| /* |
| * linux/arch/m32r/kernel/ptrace.c |
| * |
| * Copyright (C) 2002 Hirokazu Takata, Takeo Takahashi |
| * Copyright (C) 2004 Hirokazu Takata, Kei Sakamoto |
| * |
| * Original x86 implementation: |
| * By Ross Biro 1/23/92 |
| * edited by Linus Torvalds |
| * |
| * Some code taken from sh version: |
| * Copyright (C) 1999, 2000 Kaz Kojima & Niibe Yutaka |
| * Some code taken from arm version: |
| * Copyright (C) 2000 Russell King |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/err.h> |
| #include <linux/smp.h> |
| #include <linux/errno.h> |
| #include <linux/ptrace.h> |
| #include <linux/user.h> |
| #include <linux/string.h> |
| #include <linux/signal.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/io.h> |
| #include <asm/uaccess.h> |
| #include <asm/pgtable.h> |
| #include <asm/system.h> |
| #include <asm/processor.h> |
| #include <asm/mmu_context.h> |
| |
| /* |
| * This routine will get a word off of the process kernel stack. |
| */ |
| static inline unsigned long int |
| get_stack_long(struct task_struct *task, int offset) |
| { |
| unsigned long *stack; |
| |
| stack = (unsigned long *)task_pt_regs(task); |
| |
| return stack[offset]; |
| } |
| |
| /* |
| * This routine will put a word on the process kernel stack. |
| */ |
| static inline int |
| put_stack_long(struct task_struct *task, int offset, unsigned long data) |
| { |
| unsigned long *stack; |
| |
| stack = (unsigned long *)task_pt_regs(task); |
| stack[offset] = data; |
| |
| return 0; |
| } |
| |
| static int reg_offset[] = { |
| PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7, |
| PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_FP, PT_LR, PT_SPU, |
| }; |
| |
| /* |
| * Read the word at offset "off" into the "struct user". We |
| * actually access the pt_regs stored on the kernel stack. |
| */ |
| static int ptrace_read_user(struct task_struct *tsk, unsigned long off, |
| unsigned long __user *data) |
| { |
| unsigned long tmp; |
| #ifndef NO_FPU |
| struct user * dummy = NULL; |
| #endif |
| |
| if ((off & 3) || off > sizeof(struct user) - 3) |
| return -EIO; |
| |
| off >>= 2; |
| switch (off) { |
| case PT_EVB: |
| __asm__ __volatile__ ( |
| "mvfc %0, cr5 \n\t" |
| : "=r" (tmp) |
| ); |
| break; |
| case PT_CBR: { |
| unsigned long psw; |
| psw = get_stack_long(tsk, PT_PSW); |
| tmp = ((psw >> 8) & 1); |
| } |
| break; |
| case PT_PSW: { |
| unsigned long psw, bbpsw; |
| psw = get_stack_long(tsk, PT_PSW); |
| bbpsw = get_stack_long(tsk, PT_BBPSW); |
| tmp = ((psw >> 8) & 0xff) | ((bbpsw & 0xff) << 8); |
| } |
| break; |
| case PT_PC: |
| tmp = get_stack_long(tsk, PT_BPC); |
| break; |
| case PT_BPC: |
| off = PT_BBPC; |
| /* fall through */ |
| default: |
| if (off < (sizeof(struct pt_regs) >> 2)) |
| tmp = get_stack_long(tsk, off); |
| #ifndef NO_FPU |
| else if (off >= (long)(&dummy->fpu >> 2) && |
| off < (long)(&dummy->u_fpvalid >> 2)) { |
| if (!tsk_used_math(tsk)) { |
| if (off == (long)(&dummy->fpu.fpscr >> 2)) |
| tmp = FPSCR_INIT; |
| else |
| tmp = 0; |
| } else |
| tmp = ((long *)(&tsk->thread.fpu >> 2)) |
| [off - (long)&dummy->fpu]; |
| } else if (off == (long)(&dummy->u_fpvalid >> 2)) |
| tmp = !!tsk_used_math(tsk); |
| #endif /* not NO_FPU */ |
| else |
| tmp = 0; |
| } |
| |
| return put_user(tmp, data); |
| } |
| |
| static int ptrace_write_user(struct task_struct *tsk, unsigned long off, |
| unsigned long data) |
| { |
| int ret = -EIO; |
| #ifndef NO_FPU |
| struct user * dummy = NULL; |
| #endif |
| |
| if ((off & 3) || off > sizeof(struct user) - 3) |
| return -EIO; |
| |
| off >>= 2; |
| switch (off) { |
| case PT_EVB: |
| case PT_BPC: |
| case PT_SPI: |
| /* We don't allow to modify evb. */ |
| ret = 0; |
| break; |
| case PT_PSW: |
| case PT_CBR: { |
| /* We allow to modify only cbr in psw */ |
| unsigned long psw; |
| psw = get_stack_long(tsk, PT_PSW); |
| psw = (psw & ~0x100) | ((data & 1) << 8); |
| ret = put_stack_long(tsk, PT_PSW, psw); |
| } |
| break; |
| case PT_PC: |
| off = PT_BPC; |
| data &= ~1; |
| /* fall through */ |
| default: |
| if (off < (sizeof(struct pt_regs) >> 2)) |
| ret = put_stack_long(tsk, off, data); |
| #ifndef NO_FPU |
| else if (off >= (long)(&dummy->fpu >> 2) && |
| off < (long)(&dummy->u_fpvalid >> 2)) { |
| set_stopped_child_used_math(tsk); |
| ((long *)&tsk->thread.fpu) |
| [off - (long)&dummy->fpu] = data; |
| ret = 0; |
| } else if (off == (long)(&dummy->u_fpvalid >> 2)) { |
| conditional_stopped_child_used_math(data, tsk); |
| ret = 0; |
| } |
| #endif /* not NO_FPU */ |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Get all user integer registers. |
| */ |
| static int ptrace_getregs(struct task_struct *tsk, void __user *uregs) |
| { |
| struct pt_regs *regs = task_pt_regs(tsk); |
| |
| return copy_to_user(uregs, regs, sizeof(struct pt_regs)) ? -EFAULT : 0; |
| } |
| |
| /* |
| * Set all user integer registers. |
| */ |
| static int ptrace_setregs(struct task_struct *tsk, void __user *uregs) |
| { |
| struct pt_regs newregs; |
| int ret; |
| |
| ret = -EFAULT; |
| if (copy_from_user(&newregs, uregs, sizeof(struct pt_regs)) == 0) { |
| struct pt_regs *regs = task_pt_regs(tsk); |
| *regs = newregs; |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| |
| static inline int |
| check_condition_bit(struct task_struct *child) |
| { |
| return (int)((get_stack_long(child, PT_PSW) >> 8) & 1); |
| } |
| |
| static int |
| check_condition_src(unsigned long op, unsigned long regno1, |
| unsigned long regno2, struct task_struct *child) |
| { |
| unsigned long reg1, reg2; |
| |
| reg2 = get_stack_long(child, reg_offset[regno2]); |
| |
| switch (op) { |
| case 0x0: /* BEQ */ |
| reg1 = get_stack_long(child, reg_offset[regno1]); |
| return reg1 == reg2; |
| case 0x1: /* BNE */ |
| reg1 = get_stack_long(child, reg_offset[regno1]); |
| return reg1 != reg2; |
| case 0x8: /* BEQZ */ |
| return reg2 == 0; |
| case 0x9: /* BNEZ */ |
| return reg2 != 0; |
| case 0xa: /* BLTZ */ |
| return (int)reg2 < 0; |
| case 0xb: /* BGEZ */ |
| return (int)reg2 >= 0; |
| case 0xc: /* BLEZ */ |
| return (int)reg2 <= 0; |
| case 0xd: /* BGTZ */ |
| return (int)reg2 > 0; |
| default: |
| /* never reached */ |
| return 0; |
| } |
| } |
| |
| static void |
| compute_next_pc_for_16bit_insn(unsigned long insn, unsigned long pc, |
| unsigned long *next_pc, |
| struct task_struct *child) |
| { |
| unsigned long op, op2, op3; |
| unsigned long disp; |
| unsigned long regno; |
| int parallel = 0; |
| |
| if (insn & 0x00008000) |
| parallel = 1; |
| if (pc & 3) |
| insn &= 0x7fff; /* right slot */ |
| else |
| insn >>= 16; /* left slot */ |
| |
| op = (insn >> 12) & 0xf; |
| op2 = (insn >> 8) & 0xf; |
| op3 = (insn >> 4) & 0xf; |
| |
| if (op == 0x7) { |
| switch (op2) { |
| case 0xd: /* BNC */ |
| case 0x9: /* BNCL */ |
| if (!check_condition_bit(child)) { |
| disp = (long)(insn << 24) >> 22; |
| *next_pc = (pc & ~0x3) + disp; |
| return; |
| } |
| break; |
| case 0x8: /* BCL */ |
| case 0xc: /* BC */ |
| if (check_condition_bit(child)) { |
| disp = (long)(insn << 24) >> 22; |
| *next_pc = (pc & ~0x3) + disp; |
| return; |
| } |
| break; |
| case 0xe: /* BL */ |
| case 0xf: /* BRA */ |
| disp = (long)(insn << 24) >> 22; |
| *next_pc = (pc & ~0x3) + disp; |
| return; |
| break; |
| } |
| } else if (op == 0x1) { |
| switch (op2) { |
| case 0x0: |
| if (op3 == 0xf) { /* TRAP */ |
| #if 1 |
| /* pass through */ |
| #else |
| /* kernel space is not allowed as next_pc */ |
| unsigned long evb; |
| unsigned long trapno; |
| trapno = insn & 0xf; |
| __asm__ __volatile__ ( |
| "mvfc %0, cr5\n" |
| :"=r"(evb) |
| : |
| ); |
| *next_pc = evb + (trapno << 2); |
| return; |
| #endif |
| } else if (op3 == 0xd) { /* RTE */ |
| *next_pc = get_stack_long(child, PT_BPC); |
| return; |
| } |
| break; |
| case 0xc: /* JC */ |
| if (op3 == 0xc && check_condition_bit(child)) { |
| regno = insn & 0xf; |
| *next_pc = get_stack_long(child, |
| reg_offset[regno]); |
| return; |
| } |
| break; |
| case 0xd: /* JNC */ |
| if (op3 == 0xc && !check_condition_bit(child)) { |
| regno = insn & 0xf; |
| *next_pc = get_stack_long(child, |
| reg_offset[regno]); |
| return; |
| } |
| break; |
| case 0xe: /* JL */ |
| case 0xf: /* JMP */ |
| if (op3 == 0xc) { /* JMP */ |
| regno = insn & 0xf; |
| *next_pc = get_stack_long(child, |
| reg_offset[regno]); |
| return; |
| } |
| break; |
| } |
| } |
| if (parallel) |
| *next_pc = pc + 4; |
| else |
| *next_pc = pc + 2; |
| } |
| |
| static void |
| compute_next_pc_for_32bit_insn(unsigned long insn, unsigned long pc, |
| unsigned long *next_pc, |
| struct task_struct *child) |
| { |
| unsigned long op; |
| unsigned long op2; |
| unsigned long disp; |
| unsigned long regno1, regno2; |
| |
| op = (insn >> 28) & 0xf; |
| if (op == 0xf) { /* branch 24-bit relative */ |
| op2 = (insn >> 24) & 0xf; |
| switch (op2) { |
| case 0xd: /* BNC */ |
| case 0x9: /* BNCL */ |
| if (!check_condition_bit(child)) { |
| disp = (long)(insn << 8) >> 6; |
| *next_pc = (pc & ~0x3) + disp; |
| return; |
| } |
| break; |
| case 0x8: /* BCL */ |
| case 0xc: /* BC */ |
| if (check_condition_bit(child)) { |
| disp = (long)(insn << 8) >> 6; |
| *next_pc = (pc & ~0x3) + disp; |
| return; |
| } |
| break; |
| case 0xe: /* BL */ |
| case 0xf: /* BRA */ |
| disp = (long)(insn << 8) >> 6; |
| *next_pc = (pc & ~0x3) + disp; |
| return; |
| } |
| } else if (op == 0xb) { /* branch 16-bit relative */ |
| op2 = (insn >> 20) & 0xf; |
| switch (op2) { |
| case 0x0: /* BEQ */ |
| case 0x1: /* BNE */ |
| case 0x8: /* BEQZ */ |
| case 0x9: /* BNEZ */ |
| case 0xa: /* BLTZ */ |
| case 0xb: /* BGEZ */ |
| case 0xc: /* BLEZ */ |
| case 0xd: /* BGTZ */ |
| regno1 = ((insn >> 24) & 0xf); |
| regno2 = ((insn >> 16) & 0xf); |
| if (check_condition_src(op2, regno1, regno2, child)) { |
| disp = (long)(insn << 16) >> 14; |
| *next_pc = (pc & ~0x3) + disp; |
| return; |
| } |
| break; |
| } |
| } |
| *next_pc = pc + 4; |
| } |
| |
| static inline void |
| compute_next_pc(unsigned long insn, unsigned long pc, |
| unsigned long *next_pc, struct task_struct *child) |
| { |
| if (insn & 0x80000000) |
| compute_next_pc_for_32bit_insn(insn, pc, next_pc, child); |
| else |
| compute_next_pc_for_16bit_insn(insn, pc, next_pc, child); |
| } |
| |
| static int |
| register_debug_trap(struct task_struct *child, unsigned long next_pc, |
| unsigned long next_insn, unsigned long *code) |
| { |
| struct debug_trap *p = &child->thread.debug_trap; |
| unsigned long addr = next_pc & ~3; |
| |
| if (p->nr_trap == MAX_TRAPS) { |
| printk("kernel BUG at %s %d: p->nr_trap = %d\n", |
| __FILE__, __LINE__, p->nr_trap); |
| return -1; |
| } |
| p->addr[p->nr_trap] = addr; |
| p->insn[p->nr_trap] = next_insn; |
| p->nr_trap++; |
| if (next_pc & 3) { |
| *code = (next_insn & 0xffff0000) | 0x10f1; |
| /* xxx --> TRAP1 */ |
| } else { |
| if ((next_insn & 0x80000000) || (next_insn & 0x8000)) { |
| *code = 0x10f17000; |
| /* TRAP1 --> NOP */ |
| } else { |
| *code = (next_insn & 0xffff) | 0x10f10000; |
| /* TRAP1 --> xxx */ |
| } |
| } |
| return 0; |
| } |
| |
| static int |
| unregister_debug_trap(struct task_struct *child, unsigned long addr, |
| unsigned long *code) |
| { |
| struct debug_trap *p = &child->thread.debug_trap; |
| int i; |
| |
| /* Search debug trap entry. */ |
| for (i = 0; i < p->nr_trap; i++) { |
| if (p->addr[i] == addr) |
| break; |
| } |
| if (i >= p->nr_trap) { |
| /* The trap may be requested from debugger. |
| * ptrace should do nothing in this case. |
| */ |
| return 0; |
| } |
| |
| /* Recover original instruction code. */ |
| *code = p->insn[i]; |
| |
| /* Shift debug trap entries. */ |
| while (i < p->nr_trap - 1) { |
| p->insn[i] = p->insn[i + 1]; |
| p->addr[i] = p->addr[i + 1]; |
| i++; |
| } |
| p->nr_trap--; |
| return 1; |
| } |
| |
| static void |
| unregister_all_debug_traps(struct task_struct *child) |
| { |
| struct debug_trap *p = &child->thread.debug_trap; |
| int i; |
| |
| for (i = 0; i < p->nr_trap; i++) |
| access_process_vm(child, p->addr[i], &p->insn[i], sizeof(p->insn[i]), 1); |
| p->nr_trap = 0; |
| } |
| |
| static inline void |
| invalidate_cache(void) |
| { |
| #if defined(CONFIG_CHIP_M32700) || defined(CONFIG_CHIP_OPSP) |
| |
| _flush_cache_copyback_all(); |
| |
| #else /* ! CONFIG_CHIP_M32700 */ |
| |
| /* Invalidate cache */ |
| __asm__ __volatile__ ( |
| "ldi r0, #-1 \n\t" |
| "ldi r1, #0 \n\t" |
| "stb r1, @r0 ; cache off \n\t" |
| "; \n\t" |
| "ldi r0, #-2 \n\t" |
| "ldi r1, #1 \n\t" |
| "stb r1, @r0 ; cache invalidate \n\t" |
| ".fillinsn \n" |
| "0: \n\t" |
| "ldb r1, @r0 ; invalidate check \n\t" |
| "bnez r1, 0b \n\t" |
| "; \n\t" |
| "ldi r0, #-1 \n\t" |
| "ldi r1, #1 \n\t" |
| "stb r1, @r0 ; cache on \n\t" |
| : : : "r0", "r1", "memory" |
| ); |
| /* FIXME: copying-back d-cache and invalidating i-cache are needed. |
| */ |
| #endif /* CONFIG_CHIP_M32700 */ |
| } |
| |
| /* Embed a debug trap (TRAP1) code */ |
| static int |
| embed_debug_trap(struct task_struct *child, unsigned long next_pc) |
| { |
| unsigned long next_insn, code; |
| unsigned long addr = next_pc & ~3; |
| |
| if (access_process_vm(child, addr, &next_insn, sizeof(next_insn), 0) |
| != sizeof(next_insn)) { |
| return -1; /* error */ |
| } |
| |
| /* Set a trap code. */ |
| if (register_debug_trap(child, next_pc, next_insn, &code)) { |
| return -1; /* error */ |
| } |
| if (access_process_vm(child, addr, &code, sizeof(code), 1) |
| != sizeof(code)) { |
| return -1; /* error */ |
| } |
| return 0; /* success */ |
| } |
| |
| void |
| withdraw_debug_trap(struct pt_regs *regs) |
| { |
| unsigned long addr; |
| unsigned long code; |
| |
| addr = (regs->bpc - 2) & ~3; |
| regs->bpc -= 2; |
| if (unregister_debug_trap(current, addr, &code)) { |
| access_process_vm(current, addr, &code, sizeof(code), 1); |
| invalidate_cache(); |
| } |
| } |
| |
| void |
| init_debug_traps(struct task_struct *child) |
| { |
| struct debug_trap *p = &child->thread.debug_trap; |
| int i; |
| p->nr_trap = 0; |
| for (i = 0; i < MAX_TRAPS; i++) { |
| p->addr[i] = 0; |
| p->insn[i] = 0; |
| } |
| } |
| |
| |
| /* |
| * Called by kernel/ptrace.c when detaching.. |
| * |
| * Make sure single step bits etc are not set. |
| */ |
| void ptrace_disable(struct task_struct *child) |
| { |
| /* nothing to do.. */ |
| } |
| |
| long |
| arch_ptrace(struct task_struct *child, long request, long addr, long data) |
| { |
| int ret; |
| |
| switch (request) { |
| /* |
| * read word at location "addr" in the child process. |
| */ |
| case PTRACE_PEEKTEXT: |
| case PTRACE_PEEKDATA: |
| ret = generic_ptrace_peekdata(child, addr, data); |
| break; |
| |
| /* |
| * read the word at location addr in the USER area. |
| */ |
| case PTRACE_PEEKUSR: |
| ret = ptrace_read_user(child, addr, |
| (unsigned long __user *)data); |
| break; |
| |
| /* |
| * write the word at location addr. |
| */ |
| case PTRACE_POKETEXT: |
| case PTRACE_POKEDATA: |
| ret = generic_ptrace_pokedata(child, addr, data); |
| if (ret == 0 && request == PTRACE_POKETEXT) |
| invalidate_cache(); |
| break; |
| |
| /* |
| * write the word at location addr in the USER area. |
| */ |
| case PTRACE_POKEUSR: |
| ret = ptrace_write_user(child, addr, data); |
| break; |
| |
| /* |
| * continue/restart and stop at next (return from) syscall |
| */ |
| case PTRACE_SYSCALL: |
| case PTRACE_CONT: |
| ret = -EIO; |
| if (!valid_signal(data)) |
| break; |
| if (request == PTRACE_SYSCALL) |
| set_tsk_thread_flag(child, TIF_SYSCALL_TRACE); |
| else |
| clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); |
| child->exit_code = data; |
| wake_up_process(child); |
| ret = 0; |
| break; |
| |
| /* |
| * make the child exit. Best I can do is send it a sigkill. |
| * perhaps it should be put in the status that it wants to |
| * exit. |
| */ |
| case PTRACE_KILL: { |
| ret = 0; |
| unregister_all_debug_traps(child); |
| invalidate_cache(); |
| if (child->exit_state == EXIT_ZOMBIE) /* already dead */ |
| break; |
| child->exit_code = SIGKILL; |
| wake_up_process(child); |
| break; |
| } |
| |
| /* |
| * execute single instruction. |
| */ |
| case PTRACE_SINGLESTEP: { |
| unsigned long next_pc; |
| unsigned long pc, insn; |
| |
| ret = -EIO; |
| if (!valid_signal(data)) |
| break; |
| clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); |
| |
| /* Compute next pc. */ |
| pc = get_stack_long(child, PT_BPC); |
| |
| if (access_process_vm(child, pc&~3, &insn, sizeof(insn), 0) |
| != sizeof(insn)) |
| break; |
| |
| compute_next_pc(insn, pc, &next_pc, child); |
| if (next_pc & 0x80000000) |
| break; |
| |
| if (embed_debug_trap(child, next_pc)) |
| break; |
| |
| invalidate_cache(); |
| child->exit_code = data; |
| |
| /* give it a chance to run. */ |
| wake_up_process(child); |
| ret = 0; |
| break; |
| } |
| |
| case PTRACE_GETREGS: |
| ret = ptrace_getregs(child, (void __user *)data); |
| break; |
| |
| case PTRACE_SETREGS: |
| ret = ptrace_setregs(child, (void __user *)data); |
| break; |
| |
| default: |
| ret = ptrace_request(child, request, addr, data); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /* notification of system call entry/exit |
| * - triggered by current->work.syscall_trace |
| */ |
| void do_syscall_trace(void) |
| { |
| if (!test_thread_flag(TIF_SYSCALL_TRACE)) |
| return; |
| if (!(current->ptrace & PT_PTRACED)) |
| return; |
| /* the 0x80 provides a way for the tracing parent to distinguish |
| between a syscall stop and SIGTRAP delivery */ |
| ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) |
| ? 0x80 : 0)); |
| |
| /* |
| * this isn't the same as continuing with a signal, but it will do |
| * for normal use. strace only continues with a signal if the |
| * stopping signal is not SIGTRAP. -brl |
| */ |
| if (current->exit_code) { |
| send_sig(current->exit_code, current, 1); |
| current->exit_code = 0; |
| } |
| } |