
| info->alarmIndicationSignal = |
| FST_RDB(card, suStatus.alarmIndicationSignal); |
| } |
| } |
| |
| static int |
| fst_set_iface(struct fst_card_info *card, struct fst_port_info *port, |
| struct ifreq *ifr) |
| { |
| sync_serial_settings sync; |
| int i; |
| |
| if (ifr->ifr_settings.size != sizeof (sync)) { |
| return -ENOMEM; |
| } |
| |
| if (copy_from_user |
| (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) { |
| return -EFAULT; |
| } |
| |
| if (sync.loopback) |
| return -EINVAL; |
| |
| i = port->index; |
| |
| switch (ifr->ifr_settings.type) { |
| case IF_IFACE_V35: |
| FST_WRW(card, portConfig[i].lineInterface, V35); |
| port->hwif = V35; |
| break; |
| |
| case IF_IFACE_V24: |
| FST_WRW(card, portConfig[i].lineInterface, V24); |
| port->hwif = V24; |
| break; |
| |
| case IF_IFACE_X21: |
| FST_WRW(card, portConfig[i].lineInterface, X21); |
| port->hwif = X21; |
| break; |
| |
| case IF_IFACE_X21D: |
| FST_WRW(card, portConfig[i].lineInterface, X21D); |
| port->hwif = X21D; |
| break; |
| |
| case IF_IFACE_T1: |
| FST_WRW(card, portConfig[i].lineInterface, T1); |
| port->hwif = T1; |
| break; |
| |
| case IF_IFACE_E1: |
| FST_WRW(card, portConfig[i].lineInterface, E1); |
| port->hwif = E1; |
| break; |
| |
| case IF_IFACE_SYNC_SERIAL: |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| switch (sync.clock_type) { |
| case CLOCK_EXT: |
| FST_WRB(card, portConfig[i].internalClock, EXTCLK); |
| break; |
| |
| case CLOCK_INT: |
| FST_WRB(card, portConfig[i].internalClock, INTCLK); |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate); |
| return 0; |
| } |
| |
| static int |
| fst_get_iface(struct fst_card_info *card, struct fst_port_info *port, |
| struct ifreq *ifr) |
| { |
| sync_serial_settings sync; |
| int i; |
| |
| /* First check what line type is set, we'll default to reporting X.21 |
| * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be |
| * changed |
| */ |
| switch (port->hwif) { |
| case E1: |
| ifr->ifr_settings.type = IF_IFACE_E1; |
| break; |
| case T1: |
| ifr->ifr_settings.type = IF_IFACE_T1; |
| break; |
| case V35: |
| ifr->ifr_settings.type = IF_IFACE_V35; |
| break; |
| case V24: |
| ifr->ifr_settings.type = IF_IFACE_V24; |
| break; |
| case X21D: |
| ifr->ifr_settings.type = IF_IFACE_X21D; |
| break; |
| case X21: |
| default: |
| ifr->ifr_settings.type = IF_IFACE_X21; |
| break; |
| } |
| if (ifr->ifr_settings.size == 0) { |
| return 0; /* only type requested */ |
| } |
| if (ifr->ifr_settings.size < sizeof (sync)) { |
| return -ENOMEM; |
| } |
| |
| i = port->index; |
| sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed); |
| /* Lucky card and linux use same encoding here */ |
| sync.clock_type = FST_RDB(card, portConfig[i].internalClock) == |
| INTCLK ? CLOCK_INT : CLOCK_EXT; |
| sync.loopback = 0; |
| |
| if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) { |
| return -EFAULT; |
| } |
| |
| ifr->ifr_settings.size = sizeof (sync); |
| return 0; |
| } |
| |
| static int |
| fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) |
| { |
| struct fst_card_info *card; |
| struct fst_port_info *port; |
| struct fstioc_write wrthdr; |
| struct fstioc_info info; |
| unsigned long flags; |
| void *buf; |
| |
| dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data); |
| |
| port = dev_to_port(dev); |
| card = port->card; |
| |
| if (!capable(CAP_NET_ADMIN)) |
| return -EPERM; |
| |
| switch (cmd) { |
| case FSTCPURESET: |
| fst_cpureset(card); |
| card->state = FST_RESET; |
| return 0; |
| |
| case FSTCPURELEASE: |
| fst_cpurelease(card); |
| card->state = FST_STARTING; |
| return 0; |
| |
| case FSTWRITE: /* Code write (download) */ |
| |
| /* First copy in the header with the length and offset of data |
| * to write |
| */ |
| if (ifr->ifr_data == NULL) { |
| return -EINVAL; |
| } |
| if (copy_from_user(&wrthdr, ifr->ifr_data, |
| sizeof (struct fstioc_write))) { |
| return -EFAULT; |
| } |
| |
| /* Sanity check the parameters. We don't support partial writes |
| * when going over the top |
| */ |
| if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE |
| || wrthdr.size + wrthdr.offset > FST_MEMSIZE) { |
| return -ENXIO; |
| } |
| |
| /* Now copy the data to the card. */ |
| |
| buf = kmalloc(wrthdr.size, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| if (copy_from_user(buf, |
| ifr->ifr_data + sizeof (struct fstioc_write), |
| wrthdr.size)) { |
| kfree(buf); |
| return -EFAULT; |
| } |
| |
| memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size); |
| kfree(buf); |
| |
| /* Writes to the memory of a card in the reset state constitute |
| * a download |
| */ |
| if (card->state == FST_RESET) { |
| card->state = FST_DOWNLOAD; |
| } |
| return 0; |
| |
| case FSTGETCONF: |
| |
| /* If card has just been started check the shared memory config |
| * version and marker |
| */ |
| if (card->state == FST_STARTING) { |
| check_started_ok(card); |
| |
| /* If everything checked out enable card interrupts */ |
| if (card->state == FST_RUNNING) { |
| spin_lock_irqsave(&card->card_lock, flags); |
| fst_enable_intr(card); |
| FST_WRB(card, interruptHandshake, 0xEE); |
| spin_unlock_irqrestore(&card->card_lock, flags); |
| } |
| } |
| |
| if (ifr->ifr_data == NULL) { |
| return -EINVAL; |
| } |
| |
| gather_conf_info(card, port, &info); |
| |
| if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) { |
| return -EFAULT; |
| } |
| return 0; |
| |
| case FSTSETCONF: |
| |
| /* |
| * Most of the settings have been moved to the generic ioctls |
| * this just covers debug and board ident now |
| */ |
| |
| if (card->state != FST_RUNNING) { |
| printk_err |
| ("Attempt to configure card %d in non-running state (%d)\n", |
| card->card_no, card->state); |
| return -EIO; |
| } |
| if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) { |
| return -EFAULT; |
| } |
| |
| return set_conf_from_info(card, port, &info); |
| |
| case SIOCWANDEV: |
| switch (ifr->ifr_settings.type) { |
| case IF_GET_IFACE: |
| return fst_get_iface(card, port, ifr); |
| |
| case IF_IFACE_SYNC_SERIAL: |
| case IF_IFACE_V35: |
| case IF_IFACE_V24: |
| case IF_IFACE_X21: |
| case IF_IFACE_X21D: |
| case IF_IFACE_T1: |
| case IF_IFACE_E1: |
| return fst_set_iface(card, port, ifr); |
| |
| case IF_PROTO_RAW: |
| port->mode = FST_RAW; |
| return 0; |
| |
| case IF_GET_PROTO: |
| if (port->mode == FST_RAW) { |
| ifr->ifr_settings.type = IF_PROTO_RAW; |
| return 0; |
| } |
| return hdlc_ioctl(dev, ifr, cmd); |
| |
| default: |
| port->mode = FST_GEN_HDLC; |
| dbg(DBG_IOCTL, "Passing this type to hdlc %x\n", |
| ifr->ifr_settings.type); |
| return hdlc_ioctl(dev, ifr, cmd); |
| } |
| |
| default: |
| /* Not one of ours. Pass through to HDLC package */ |
| return hdlc_ioctl(dev, ifr, cmd); |
| } |
| } |
| |
| static void |
| fst_openport(struct fst_port_info *port) |
| { |
| int signals; |
| int txq_length; |
| |
| /* Only init things if card is actually running. This allows open to |
| * succeed for downloads etc. |
| */ |
| if (port->card->state == FST_RUNNING) { |
| if (port->run) { |
| dbg(DBG_OPEN, "open: found port already running\n"); |
| |
| fst_issue_cmd(port, STOPPORT); |
| port->run = 0; |
| } |
| |
| fst_rx_config(port); |
| fst_tx_config(port); |
| fst_op_raise(port, OPSTS_RTS | OPSTS_DTR); |
| |
| fst_issue_cmd(port, STARTPORT); |
| port->run = 1; |
| |
| signals = FST_RDL(port->card, v24DebouncedSts[port->index]); |
| if (signals & (((port->hwif == X21) || (port->hwif == X21D)) |
| ? IPSTS_INDICATE : IPSTS_DCD)) |
| netif_carrier_on(port_to_dev(port)); |
| else |
| netif_carrier_off(port_to_dev(port)); |
| |
| txq_length = port->txqe - port->txqs; |
| port->txqe = 0; |
| port->txqs = 0; |
| } |
| |
| } |
| |
| static void |
| fst_closeport(struct fst_port_info *port) |
| { |
| if (port->card->state == FST_RUNNING) { |
| if (port->run) { |
| port->run = 0; |
| fst_op_lower(port, OPSTS_RTS | OPSTS_DTR); |
| |
| fst_issue_cmd(port, STOPPORT); |
| } else { |
| dbg(DBG_OPEN, "close: port not running\n"); |
| } |
| } |
| } |
| |
| static int |
| fst_open(struct net_device *dev) |
| { |
| int err; |
| struct fst_port_info *port; |
| |
| port = dev_to_port(dev); |
| if (!try_module_get(THIS_MODULE)) |
| return -EBUSY; |
| |
| if (port->mode != FST_RAW) { |
| err = hdlc_open(dev); |
| if (err) |
| return err; |
| } |
| |
| fst_openport(port); |
| netif_wake_queue(dev); |
| return 0; |
| } |
| |
| static int |
| fst_close(struct net_device *dev) |
| { |
| struct fst_port_info *port; |
| struct fst_card_info *card; |
| unsigned char tx_dma_done; |
| unsigned char rx_dma_done; |
| |
| port = dev_to_port(dev); |
| card = port->card; |
| |
| tx_dma_done = inb(card->pci_conf + DMACSR1); |
| rx_dma_done = inb(card->pci_conf + DMACSR0); |
| dbg(DBG_OPEN, |
| "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n", |
| card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress, |
| rx_dma_done); |
| |
| netif_stop_queue(dev); |
| fst_closeport(dev_to_port(dev)); |
| if (port->mode != FST_RAW) { |
| hdlc_close(dev); |
| } |
| module_put(THIS_MODULE); |
| return 0; |
| } |
| |
| static int |
| fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity) |
| { |
| /* |
| * Setting currently fixed in FarSync card so we check and forget |
| */ |
| if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static void |
| fst_tx_timeout(struct net_device *dev) |
| { |
| struct fst_port_info *port; |
| struct fst_card_info *card; |
| |
| port = dev_to_port(dev); |
| card = port->card; |
| dev->stats.tx_errors++; |
| dev->stats.tx_aborted_errors++; |
| dbg(DBG_ASS, "Tx timeout card %d port %d\n", |
| card->card_no, port->index); |
| fst_issue_cmd(port, ABORTTX); |
| |
| dev->trans_start = jiffies; |
| netif_wake_queue(dev); |
| port->start = 0; |
| } |
| |
| static int |
| fst_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct fst_card_info *card; |
| struct fst_port_info *port; |
| unsigned long flags; |
| int txq_length; |
| |
| port = dev_to_port(dev); |
| card = port->card; |
| dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len); |
| |
| /* Drop packet with error if we don't have carrier */ |
| if (!netif_carrier_ok(dev)) { |
| dev_kfree_skb(skb); |
| dev->stats.tx_errors++; |
| dev->stats.tx_carrier_errors++; |
| dbg(DBG_ASS, |
| "Tried to transmit but no carrier on card %d port %d\n", |
| card->card_no, port->index); |
| return 0; |
| } |
| |
| /* Drop it if it's too big! MTU failure ? */ |
| if (skb->len > LEN_TX_BUFFER) { |
| dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len, |
| LEN_TX_BUFFER); |
| dev_kfree_skb(skb); |
| dev->stats.tx_errors++; |
| return 0; |
| } |
| |
| /* |
| * We are always going to queue the packet |
| * so that the bottom half is the only place we tx from |
| * Check there is room in the port txq |
| */ |
| spin_lock_irqsave(&card->card_lock, flags); |
| if ((txq_length = port->txqe - port->txqs) < 0) { |
| /* |
| * This is the case where the next free has wrapped but the |
| * last used hasn't |
| */ |
| txq_length = txq_length + FST_TXQ_DEPTH; |
| } |
| spin_unlock_irqrestore(&card->card_lock, flags); |
| if (txq_length > fst_txq_high) { |
| /* |
| * We have got enough buffers in the pipeline. Ask the network |
| * layer to stop sending frames down |
| */ |
| netif_stop_queue(dev); |
| port->start = 1; /* I'm using this to signal stop sent up */ |
| } |
| |
| if (txq_length == FST_TXQ_DEPTH - 1) { |
| /* |
| * This shouldn't have happened but such is life |
| */ |
| dev_kfree_skb(skb); |
| dev->stats.tx_errors++; |
| dbg(DBG_ASS, "Tx queue overflow card %d port %d\n", |
| card->card_no, port->index); |
| return 0; |
| } |
| |
| /* |
| * queue the buffer |
| */ |
| spin_lock_irqsave(&card->card_lock, flags); |
| port->txq[port->txqe] = skb; |
| port->txqe++; |
| if (port->txqe == FST_TXQ_DEPTH) |
| port->txqe = 0; |
| spin_unlock_irqrestore(&card->card_lock, flags); |
| |
| /* Scehdule the bottom half which now does transmit processing */ |
| fst_q_work_item(&fst_work_txq, card->card_no); |
| tasklet_schedule(&fst_tx_task); |
| |
| return 0; |
| } |
| |
| /* |
| * Card setup having checked hardware resources. |
| * Should be pretty bizarre if we get an error here (kernel memory |
| * exhaustion is one possibility). If we do see a problem we report it |
| * via a printk and leave the corresponding interface and all that follow |
| * disabled. |
| */ |
| static char *type_strings[] __devinitdata = { |
| "no hardware", /* Should never be seen */ |
| "FarSync T2P", |
| "FarSync T4P", |
| "FarSync T1U", |
| "FarSync T2U", |
| "FarSync T4U", |
| "FarSync TE1" |
| }; |
| |
| static void __devinit |
| fst_init_card(struct fst_card_info *card) |
| { |
| int i; |
| int err; |
| |
| /* We're working on a number of ports based on the card ID. If the |
| * firmware detects something different later (should never happen) |
| * we'll have to revise it in some way then. |
| */ |
| for (i = 0; i < card->nports; i++) { |
| err = register_hdlc_device(card->ports[i].dev); |
| if (err < 0) { |
| int j; |
| printk_err ("Cannot register HDLC device for port %d" |
| " (errno %d)\n", i, -err ); |
| for (j = i; j < card->nports; j++) { |
| free_netdev(card->ports[j].dev); |
| card->ports[j].dev = NULL; |
| } |
| card->nports = i; |
| break; |
| } |
| } |
| |
| printk_info("%s-%s: %s IRQ%d, %d ports\n", |
| port_to_dev(&card->ports[0])->name, |
| port_to_dev(&card->ports[card->nports - 1])->name, |
| type_strings[card->type], card->irq, card->nports); |
| } |
| |
| static const struct net_device_ops fst_ops = { |
| .ndo_open = fst_open, |
| .ndo_stop = fst_close, |
| .ndo_change_mtu = hdlc_change_mtu, |
| .ndo_start_xmit = hdlc_start_xmit, |
| .ndo_do_ioctl = fst_ioctl, |
| .ndo_tx_timeout = fst_tx_timeout, |
| }; |
| |
| /* |
| * Initialise card when detected. |
| * Returns 0 to indicate success, or errno otherwise. |
| */ |
| static int __devinit |
| fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| static int firsttime_done = 0; |
| static int no_of_cards_added = 0; |
| struct fst_card_info *card; |
| int err = 0; |
| int i; |
| |
| if (!firsttime_done) { |
| printk_info("FarSync WAN driver " FST_USER_VERSION |
| " (c) 2001-2004 FarSite Communications Ltd.\n"); |
| firsttime_done = 1; |
| dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask); |
| } |
| |
| /* |
| * We are going to be clever and allow certain cards not to be |
| * configured. An exclude list can be provided in /etc/modules.conf |
| */ |
| if (fst_excluded_cards != 0) { |
| /* |
| * There are cards to exclude |
| * |
| */ |
| for (i = 0; i < fst_excluded_cards; i++) { |
| if ((pdev->devfn) >> 3 == fst_excluded_list[i]) { |
| printk_info("FarSync PCI device %d not assigned\n", |
| (pdev->devfn) >> 3); |
| return -EBUSY; |
| } |
| } |
| } |
| |
| /* Allocate driver private data */ |
| card = kzalloc(sizeof (struct fst_card_info), GFP_KERNEL); |
| if (card == NULL) { |
| printk_err("FarSync card found but insufficient memory for" |
| " driver storage\n"); |
| return -ENOMEM; |
| } |
| |
| /* Try to enable the device */ |
| if ((err = pci_enable_device(pdev)) != 0) { |
| printk_err("Failed to enable card. Err %d\n", -err); |
| kfree(card); |
| return err; |
| } |
| |
| if ((err = pci_request_regions(pdev, "FarSync")) !=0) { |
| printk_err("Failed to allocate regions. Err %d\n", -err); |
| pci_disable_device(pdev); |
| kfree(card); |
| return err; |
| } |
| |
| /* Get virtual addresses of memory regions */ |
| card->pci_conf = pci_resource_start(pdev, 1); |
| card->phys_mem = pci_resource_start(pdev, 2); |
| card->phys_ctlmem = pci_resource_start(pdev, 3); |
| if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) { |
| printk_err("Physical memory remap failed\n"); |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| kfree(card); |
| return -ENODEV; |
| } |
| if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) { |
| printk_err("Control memory remap failed\n"); |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| kfree(card); |
| return -ENODEV; |
| } |
| dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem); |
| |
| /* Register the interrupt handler */ |
| if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) { |
| printk_err("Unable to register interrupt %d\n", card->irq); |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| iounmap(card->ctlmem); |
| iounmap(card->mem); |
| kfree(card); |
| return -ENODEV; |
| } |
| |
| /* Record info we need */ |
| card->irq = pdev->irq; |
| card->type = ent->driver_data; |
| card->family = ((ent->driver_data == FST_TYPE_T2P) || |
| (ent->driver_data == FST_TYPE_T4P)) |
| ? FST_FAMILY_TXP : FST_FAMILY_TXU; |
| if ((ent->driver_data == FST_TYPE_T1U) || |
| (ent->driver_data == FST_TYPE_TE1)) |
| card->nports = 1; |
| else |
| card->nports = ((ent->driver_data == FST_TYPE_T2P) || |
| (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4; |
| |
| card->state = FST_UNINIT; |
| spin_lock_init ( &card->card_lock ); |
| |
| for ( i = 0 ; i < card->nports ; i++ ) { |
| struct net_device *dev = alloc_hdlcdev(&card->ports[i]); |
| hdlc_device *hdlc; |
| if (!dev) { |
| while (i--) |
| free_netdev(card->ports[i].dev); |
| printk_err ("FarSync: out of memory\n"); |
| free_irq(card->irq, card); |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| iounmap(card->ctlmem); |
| iounmap(card->mem); |
| kfree(card); |
| return -ENODEV; |
| } |
| card->ports[i].dev = dev; |
| card->ports[i].card = card; |
| card->ports[i].index = i; |
| card->ports[i].run = 0; |
| |
| hdlc = dev_to_hdlc(dev); |
| |
| /* Fill in the net device info */ |
| /* Since this is a PCI setup this is purely |
| * informational. Give them the buffer addresses |
| * and basic card I/O. |
| */ |
| dev->mem_start = card->phys_mem |
| + BUF_OFFSET ( txBuffer[i][0][0]); |
| dev->mem_end = card->phys_mem |
| + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]); |
| dev->base_addr = card->pci_conf; |
| dev->irq = card->irq; |
| |
| dev->netdev_ops = &fst_ops; |
| dev->tx_queue_len = FST_TX_QUEUE_LEN; |
| dev->watchdog_timeo = FST_TX_TIMEOUT; |
| hdlc->attach = fst_attach; |
| hdlc->xmit = fst_start_xmit; |
| } |
| |
| card->device = pdev; |
| |
| dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type, |
| card->nports, card->irq); |
| dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n", |
| card->pci_conf, card->phys_mem, card->phys_ctlmem); |
| |
| /* Reset the card's processor */ |
| fst_cpureset(card); |
| card->state = FST_RESET; |
| |
| /* Initialise DMA (if required) */ |
| fst_init_dma(card); |
| |
| /* Record driver data for later use */ |
| pci_set_drvdata(pdev, card); |
| |
| /* Remainder of card setup */ |
| fst_card_array[no_of_cards_added] = card; |
| card->card_no = no_of_cards_added++; /* Record instance and bump it */ |
| fst_init_card(card); |
| if (card->family == FST_FAMILY_TXU) { |
| /* |
| * Allocate a dma buffer for transmit and receives |
| */ |
| card->rx_dma_handle_host = |
| pci_alloc_consistent(card->device, FST_MAX_MTU, |
| &card->rx_dma_handle_card); |
| if (card->rx_dma_handle_host == NULL) { |
| printk_err("Could not allocate rx dma buffer\n"); |
| fst_disable_intr(card); |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| iounmap(card->ctlmem); |
| iounmap(card->mem); |
| kfree(card); |
| return -ENOMEM; |
| } |
| card->tx_dma_handle_host = |
| pci_alloc_consistent(card->device, FST_MAX_MTU, |
| &card->tx_dma_handle_card); |
| if (card->tx_dma_handle_host == NULL) { |
| printk_err("Could not allocate tx dma buffer\n"); |
| fst_disable_intr(card); |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| iounmap(card->ctlmem); |
| iounmap(card->mem); |
| kfree(card); |
| return -ENOMEM; |
| } |
| } |
| return 0; /* Success */ |
| } |
| |
| /* |
| * Cleanup and close down a card |
| */ |
| static void __devexit |
| fst_remove_one(struct pci_dev *pdev) |
| { |
| struct fst_card_info *card; |
| int i; |
| |
| card = pci_get_drvdata(pdev); |
| |
| for (i = 0; i < card->nports; i++) { |
| struct net_device *dev = port_to_dev(&card->ports[i]); |
| unregister_hdlc_device(dev); |
| } |
| |
| fst_disable_intr(card); |
| free_irq(card->irq, card); |
| |
| iounmap(card->ctlmem); |
| iounmap(card->mem); |
| pci_release_regions(pdev); |
| if (card->family == FST_FAMILY_TXU) { |
| /* |
| * Free dma buffers |
| */ |
| pci_free_consistent(card->device, FST_MAX_MTU, |
| card->rx_dma_handle_host, |
| card->rx_dma_handle_card); |
| pci_free_consistent(card->device, FST_MAX_MTU, |
| card->tx_dma_handle_host, |
| card->tx_dma_handle_card); |
| } |
| fst_card_array[card->card_no] = NULL; |
| } |
| |
| static struct pci_driver fst_driver = { |
| .name = FST_NAME, |
| .id_table = fst_pci_dev_id, |
| .probe = fst_add_one, |
| .remove = __devexit_p(fst_remove_one), |
| .suspend = NULL, |
| .resume = NULL, |
| }; |
| |
| static int __init |
| fst_init(void) |
| { |
| int i; |
| |
| for (i = 0; i < FST_MAX_CARDS; i++) |
| fst_card_array[i] = NULL; |
| spin_lock_init(&fst_work_q_lock); |
| return pci_register_driver(&fst_driver); |
| } |
| |
| static void __exit |
| fst_cleanup_module(void) |
| { |
| printk_info("FarSync WAN driver unloading\n"); |
| pci_unregister_driver(&fst_driver); |
| } |
| |
| module_init(fst_init); |
| module_exit(fst_cleanup_module); |