| /* |
| * linux/arch/x86-64/kernel/time.c |
| * |
| * "High Precision Event Timer" based timekeeping. |
| * |
| * Copyright (c) 1991,1992,1995 Linus Torvalds |
| * Copyright (c) 1994 Alan Modra |
| * Copyright (c) 1995 Markus Kuhn |
| * Copyright (c) 1996 Ingo Molnar |
| * Copyright (c) 1998 Andrea Arcangeli |
| * Copyright (c) 2002,2006 Vojtech Pavlik |
| * Copyright (c) 2003 Andi Kleen |
| * RTC support code taken from arch/i386/kernel/timers/time_hpet.c |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/interrupt.h> |
| #include <linux/init.h> |
| #include <linux/mc146818rtc.h> |
| #include <linux/time.h> |
| #include <linux/ioport.h> |
| #include <linux/module.h> |
| #include <linux/device.h> |
| #include <linux/sysdev.h> |
| #include <linux/bcd.h> |
| #include <linux/notifier.h> |
| #include <linux/cpu.h> |
| #include <linux/kallsyms.h> |
| #include <linux/acpi.h> |
| #ifdef CONFIG_ACPI |
| #include <acpi/achware.h> /* for PM timer frequency */ |
| #include <acpi/acpi_bus.h> |
| #endif |
| #include <asm/8253pit.h> |
| #include <asm/pgtable.h> |
| #include <asm/vsyscall.h> |
| #include <asm/timex.h> |
| #include <asm/proto.h> |
| #include <asm/hpet.h> |
| #include <asm/sections.h> |
| #include <linux/cpufreq.h> |
| #include <linux/hpet.h> |
| #include <asm/apic.h> |
| |
| #ifdef CONFIG_CPU_FREQ |
| static void cpufreq_delayed_get(void); |
| #endif |
| extern void i8254_timer_resume(void); |
| extern int using_apic_timer; |
| |
| static char *timename = NULL; |
| |
| DEFINE_SPINLOCK(rtc_lock); |
| EXPORT_SYMBOL(rtc_lock); |
| DEFINE_SPINLOCK(i8253_lock); |
| |
| int nohpet __initdata = 0; |
| static int notsc __initdata = 0; |
| |
| #define USEC_PER_TICK (USEC_PER_SEC / HZ) |
| #define NSEC_PER_TICK (NSEC_PER_SEC / HZ) |
| #define FSEC_PER_TICK (FSEC_PER_SEC / HZ) |
| |
| #define NS_SCALE 10 /* 2^10, carefully chosen */ |
| #define US_SCALE 32 /* 2^32, arbitralrily chosen */ |
| |
| unsigned int cpu_khz; /* TSC clocks / usec, not used here */ |
| EXPORT_SYMBOL(cpu_khz); |
| static unsigned long hpet_period; /* fsecs / HPET clock */ |
| unsigned long hpet_tick; /* HPET clocks / interrupt */ |
| int hpet_use_timer; /* Use counter of hpet for time keeping, otherwise PIT */ |
| unsigned long vxtime_hz = PIT_TICK_RATE; |
| int report_lost_ticks; /* command line option */ |
| unsigned long long monotonic_base; |
| |
| struct vxtime_data __vxtime __section_vxtime; /* for vsyscalls */ |
| |
| volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES; |
| struct timespec __xtime __section_xtime; |
| struct timezone __sys_tz __section_sys_tz; |
| |
| /* |
| * do_gettimeoffset() returns microseconds since last timer interrupt was |
| * triggered by hardware. A memory read of HPET is slower than a register read |
| * of TSC, but much more reliable. It's also synchronized to the timer |
| * interrupt. Note that do_gettimeoffset() may return more than hpet_tick, if a |
| * timer interrupt has happened already, but vxtime.trigger wasn't updated yet. |
| * This is not a problem, because jiffies hasn't updated either. They are bound |
| * together by xtime_lock. |
| */ |
| |
| static inline unsigned int do_gettimeoffset_tsc(void) |
| { |
| unsigned long t; |
| unsigned long x; |
| t = get_cycles_sync(); |
| if (t < vxtime.last_tsc) |
| t = vxtime.last_tsc; /* hack */ |
| x = ((t - vxtime.last_tsc) * vxtime.tsc_quot) >> US_SCALE; |
| return x; |
| } |
| |
| static inline unsigned int do_gettimeoffset_hpet(void) |
| { |
| /* cap counter read to one tick to avoid inconsistencies */ |
| unsigned long counter = hpet_readl(HPET_COUNTER) - vxtime.last; |
| return (min(counter,hpet_tick) * vxtime.quot) >> US_SCALE; |
| } |
| |
| unsigned int (*do_gettimeoffset)(void) = do_gettimeoffset_tsc; |
| |
| /* |
| * This version of gettimeofday() has microsecond resolution and better than |
| * microsecond precision, as we're using at least a 10 MHz (usually 14.31818 |
| * MHz) HPET timer. |
| */ |
| |
| void do_gettimeofday(struct timeval *tv) |
| { |
| unsigned long seq; |
| unsigned int sec, usec; |
| |
| do { |
| seq = read_seqbegin(&xtime_lock); |
| |
| sec = xtime.tv_sec; |
| usec = xtime.tv_nsec / NSEC_PER_USEC; |
| |
| /* i386 does some correction here to keep the clock |
| monotonous even when ntpd is fixing drift. |
| But they didn't work for me, there is a non monotonic |
| clock anyways with ntp. |
| I dropped all corrections now until a real solution can |
| be found. Note when you fix it here you need to do the same |
| in arch/x86_64/kernel/vsyscall.c and export all needed |
| variables in vmlinux.lds. -AK */ |
| usec += do_gettimeoffset(); |
| |
| } while (read_seqretry(&xtime_lock, seq)); |
| |
| tv->tv_sec = sec + usec / USEC_PER_SEC; |
| tv->tv_usec = usec % USEC_PER_SEC; |
| } |
| |
| EXPORT_SYMBOL(do_gettimeofday); |
| |
| /* |
| * settimeofday() first undoes the correction that gettimeofday would do |
| * on the time, and then saves it. This is ugly, but has been like this for |
| * ages already. |
| */ |
| |
| int do_settimeofday(struct timespec *tv) |
| { |
| time_t wtm_sec, sec = tv->tv_sec; |
| long wtm_nsec, nsec = tv->tv_nsec; |
| |
| if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) |
| return -EINVAL; |
| |
| write_seqlock_irq(&xtime_lock); |
| |
| nsec -= do_gettimeoffset() * NSEC_PER_USEC; |
| |
| wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); |
| wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); |
| |
| set_normalized_timespec(&xtime, sec, nsec); |
| set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); |
| |
| ntp_clear(); |
| |
| write_sequnlock_irq(&xtime_lock); |
| clock_was_set(); |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(do_settimeofday); |
| |
| unsigned long profile_pc(struct pt_regs *regs) |
| { |
| unsigned long pc = instruction_pointer(regs); |
| |
| /* Assume the lock function has either no stack frame or a copy |
| of eflags from PUSHF |
| Eflags always has bits 22 and up cleared unlike kernel addresses. */ |
| if (!user_mode(regs) && in_lock_functions(pc)) { |
| unsigned long *sp = (unsigned long *)regs->rsp; |
| if (sp[0] >> 22) |
| return sp[0]; |
| if (sp[1] >> 22) |
| return sp[1]; |
| } |
| return pc; |
| } |
| EXPORT_SYMBOL(profile_pc); |
| |
| /* |
| * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500 |
| * ms after the second nowtime has started, because when nowtime is written |
| * into the registers of the CMOS clock, it will jump to the next second |
| * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data |
| * sheet for details. |
| */ |
| |
| static void set_rtc_mmss(unsigned long nowtime) |
| { |
| int real_seconds, real_minutes, cmos_minutes; |
| unsigned char control, freq_select; |
| |
| /* |
| * IRQs are disabled when we're called from the timer interrupt, |
| * no need for spin_lock_irqsave() |
| */ |
| |
| spin_lock(&rtc_lock); |
| |
| /* |
| * Tell the clock it's being set and stop it. |
| */ |
| |
| control = CMOS_READ(RTC_CONTROL); |
| CMOS_WRITE(control | RTC_SET, RTC_CONTROL); |
| |
| freq_select = CMOS_READ(RTC_FREQ_SELECT); |
| CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT); |
| |
| cmos_minutes = CMOS_READ(RTC_MINUTES); |
| BCD_TO_BIN(cmos_minutes); |
| |
| /* |
| * since we're only adjusting minutes and seconds, don't interfere with hour |
| * overflow. This avoids messing with unknown time zones but requires your RTC |
| * not to be off by more than 15 minutes. Since we're calling it only when |
| * our clock is externally synchronized using NTP, this shouldn't be a problem. |
| */ |
| |
| real_seconds = nowtime % 60; |
| real_minutes = nowtime / 60; |
| if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1) |
| real_minutes += 30; /* correct for half hour time zone */ |
| real_minutes %= 60; |
| |
| if (abs(real_minutes - cmos_minutes) >= 30) { |
| printk(KERN_WARNING "time.c: can't update CMOS clock " |
| "from %d to %d\n", cmos_minutes, real_minutes); |
| } else { |
| BIN_TO_BCD(real_seconds); |
| BIN_TO_BCD(real_minutes); |
| CMOS_WRITE(real_seconds, RTC_SECONDS); |
| CMOS_WRITE(real_minutes, RTC_MINUTES); |
| } |
| |
| /* |
| * The following flags have to be released exactly in this order, otherwise the |
| * DS12887 (popular MC146818A clone with integrated battery and quartz) will |
| * not reset the oscillator and will not update precisely 500 ms later. You |
| * won't find this mentioned in the Dallas Semiconductor data sheets, but who |
| * believes data sheets anyway ... -- Markus Kuhn |
| */ |
| |
| CMOS_WRITE(control, RTC_CONTROL); |
| CMOS_WRITE(freq_select, RTC_FREQ_SELECT); |
| |
| spin_unlock(&rtc_lock); |
| } |
| |
| |
| /* monotonic_clock(): returns # of nanoseconds passed since time_init() |
| * Note: This function is required to return accurate |
| * time even in the absence of multiple timer ticks. |
| */ |
| static inline unsigned long long cycles_2_ns(unsigned long long cyc); |
| unsigned long long monotonic_clock(void) |
| { |
| unsigned long seq; |
| u32 last_offset, this_offset, offset; |
| unsigned long long base; |
| |
| if (vxtime.mode == VXTIME_HPET) { |
| do { |
| seq = read_seqbegin(&xtime_lock); |
| |
| last_offset = vxtime.last; |
| base = monotonic_base; |
| this_offset = hpet_readl(HPET_COUNTER); |
| } while (read_seqretry(&xtime_lock, seq)); |
| offset = (this_offset - last_offset); |
| offset *= NSEC_PER_TICK / hpet_tick; |
| } else { |
| do { |
| seq = read_seqbegin(&xtime_lock); |
| |
| last_offset = vxtime.last_tsc; |
| base = monotonic_base; |
| } while (read_seqretry(&xtime_lock, seq)); |
| this_offset = get_cycles_sync(); |
| offset = cycles_2_ns(this_offset - last_offset); |
| } |
| return base + offset; |
| } |
| EXPORT_SYMBOL(monotonic_clock); |
| |
| static noinline void handle_lost_ticks(int lost) |
| { |
| static long lost_count; |
| static int warned; |
| if (report_lost_ticks) { |
| printk(KERN_WARNING "time.c: Lost %d timer tick(s)! ", lost); |
| print_symbol("rip %s)\n", get_irq_regs()->rip); |
| } |
| |
| if (lost_count == 1000 && !warned) { |
| printk(KERN_WARNING "warning: many lost ticks.\n" |
| KERN_WARNING "Your time source seems to be instable or " |
| "some driver is hogging interupts\n"); |
| print_symbol("rip %s\n", get_irq_regs()->rip); |
| if (vxtime.mode == VXTIME_TSC && vxtime.hpet_address) { |
| printk(KERN_WARNING "Falling back to HPET\n"); |
| if (hpet_use_timer) |
| vxtime.last = hpet_readl(HPET_T0_CMP) - |
| hpet_tick; |
| else |
| vxtime.last = hpet_readl(HPET_COUNTER); |
| vxtime.mode = VXTIME_HPET; |
| do_gettimeoffset = do_gettimeoffset_hpet; |
| } |
| /* else should fall back to PIT, but code missing. */ |
| warned = 1; |
| } else |
| lost_count++; |
| |
| #ifdef CONFIG_CPU_FREQ |
| /* In some cases the CPU can change frequency without us noticing |
| Give cpufreq a change to catch up. */ |
| if ((lost_count+1) % 25 == 0) |
| cpufreq_delayed_get(); |
| #endif |
| } |
| |
| void main_timer_handler(void) |
| { |
| static unsigned long rtc_update = 0; |
| unsigned long tsc; |
| int delay = 0, offset = 0, lost = 0; |
| |
| /* |
| * Here we are in the timer irq handler. We have irqs locally disabled (so we |
| * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running |
| * on the other CPU, so we need a lock. We also need to lock the vsyscall |
| * variables, because both do_timer() and us change them -arca+vojtech |
| */ |
| |
| write_seqlock(&xtime_lock); |
| |
| if (vxtime.hpet_address) |
| offset = hpet_readl(HPET_COUNTER); |
| |
| if (hpet_use_timer) { |
| /* if we're using the hpet timer functionality, |
| * we can more accurately know the counter value |
| * when the timer interrupt occured. |
| */ |
| offset = hpet_readl(HPET_T0_CMP) - hpet_tick; |
| delay = hpet_readl(HPET_COUNTER) - offset; |
| } else if (!pmtmr_ioport) { |
| spin_lock(&i8253_lock); |
| outb_p(0x00, 0x43); |
| delay = inb_p(0x40); |
| delay |= inb(0x40) << 8; |
| spin_unlock(&i8253_lock); |
| delay = LATCH - 1 - delay; |
| } |
| |
| tsc = get_cycles_sync(); |
| |
| if (vxtime.mode == VXTIME_HPET) { |
| if (offset - vxtime.last > hpet_tick) { |
| lost = (offset - vxtime.last) / hpet_tick - 1; |
| } |
| |
| monotonic_base += |
| (offset - vxtime.last) * NSEC_PER_TICK / hpet_tick; |
| |
| vxtime.last = offset; |
| #ifdef CONFIG_X86_PM_TIMER |
| } else if (vxtime.mode == VXTIME_PMTMR) { |
| lost = pmtimer_mark_offset(); |
| #endif |
| } else { |
| offset = (((tsc - vxtime.last_tsc) * |
| vxtime.tsc_quot) >> US_SCALE) - USEC_PER_TICK; |
| |
| if (offset < 0) |
| offset = 0; |
| |
| if (offset > USEC_PER_TICK) { |
| lost = offset / USEC_PER_TICK; |
| offset %= USEC_PER_TICK; |
| } |
| |
| monotonic_base += cycles_2_ns(tsc - vxtime.last_tsc); |
| |
| vxtime.last_tsc = tsc - vxtime.quot * delay / vxtime.tsc_quot; |
| |
| if ((((tsc - vxtime.last_tsc) * |
| vxtime.tsc_quot) >> US_SCALE) < offset) |
| vxtime.last_tsc = tsc - |
| (((long) offset << US_SCALE) / vxtime.tsc_quot) - 1; |
| } |
| |
| if (lost > 0) |
| handle_lost_ticks(lost); |
| else |
| lost = 0; |
| |
| /* |
| * Do the timer stuff. |
| */ |
| |
| do_timer(lost + 1); |
| #ifndef CONFIG_SMP |
| update_process_times(user_mode(get_irq_regs())); |
| #endif |
| |
| /* |
| * In the SMP case we use the local APIC timer interrupt to do the profiling, |
| * except when we simulate SMP mode on a uniprocessor system, in that case we |
| * have to call the local interrupt handler. |
| */ |
| |
| if (!using_apic_timer) |
| smp_local_timer_interrupt(); |
| |
| /* |
| * If we have an externally synchronized Linux clock, then update CMOS clock |
| * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy |
| * closest to exactly 500 ms before the next second. If the update fails, we |
| * don't care, as it'll be updated on the next turn, and the problem (time way |
| * off) isn't likely to go away much sooner anyway. |
| */ |
| |
| if (ntp_synced() && xtime.tv_sec > rtc_update && |
| abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) { |
| set_rtc_mmss(xtime.tv_sec); |
| rtc_update = xtime.tv_sec + 660; |
| } |
| |
| write_sequnlock(&xtime_lock); |
| } |
| |
| static irqreturn_t timer_interrupt(int irq, void *dev_id) |
| { |
| if (apic_runs_main_timer > 1) |
| return IRQ_HANDLED; |
| main_timer_handler(); |
| if (using_apic_timer) |
| smp_send_timer_broadcast_ipi(); |
| return IRQ_HANDLED; |
| } |
| |
| static unsigned int cyc2ns_scale __read_mostly; |
| |
| static inline void set_cyc2ns_scale(unsigned long cpu_khz) |
| { |
| cyc2ns_scale = (NSEC_PER_MSEC << NS_SCALE) / cpu_khz; |
| } |
| |
| static inline unsigned long long cycles_2_ns(unsigned long long cyc) |
| { |
| return (cyc * cyc2ns_scale) >> NS_SCALE; |
| } |
| |
| unsigned long long sched_clock(void) |
| { |
| unsigned long a = 0; |
| |
| #if 0 |
| /* Don't do a HPET read here. Using TSC always is much faster |
| and HPET may not be mapped yet when the scheduler first runs. |
| Disadvantage is a small drift between CPUs in some configurations, |
| but that should be tolerable. */ |
| if (__vxtime.mode == VXTIME_HPET) |
| return (hpet_readl(HPET_COUNTER) * vxtime.quot) >> US_SCALE; |
| #endif |
| |
| /* Could do CPU core sync here. Opteron can execute rdtsc speculatively, |
| which means it is not completely exact and may not be monotonous between |
| CPUs. But the errors should be too small to matter for scheduling |
| purposes. */ |
| |
| rdtscll(a); |
| return cycles_2_ns(a); |
| } |
| |
| static unsigned long get_cmos_time(void) |
| { |
| unsigned int year, mon, day, hour, min, sec; |
| unsigned long flags; |
| unsigned extyear = 0; |
| |
| spin_lock_irqsave(&rtc_lock, flags); |
| |
| do { |
| sec = CMOS_READ(RTC_SECONDS); |
| min = CMOS_READ(RTC_MINUTES); |
| hour = CMOS_READ(RTC_HOURS); |
| day = CMOS_READ(RTC_DAY_OF_MONTH); |
| mon = CMOS_READ(RTC_MONTH); |
| year = CMOS_READ(RTC_YEAR); |
| #ifdef CONFIG_ACPI |
| if (acpi_fadt.revision >= FADT2_REVISION_ID && |
| acpi_fadt.century) |
| extyear = CMOS_READ(acpi_fadt.century); |
| #endif |
| } while (sec != CMOS_READ(RTC_SECONDS)); |
| |
| spin_unlock_irqrestore(&rtc_lock, flags); |
| |
| /* |
| * We know that x86-64 always uses BCD format, no need to check the |
| * config register. |
| */ |
| |
| BCD_TO_BIN(sec); |
| BCD_TO_BIN(min); |
| BCD_TO_BIN(hour); |
| BCD_TO_BIN(day); |
| BCD_TO_BIN(mon); |
| BCD_TO_BIN(year); |
| |
| if (extyear) { |
| BCD_TO_BIN(extyear); |
| year += extyear; |
| printk(KERN_INFO "Extended CMOS year: %d\n", extyear); |
| } else { |
| /* |
| * x86-64 systems only exists since 2002. |
| * This will work up to Dec 31, 2100 |
| */ |
| year += 2000; |
| } |
| |
| return mktime(year, mon, day, hour, min, sec); |
| } |
| |
| #ifdef CONFIG_CPU_FREQ |
| |
| /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency |
| changes. |
| |
| RED-PEN: On SMP we assume all CPUs run with the same frequency. It's |
| not that important because current Opteron setups do not support |
| scaling on SMP anyroads. |
| |
| Should fix up last_tsc too. Currently gettimeofday in the |
| first tick after the change will be slightly wrong. */ |
| |
| #include <linux/workqueue.h> |
| |
| static unsigned int cpufreq_delayed_issched = 0; |
| static unsigned int cpufreq_init = 0; |
| static struct work_struct cpufreq_delayed_get_work; |
| |
| static void handle_cpufreq_delayed_get(struct work_struct *v) |
| { |
| unsigned int cpu; |
| for_each_online_cpu(cpu) { |
| cpufreq_get(cpu); |
| } |
| cpufreq_delayed_issched = 0; |
| } |
| |
| /* if we notice lost ticks, schedule a call to cpufreq_get() as it tries |
| * to verify the CPU frequency the timing core thinks the CPU is running |
| * at is still correct. |
| */ |
| static void cpufreq_delayed_get(void) |
| { |
| static int warned; |
| if (cpufreq_init && !cpufreq_delayed_issched) { |
| cpufreq_delayed_issched = 1; |
| if (!warned) { |
| warned = 1; |
| printk(KERN_DEBUG |
| "Losing some ticks... checking if CPU frequency changed.\n"); |
| } |
| schedule_work(&cpufreq_delayed_get_work); |
| } |
| } |
| |
| static unsigned int ref_freq = 0; |
| static unsigned long loops_per_jiffy_ref = 0; |
| |
| static unsigned long cpu_khz_ref = 0; |
| |
| static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
| void *data) |
| { |
| struct cpufreq_freqs *freq = data; |
| unsigned long *lpj, dummy; |
| |
| if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC)) |
| return 0; |
| |
| lpj = &dummy; |
| if (!(freq->flags & CPUFREQ_CONST_LOOPS)) |
| #ifdef CONFIG_SMP |
| lpj = &cpu_data[freq->cpu].loops_per_jiffy; |
| #else |
| lpj = &boot_cpu_data.loops_per_jiffy; |
| #endif |
| |
| if (!ref_freq) { |
| ref_freq = freq->old; |
| loops_per_jiffy_ref = *lpj; |
| cpu_khz_ref = cpu_khz; |
| } |
| if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || |
| (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || |
| (val == CPUFREQ_RESUMECHANGE)) { |
| *lpj = |
| cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); |
| |
| cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new); |
| if (!(freq->flags & CPUFREQ_CONST_LOOPS)) |
| vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz; |
| } |
| |
| set_cyc2ns_scale(cpu_khz_ref); |
| |
| return 0; |
| } |
| |
| static struct notifier_block time_cpufreq_notifier_block = { |
| .notifier_call = time_cpufreq_notifier |
| }; |
| |
| static int __init cpufreq_tsc(void) |
| { |
| INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get); |
| if (!cpufreq_register_notifier(&time_cpufreq_notifier_block, |
| CPUFREQ_TRANSITION_NOTIFIER)) |
| cpufreq_init = 1; |
| return 0; |
| } |
| |
| core_initcall(cpufreq_tsc); |
| |
| #endif |
| |
| /* |
| * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing |
| * it to the HPET timer of known frequency. |
| */ |
| |
| #define TICK_COUNT 100000000 |
| #define TICK_MIN 5000 |
| |
| /* |
| * Some platforms take periodic SMI interrupts with 5ms duration. Make sure none |
| * occurs between the reads of the hpet & TSC. |
| */ |
| static void __init read_hpet_tsc(int *hpet, int *tsc) |
| { |
| int tsc1, tsc2, hpet1; |
| |
| do { |
| tsc1 = get_cycles_sync(); |
| hpet1 = hpet_readl(HPET_COUNTER); |
| tsc2 = get_cycles_sync(); |
| } while (tsc2 - tsc1 > TICK_MIN); |
| *hpet = hpet1; |
| *tsc = tsc2; |
| } |
| |
| |
| static unsigned int __init hpet_calibrate_tsc(void) |
| { |
| int tsc_start, hpet_start; |
| int tsc_now, hpet_now; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| local_irq_disable(); |
| |
| read_hpet_tsc(&hpet_start, &tsc_start); |
| |
| do { |
| local_irq_disable(); |
| read_hpet_tsc(&hpet_now, &tsc_now); |
| local_irq_restore(flags); |
| } while ((tsc_now - tsc_start) < TICK_COUNT && |
| (hpet_now - hpet_start) < TICK_COUNT); |
| |
| return (tsc_now - tsc_start) * 1000000000L |
| / ((hpet_now - hpet_start) * hpet_period / 1000); |
| } |
| |
| |
| /* |
| * pit_calibrate_tsc() uses the speaker output (channel 2) of |
| * the PIT. This is better than using the timer interrupt output, |
| * because we can read the value of the speaker with just one inb(), |
| * where we need three i/o operations for the interrupt channel. |
| * We count how many ticks the TSC does in 50 ms. |
| */ |
| |
| static unsigned int __init pit_calibrate_tsc(void) |
| { |
| unsigned long start, end; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&i8253_lock, flags); |
| |
| outb((inb(0x61) & ~0x02) | 0x01, 0x61); |
| |
| outb(0xb0, 0x43); |
| outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42); |
| outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42); |
| start = get_cycles_sync(); |
| while ((inb(0x61) & 0x20) == 0); |
| end = get_cycles_sync(); |
| |
| spin_unlock_irqrestore(&i8253_lock, flags); |
| |
| return (end - start) / 50; |
| } |
| |
| #ifdef CONFIG_HPET |
| static __init int late_hpet_init(void) |
| { |
| struct hpet_data hd; |
| unsigned int ntimer; |
| |
| if (!vxtime.hpet_address) |
| return 0; |
| |
| memset(&hd, 0, sizeof (hd)); |
| |
| ntimer = hpet_readl(HPET_ID); |
| ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT; |
| ntimer++; |
| |
| /* |
| * Register with driver. |
| * Timer0 and Timer1 is used by platform. |
| */ |
| hd.hd_phys_address = vxtime.hpet_address; |
| hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE); |
| hd.hd_nirqs = ntimer; |
| hd.hd_flags = HPET_DATA_PLATFORM; |
| hpet_reserve_timer(&hd, 0); |
| #ifdef CONFIG_HPET_EMULATE_RTC |
| hpet_reserve_timer(&hd, 1); |
| #endif |
| hd.hd_irq[0] = HPET_LEGACY_8254; |
| hd.hd_irq[1] = HPET_LEGACY_RTC; |
| if (ntimer > 2) { |
| struct hpet *hpet; |
| struct hpet_timer *timer; |
| int i; |
| |
| hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE); |
| timer = &hpet->hpet_timers[2]; |
| for (i = 2; i < ntimer; timer++, i++) |
| hd.hd_irq[i] = (timer->hpet_config & |
| Tn_INT_ROUTE_CNF_MASK) >> |
| Tn_INT_ROUTE_CNF_SHIFT; |
| |
| } |
| |
| hpet_alloc(&hd); |
| return 0; |
| } |
| fs_initcall(late_hpet_init); |
| #endif |
| |
| static int hpet_timer_stop_set_go(unsigned long tick) |
| { |
| unsigned int cfg; |
| |
| /* |
| * Stop the timers and reset the main counter. |
| */ |
| |
| cfg = hpet_readl(HPET_CFG); |
| cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY); |
| hpet_writel(cfg, HPET_CFG); |
| hpet_writel(0, HPET_COUNTER); |
| hpet_writel(0, HPET_COUNTER + 4); |
| |
| /* |
| * Set up timer 0, as periodic with first interrupt to happen at hpet_tick, |
| * and period also hpet_tick. |
| */ |
| if (hpet_use_timer) { |
| hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL | |
| HPET_TN_32BIT, HPET_T0_CFG); |
| hpet_writel(hpet_tick, HPET_T0_CMP); /* next interrupt */ |
| hpet_writel(hpet_tick, HPET_T0_CMP); /* period */ |
| cfg |= HPET_CFG_LEGACY; |
| } |
| /* |
| * Go! |
| */ |
| |
| cfg |= HPET_CFG_ENABLE; |
| hpet_writel(cfg, HPET_CFG); |
| |
| return 0; |
| } |
| |
| static int hpet_init(void) |
| { |
| unsigned int id; |
| |
| if (!vxtime.hpet_address) |
| return -1; |
| set_fixmap_nocache(FIX_HPET_BASE, vxtime.hpet_address); |
| __set_fixmap(VSYSCALL_HPET, vxtime.hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE); |
| |
| /* |
| * Read the period, compute tick and quotient. |
| */ |
| |
| id = hpet_readl(HPET_ID); |
| |
| if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER)) |
| return -1; |
| |
| hpet_period = hpet_readl(HPET_PERIOD); |
| if (hpet_period < 100000 || hpet_period > 100000000) |
| return -1; |
| |
| hpet_tick = (FSEC_PER_TICK + hpet_period / 2) / hpet_period; |
| |
| hpet_use_timer = (id & HPET_ID_LEGSUP); |
| |
| return hpet_timer_stop_set_go(hpet_tick); |
| } |
| |
| static int hpet_reenable(void) |
| { |
| return hpet_timer_stop_set_go(hpet_tick); |
| } |
| |
| #define PIT_MODE 0x43 |
| #define PIT_CH0 0x40 |
| |
| static void __init __pit_init(int val, u8 mode) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&i8253_lock, flags); |
| outb_p(mode, PIT_MODE); |
| outb_p(val & 0xff, PIT_CH0); /* LSB */ |
| outb_p(val >> 8, PIT_CH0); /* MSB */ |
| spin_unlock_irqrestore(&i8253_lock, flags); |
| } |
| |
| void __init pit_init(void) |
| { |
| __pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */ |
| } |
| |
| void __init pit_stop_interrupt(void) |
| { |
| __pit_init(0, 0x30); /* mode 0 */ |
| } |
| |
| void __init stop_timer_interrupt(void) |
| { |
| char *name; |
| if (vxtime.hpet_address) { |
| name = "HPET"; |
| hpet_timer_stop_set_go(0); |
| } else { |
| name = "PIT"; |
| pit_stop_interrupt(); |
| } |
| printk(KERN_INFO "timer: %s interrupt stopped.\n", name); |
| } |
| |
| int __init time_setup(char *str) |
| { |
| report_lost_ticks = 1; |
| return 1; |
| } |
| |
| static struct irqaction irq0 = { |
| timer_interrupt, IRQF_DISABLED, CPU_MASK_NONE, "timer", NULL, NULL |
| }; |
| |
| void __init time_init(void) |
| { |
| if (nohpet) |
| vxtime.hpet_address = 0; |
| |
| xtime.tv_sec = get_cmos_time(); |
| xtime.tv_nsec = 0; |
| |
| set_normalized_timespec(&wall_to_monotonic, |
| -xtime.tv_sec, -xtime.tv_nsec); |
| |
| if (!hpet_init()) |
| vxtime_hz = (FSEC_PER_SEC + hpet_period / 2) / hpet_period; |
| else |
| vxtime.hpet_address = 0; |
| |
| if (hpet_use_timer) { |
| /* set tick_nsec to use the proper rate for HPET */ |
| tick_nsec = TICK_NSEC_HPET; |
| cpu_khz = hpet_calibrate_tsc(); |
| timename = "HPET"; |
| #ifdef CONFIG_X86_PM_TIMER |
| } else if (pmtmr_ioport && !vxtime.hpet_address) { |
| vxtime_hz = PM_TIMER_FREQUENCY; |
| timename = "PM"; |
| pit_init(); |
| cpu_khz = pit_calibrate_tsc(); |
| #endif |
| } else { |
| pit_init(); |
| cpu_khz = pit_calibrate_tsc(); |
| timename = "PIT"; |
| } |
| |
| vxtime.mode = VXTIME_TSC; |
| vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz; |
| vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz; |
| vxtime.last_tsc = get_cycles_sync(); |
| set_cyc2ns_scale(cpu_khz); |
| setup_irq(0, &irq0); |
| |
| #ifndef CONFIG_SMP |
| time_init_gtod(); |
| #endif |
| } |
| |
| /* |
| * Make an educated guess if the TSC is trustworthy and synchronized |
| * over all CPUs. |
| */ |
| __cpuinit int unsynchronized_tsc(void) |
| { |
| #ifdef CONFIG_SMP |
| if (apic_is_clustered_box()) |
| return 1; |
| #endif |
| /* Most intel systems have synchronized TSCs except for |
| multi node systems */ |
| if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) { |
| #ifdef CONFIG_ACPI |
| /* But TSC doesn't tick in C3 so don't use it there */ |
| if (acpi_fadt.length > 0 && acpi_fadt.plvl3_lat < 1000) |
| return 1; |
| #endif |
| return 0; |
| } |
| |
| /* Assume multi socket systems are not synchronized */ |
| return num_present_cpus() > 1; |
| } |
| |
| /* |
| * Decide what mode gettimeofday should use. |
| */ |
| void time_init_gtod(void) |
| { |
| char *timetype; |
| |
| if (unsynchronized_tsc()) |
| notsc = 1; |
| |
| if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP)) |
| vgetcpu_mode = VGETCPU_RDTSCP; |
| else |
| vgetcpu_mode = VGETCPU_LSL; |
| |
| if (vxtime.hpet_address && notsc) { |
| timetype = hpet_use_timer ? "HPET" : "PIT/HPET"; |
| if (hpet_use_timer) |
| vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick; |
| else |
| vxtime.last = hpet_readl(HPET_COUNTER); |
| vxtime.mode = VXTIME_HPET; |
| do_gettimeoffset = do_gettimeoffset_hpet; |
| #ifdef CONFIG_X86_PM_TIMER |
| /* Using PM for gettimeofday is quite slow, but we have no other |
| choice because the TSC is too unreliable on some systems. */ |
| } else if (pmtmr_ioport && !vxtime.hpet_address && notsc) { |
| timetype = "PM"; |
| do_gettimeoffset = do_gettimeoffset_pm; |
| vxtime.mode = VXTIME_PMTMR; |
| sysctl_vsyscall = 0; |
| printk(KERN_INFO "Disabling vsyscall due to use of PM timer\n"); |
| #endif |
| } else { |
| timetype = hpet_use_timer ? "HPET/TSC" : "PIT/TSC"; |
| vxtime.mode = VXTIME_TSC; |
| } |
| |
| printk(KERN_INFO "time.c: Using %ld.%06ld MHz WALL %s GTOD %s timer.\n", |
| vxtime_hz / 1000000, vxtime_hz % 1000000, timename, timetype); |
| printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n", |
| cpu_khz / 1000, cpu_khz % 1000); |
| vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz; |
| vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz; |
| vxtime.last_tsc = get_cycles_sync(); |
| |
| set_cyc2ns_scale(cpu_khz); |
| } |
| |
| __setup("report_lost_ticks", time_setup); |
| |
| static long clock_cmos_diff; |
| static unsigned long sleep_start; |
| |
| /* |
| * sysfs support for the timer. |
| */ |
| |
| static int timer_suspend(struct sys_device *dev, pm_message_t state) |
| { |
| /* |
| * Estimate time zone so that set_time can update the clock |
| */ |
| long cmos_time = get_cmos_time(); |
| |
| clock_cmos_diff = -cmos_time; |
| clock_cmos_diff += get_seconds(); |
| sleep_start = cmos_time; |
| return 0; |
| } |
| |
| static int timer_resume(struct sys_device *dev) |
| { |
| unsigned long flags; |
| unsigned long sec; |
| unsigned long ctime = get_cmos_time(); |
| long sleep_length = (ctime - sleep_start) * HZ; |
| |
| if (sleep_length < 0) { |
| printk(KERN_WARNING "Time skew detected in timer resume!\n"); |
| /* The time after the resume must not be earlier than the time |
| * before the suspend or some nasty things will happen |
| */ |
| sleep_length = 0; |
| ctime = sleep_start; |
| } |
| if (vxtime.hpet_address) |
| hpet_reenable(); |
| else |
| i8254_timer_resume(); |
| |
| sec = ctime + clock_cmos_diff; |
| write_seqlock_irqsave(&xtime_lock,flags); |
| xtime.tv_sec = sec; |
| xtime.tv_nsec = 0; |
| if (vxtime.mode == VXTIME_HPET) { |
| if (hpet_use_timer) |
| vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick; |
| else |
| vxtime.last = hpet_readl(HPET_COUNTER); |
| #ifdef CONFIG_X86_PM_TIMER |
| } else if (vxtime.mode == VXTIME_PMTMR) { |
| pmtimer_resume(); |
| #endif |
| } else |
| vxtime.last_tsc = get_cycles_sync(); |
| write_sequnlock_irqrestore(&xtime_lock,flags); |
| jiffies += sleep_length; |
| monotonic_base += sleep_length * (NSEC_PER_SEC/HZ); |
| touch_softlockup_watchdog(); |
| return 0; |
| } |
| |
| static struct sysdev_class timer_sysclass = { |
| .resume = timer_resume, |
| .suspend = timer_suspend, |
| set_kset_name("timer"), |
| }; |
| |
| /* XXX this driverfs stuff should probably go elsewhere later -john */ |
| static struct sys_device device_timer = { |
| .id = 0, |
| .cls = &timer_sysclass, |
| }; |
| |
| static int time_init_device(void) |
| { |
| int error = sysdev_class_register(&timer_sysclass); |
| if (!error) |
| error = sysdev_register(&device_timer); |
| return error; |
| } |
| |
| device_initcall(time_init_device); |
| |
| #ifdef CONFIG_HPET_EMULATE_RTC |
| /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET |
| * is enabled, we support RTC interrupt functionality in software. |
| * RTC has 3 kinds of interrupts: |
| * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock |
| * is updated |
| * 2) Alarm Interrupt - generate an interrupt at a specific time of day |
| * 3) Periodic Interrupt - generate periodic interrupt, with frequencies |
| * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2) |
| * (1) and (2) above are implemented using polling at a frequency of |
| * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt |
| * overhead. (DEFAULT_RTC_INT_FREQ) |
| * For (3), we use interrupts at 64Hz or user specified periodic |
| * frequency, whichever is higher. |
| */ |
| #include <linux/rtc.h> |
| |
| #define DEFAULT_RTC_INT_FREQ 64 |
| #define RTC_NUM_INTS 1 |
| |
| static unsigned long UIE_on; |
| static unsigned long prev_update_sec; |
| |
| static unsigned long AIE_on; |
| static struct rtc_time alarm_time; |
| |
| static unsigned long PIE_on; |
| static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ; |
| static unsigned long PIE_count; |
| |
| static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */ |
| static unsigned int hpet_t1_cmp; /* cached comparator register */ |
| |
| int is_hpet_enabled(void) |
| { |
| return vxtime.hpet_address != 0; |
| } |
| |
| /* |
| * Timer 1 for RTC, we do not use periodic interrupt feature, |
| * even if HPET supports periodic interrupts on Timer 1. |
| * The reason being, to set up a periodic interrupt in HPET, we need to |
| * stop the main counter. And if we do that everytime someone diables/enables |
| * RTC, we will have adverse effect on main kernel timer running on Timer 0. |
| * So, for the time being, simulate the periodic interrupt in software. |
| * |
| * hpet_rtc_timer_init() is called for the first time and during subsequent |
| * interuppts reinit happens through hpet_rtc_timer_reinit(). |
| */ |
| int hpet_rtc_timer_init(void) |
| { |
| unsigned int cfg, cnt; |
| unsigned long flags; |
| |
| if (!is_hpet_enabled()) |
| return 0; |
| /* |
| * Set the counter 1 and enable the interrupts. |
| */ |
| if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ)) |
| hpet_rtc_int_freq = PIE_freq; |
| else |
| hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ; |
| |
| local_irq_save(flags); |
| |
| cnt = hpet_readl(HPET_COUNTER); |
| cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq); |
| hpet_writel(cnt, HPET_T1_CMP); |
| hpet_t1_cmp = cnt; |
| |
| cfg = hpet_readl(HPET_T1_CFG); |
| cfg &= ~HPET_TN_PERIODIC; |
| cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; |
| hpet_writel(cfg, HPET_T1_CFG); |
| |
| local_irq_restore(flags); |
| |
| return 1; |
| } |
| |
| static void hpet_rtc_timer_reinit(void) |
| { |
| unsigned int cfg, cnt, ticks_per_int, lost_ints; |
| |
| if (unlikely(!(PIE_on | AIE_on | UIE_on))) { |
| cfg = hpet_readl(HPET_T1_CFG); |
| cfg &= ~HPET_TN_ENABLE; |
| hpet_writel(cfg, HPET_T1_CFG); |
| return; |
| } |
| |
| if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ)) |
| hpet_rtc_int_freq = PIE_freq; |
| else |
| hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ; |
| |
| /* It is more accurate to use the comparator value than current count.*/ |
| ticks_per_int = hpet_tick * HZ / hpet_rtc_int_freq; |
| hpet_t1_cmp += ticks_per_int; |
| hpet_writel(hpet_t1_cmp, HPET_T1_CMP); |
| |
| /* |
| * If the interrupt handler was delayed too long, the write above tries |
| * to schedule the next interrupt in the past and the hardware would |
| * not interrupt until the counter had wrapped around. |
| * So we have to check that the comparator wasn't set to a past time. |
| */ |
| cnt = hpet_readl(HPET_COUNTER); |
| if (unlikely((int)(cnt - hpet_t1_cmp) > 0)) { |
| lost_ints = (cnt - hpet_t1_cmp) / ticks_per_int + 1; |
| /* Make sure that, even with the time needed to execute |
| * this code, the next scheduled interrupt has been moved |
| * back to the future: */ |
| lost_ints++; |
| |
| hpet_t1_cmp += lost_ints * ticks_per_int; |
| hpet_writel(hpet_t1_cmp, HPET_T1_CMP); |
| |
| if (PIE_on) |
| PIE_count += lost_ints; |
| |
| printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", |
| hpet_rtc_int_freq); |
| } |
| } |
| |
| /* |
| * The functions below are called from rtc driver. |
| * Return 0 if HPET is not being used. |
| * Otherwise do the necessary changes and return 1. |
| */ |
| int hpet_mask_rtc_irq_bit(unsigned long bit_mask) |
| { |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| if (bit_mask & RTC_UIE) |
| UIE_on = 0; |
| if (bit_mask & RTC_PIE) |
| PIE_on = 0; |
| if (bit_mask & RTC_AIE) |
| AIE_on = 0; |
| |
| return 1; |
| } |
| |
| int hpet_set_rtc_irq_bit(unsigned long bit_mask) |
| { |
| int timer_init_reqd = 0; |
| |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| if (!(PIE_on | AIE_on | UIE_on)) |
| timer_init_reqd = 1; |
| |
| if (bit_mask & RTC_UIE) { |
| UIE_on = 1; |
| } |
| if (bit_mask & RTC_PIE) { |
| PIE_on = 1; |
| PIE_count = 0; |
| } |
| if (bit_mask & RTC_AIE) { |
| AIE_on = 1; |
| } |
| |
| if (timer_init_reqd) |
| hpet_rtc_timer_init(); |
| |
| return 1; |
| } |
| |
| int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) |
| { |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| alarm_time.tm_hour = hrs; |
| alarm_time.tm_min = min; |
| alarm_time.tm_sec = sec; |
| |
| return 1; |
| } |
| |
| int hpet_set_periodic_freq(unsigned long freq) |
| { |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| PIE_freq = freq; |
| PIE_count = 0; |
| |
| return 1; |
| } |
| |
| int hpet_rtc_dropped_irq(void) |
| { |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| return 1; |
| } |
| |
| irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| struct rtc_time curr_time; |
| unsigned long rtc_int_flag = 0; |
| int call_rtc_interrupt = 0; |
| |
| hpet_rtc_timer_reinit(); |
| |
| if (UIE_on | AIE_on) { |
| rtc_get_rtc_time(&curr_time); |
| } |
| if (UIE_on) { |
| if (curr_time.tm_sec != prev_update_sec) { |
| /* Set update int info, call real rtc int routine */ |
| call_rtc_interrupt = 1; |
| rtc_int_flag = RTC_UF; |
| prev_update_sec = curr_time.tm_sec; |
| } |
| } |
| if (PIE_on) { |
| PIE_count++; |
| if (PIE_count >= hpet_rtc_int_freq/PIE_freq) { |
| /* Set periodic int info, call real rtc int routine */ |
| call_rtc_interrupt = 1; |
| rtc_int_flag |= RTC_PF; |
| PIE_count = 0; |
| } |
| } |
| if (AIE_on) { |
| if ((curr_time.tm_sec == alarm_time.tm_sec) && |
| (curr_time.tm_min == alarm_time.tm_min) && |
| (curr_time.tm_hour == alarm_time.tm_hour)) { |
| /* Set alarm int info, call real rtc int routine */ |
| call_rtc_interrupt = 1; |
| rtc_int_flag |= RTC_AF; |
| } |
| } |
| if (call_rtc_interrupt) { |
| rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8)); |
| rtc_interrupt(rtc_int_flag, dev_id); |
| } |
| return IRQ_HANDLED; |
| } |
| #endif |
| |
| static int __init nohpet_setup(char *s) |
| { |
| nohpet = 1; |
| return 1; |
| } |
| |
| __setup("nohpet", nohpet_setup); |
| |
| int __init notsc_setup(char *s) |
| { |
| notsc = 1; |
| return 1; |
| } |
| |
| __setup("notsc", notsc_setup); |