| /* |
| * fs/f2fs/data.c |
| * |
| * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com/ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/fs.h> |
| #include <linux/f2fs_fs.h> |
| #include <linux/buffer_head.h> |
| #include <linux/mpage.h> |
| #include <linux/writeback.h> |
| #include <linux/backing-dev.h> |
| #include <linux/pagevec.h> |
| #include <linux/blkdev.h> |
| #include <linux/bio.h> |
| #include <linux/prefetch.h> |
| #include <linux/uio.h> |
| #include <linux/mm.h> |
| #include <linux/memcontrol.h> |
| #include <linux/cleancache.h> |
| |
| #include "f2fs.h" |
| #include "node.h" |
| #include "segment.h" |
| #include "trace.h" |
| #include <trace/events/f2fs.h> |
| |
| static bool __is_cp_guaranteed(struct page *page) |
| { |
| struct address_space *mapping = page->mapping; |
| struct inode *inode; |
| struct f2fs_sb_info *sbi; |
| |
| if (!mapping) |
| return false; |
| |
| inode = mapping->host; |
| sbi = F2FS_I_SB(inode); |
| |
| if (inode->i_ino == F2FS_META_INO(sbi) || |
| inode->i_ino == F2FS_NODE_INO(sbi) || |
| S_ISDIR(inode->i_mode) || |
| is_cold_data(page)) |
| return true; |
| return false; |
| } |
| |
| static void f2fs_read_end_io(struct bio *bio) |
| { |
| struct bio_vec *bvec; |
| int i; |
| |
| #ifdef CONFIG_F2FS_FAULT_INJECTION |
| if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) |
| bio->bi_error = -EIO; |
| #endif |
| |
| if (f2fs_bio_encrypted(bio)) { |
| if (bio->bi_error) { |
| fscrypt_release_ctx(bio->bi_private); |
| } else { |
| fscrypt_decrypt_bio_pages(bio->bi_private, bio); |
| return; |
| } |
| } |
| |
| bio_for_each_segment_all(bvec, bio, i) { |
| struct page *page = bvec->bv_page; |
| |
| if (!bio->bi_error) { |
| if (!PageUptodate(page)) |
| SetPageUptodate(page); |
| } else { |
| ClearPageUptodate(page); |
| SetPageError(page); |
| } |
| unlock_page(page); |
| } |
| bio_put(bio); |
| } |
| |
| static void f2fs_write_end_io(struct bio *bio) |
| { |
| struct f2fs_sb_info *sbi = bio->bi_private; |
| struct bio_vec *bvec; |
| int i; |
| |
| bio_for_each_segment_all(bvec, bio, i) { |
| struct page *page = bvec->bv_page; |
| enum count_type type = WB_DATA_TYPE(page); |
| |
| fscrypt_pullback_bio_page(&page, true); |
| |
| if (unlikely(bio->bi_error)) { |
| mapping_set_error(page->mapping, -EIO); |
| f2fs_stop_checkpoint(sbi, true); |
| } |
| dec_page_count(sbi, type); |
| clear_cold_data(page); |
| end_page_writeback(page); |
| } |
| if (!get_pages(sbi, F2FS_WB_CP_DATA) && |
| wq_has_sleeper(&sbi->cp_wait)) |
| wake_up(&sbi->cp_wait); |
| |
| bio_put(bio); |
| } |
| |
| /* |
| * Return true, if pre_bio's bdev is same as its target device. |
| */ |
| struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, |
| block_t blk_addr, struct bio *bio) |
| { |
| struct block_device *bdev = sbi->sb->s_bdev; |
| int i; |
| |
| for (i = 0; i < sbi->s_ndevs; i++) { |
| if (FDEV(i).start_blk <= blk_addr && |
| FDEV(i).end_blk >= blk_addr) { |
| blk_addr -= FDEV(i).start_blk; |
| bdev = FDEV(i).bdev; |
| break; |
| } |
| } |
| if (bio) { |
| bio->bi_bdev = bdev; |
| bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); |
| } |
| return bdev; |
| } |
| |
| int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) |
| { |
| int i; |
| |
| for (i = 0; i < sbi->s_ndevs; i++) |
| if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) |
| return i; |
| return 0; |
| } |
| |
| static bool __same_bdev(struct f2fs_sb_info *sbi, |
| block_t blk_addr, struct bio *bio) |
| { |
| return f2fs_target_device(sbi, blk_addr, NULL) == bio->bi_bdev; |
| } |
| |
| /* |
| * Low-level block read/write IO operations. |
| */ |
| static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, |
| int npages, bool is_read) |
| { |
| struct bio *bio; |
| |
| bio = f2fs_bio_alloc(npages); |
| |
| f2fs_target_device(sbi, blk_addr, bio); |
| bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io; |
| bio->bi_private = is_read ? NULL : sbi; |
| |
| return bio; |
| } |
| |
| static inline void __submit_bio(struct f2fs_sb_info *sbi, |
| struct bio *bio, enum page_type type) |
| { |
| if (!is_read_io(bio_op(bio))) { |
| if (f2fs_sb_mounted_blkzoned(sbi->sb) && |
| current->plug && (type == DATA || type == NODE)) |
| blk_finish_plug(current->plug); |
| } |
| submit_bio(bio); |
| } |
| |
| static void __submit_merged_bio(struct f2fs_bio_info *io) |
| { |
| struct f2fs_io_info *fio = &io->fio; |
| |
| if (!io->bio) |
| return; |
| |
| if (is_read_io(fio->op)) |
| trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio); |
| else |
| trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio); |
| |
| bio_set_op_attrs(io->bio, fio->op, fio->op_flags); |
| |
| __submit_bio(io->sbi, io->bio, fio->type); |
| io->bio = NULL; |
| } |
| |
| static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode, |
| struct page *page, nid_t ino) |
| { |
| struct bio_vec *bvec; |
| struct page *target; |
| int i; |
| |
| if (!io->bio) |
| return false; |
| |
| if (!inode && !page && !ino) |
| return true; |
| |
| bio_for_each_segment_all(bvec, io->bio, i) { |
| |
| if (bvec->bv_page->mapping) |
| target = bvec->bv_page; |
| else |
| target = fscrypt_control_page(bvec->bv_page); |
| |
| if (inode && inode == target->mapping->host) |
| return true; |
| if (page && page == target) |
| return true; |
| if (ino && ino == ino_of_node(target)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode, |
| struct page *page, nid_t ino, |
| enum page_type type) |
| { |
| enum page_type btype = PAGE_TYPE_OF_BIO(type); |
| struct f2fs_bio_info *io = &sbi->write_io[btype]; |
| bool ret; |
| |
| down_read(&io->io_rwsem); |
| ret = __has_merged_page(io, inode, page, ino); |
| up_read(&io->io_rwsem); |
| return ret; |
| } |
| |
| static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, |
| struct inode *inode, struct page *page, |
| nid_t ino, enum page_type type, int rw) |
| { |
| enum page_type btype = PAGE_TYPE_OF_BIO(type); |
| struct f2fs_bio_info *io; |
| |
| io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype]; |
| |
| down_write(&io->io_rwsem); |
| |
| if (!__has_merged_page(io, inode, page, ino)) |
| goto out; |
| |
| /* change META to META_FLUSH in the checkpoint procedure */ |
| if (type >= META_FLUSH) { |
| io->fio.type = META_FLUSH; |
| io->fio.op = REQ_OP_WRITE; |
| io->fio.op_flags = REQ_PREFLUSH | REQ_META | REQ_PRIO; |
| if (!test_opt(sbi, NOBARRIER)) |
| io->fio.op_flags |= REQ_FUA; |
| } |
| __submit_merged_bio(io); |
| out: |
| up_write(&io->io_rwsem); |
| } |
| |
| void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type, |
| int rw) |
| { |
| __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw); |
| } |
| |
| void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi, |
| struct inode *inode, struct page *page, |
| nid_t ino, enum page_type type, int rw) |
| { |
| if (has_merged_page(sbi, inode, page, ino, type)) |
| __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw); |
| } |
| |
| void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi) |
| { |
| f2fs_submit_merged_bio(sbi, DATA, WRITE); |
| f2fs_submit_merged_bio(sbi, NODE, WRITE); |
| f2fs_submit_merged_bio(sbi, META, WRITE); |
| } |
| |
| /* |
| * Fill the locked page with data located in the block address. |
| * Return unlocked page. |
| */ |
| int f2fs_submit_page_bio(struct f2fs_io_info *fio) |
| { |
| struct bio *bio; |
| struct page *page = fio->encrypted_page ? |
| fio->encrypted_page : fio->page; |
| |
| trace_f2fs_submit_page_bio(page, fio); |
| f2fs_trace_ios(fio, 0); |
| |
| /* Allocate a new bio */ |
| bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op)); |
| |
| if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { |
| bio_put(bio); |
| return -EFAULT; |
| } |
| bio_set_op_attrs(bio, fio->op, fio->op_flags); |
| |
| __submit_bio(fio->sbi, bio, fio->type); |
| return 0; |
| } |
| |
| void f2fs_submit_page_mbio(struct f2fs_io_info *fio) |
| { |
| struct f2fs_sb_info *sbi = fio->sbi; |
| enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); |
| struct f2fs_bio_info *io; |
| bool is_read = is_read_io(fio->op); |
| struct page *bio_page; |
| |
| io = is_read ? &sbi->read_io : &sbi->write_io[btype]; |
| |
| if (fio->old_blkaddr != NEW_ADDR) |
| verify_block_addr(sbi, fio->old_blkaddr); |
| verify_block_addr(sbi, fio->new_blkaddr); |
| |
| bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; |
| |
| if (!is_read) |
| inc_page_count(sbi, WB_DATA_TYPE(bio_page)); |
| |
| down_write(&io->io_rwsem); |
| |
| if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 || |
| (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) || |
| !__same_bdev(sbi, fio->new_blkaddr, io->bio))) |
| __submit_merged_bio(io); |
| alloc_new: |
| if (io->bio == NULL) { |
| io->bio = __bio_alloc(sbi, fio->new_blkaddr, |
| BIO_MAX_PAGES, is_read); |
| io->fio = *fio; |
| } |
| |
| if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < |
| PAGE_SIZE) { |
| __submit_merged_bio(io); |
| goto alloc_new; |
| } |
| |
| io->last_block_in_bio = fio->new_blkaddr; |
| f2fs_trace_ios(fio, 0); |
| |
| up_write(&io->io_rwsem); |
| trace_f2fs_submit_page_mbio(fio->page, fio); |
| } |
| |
| static void __set_data_blkaddr(struct dnode_of_data *dn) |
| { |
| struct f2fs_node *rn = F2FS_NODE(dn->node_page); |
| __le32 *addr_array; |
| |
| /* Get physical address of data block */ |
| addr_array = blkaddr_in_node(rn); |
| addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); |
| } |
| |
| /* |
| * Lock ordering for the change of data block address: |
| * ->data_page |
| * ->node_page |
| * update block addresses in the node page |
| */ |
| void set_data_blkaddr(struct dnode_of_data *dn) |
| { |
| f2fs_wait_on_page_writeback(dn->node_page, NODE, true); |
| __set_data_blkaddr(dn); |
| if (set_page_dirty(dn->node_page)) |
| dn->node_changed = true; |
| } |
| |
| void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) |
| { |
| dn->data_blkaddr = blkaddr; |
| set_data_blkaddr(dn); |
| f2fs_update_extent_cache(dn); |
| } |
| |
| /* dn->ofs_in_node will be returned with up-to-date last block pointer */ |
| int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); |
| |
| if (!count) |
| return 0; |
| |
| if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) |
| return -EPERM; |
| if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count))) |
| return -ENOSPC; |
| |
| trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, |
| dn->ofs_in_node, count); |
| |
| f2fs_wait_on_page_writeback(dn->node_page, NODE, true); |
| |
| for (; count > 0; dn->ofs_in_node++) { |
| block_t blkaddr = |
| datablock_addr(dn->node_page, dn->ofs_in_node); |
| if (blkaddr == NULL_ADDR) { |
| dn->data_blkaddr = NEW_ADDR; |
| __set_data_blkaddr(dn); |
| count--; |
| } |
| } |
| |
| if (set_page_dirty(dn->node_page)) |
| dn->node_changed = true; |
| return 0; |
| } |
| |
| /* Should keep dn->ofs_in_node unchanged */ |
| int reserve_new_block(struct dnode_of_data *dn) |
| { |
| unsigned int ofs_in_node = dn->ofs_in_node; |
| int ret; |
| |
| ret = reserve_new_blocks(dn, 1); |
| dn->ofs_in_node = ofs_in_node; |
| return ret; |
| } |
| |
| int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) |
| { |
| bool need_put = dn->inode_page ? false : true; |
| int err; |
| |
| err = get_dnode_of_data(dn, index, ALLOC_NODE); |
| if (err) |
| return err; |
| |
| if (dn->data_blkaddr == NULL_ADDR) |
| err = reserve_new_block(dn); |
| if (err || need_put) |
| f2fs_put_dnode(dn); |
| return err; |
| } |
| |
| int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) |
| { |
| struct extent_info ei; |
| struct inode *inode = dn->inode; |
| |
| if (f2fs_lookup_extent_cache(inode, index, &ei)) { |
| dn->data_blkaddr = ei.blk + index - ei.fofs; |
| return 0; |
| } |
| |
| return f2fs_reserve_block(dn, index); |
| } |
| |
| struct page *get_read_data_page(struct inode *inode, pgoff_t index, |
| int op_flags, bool for_write) |
| { |
| struct address_space *mapping = inode->i_mapping; |
| struct dnode_of_data dn; |
| struct page *page; |
| struct extent_info ei; |
| int err; |
| struct f2fs_io_info fio = { |
| .sbi = F2FS_I_SB(inode), |
| .type = DATA, |
| .op = REQ_OP_READ, |
| .op_flags = op_flags, |
| .encrypted_page = NULL, |
| }; |
| |
| if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) |
| return read_mapping_page(mapping, index, NULL); |
| |
| page = f2fs_grab_cache_page(mapping, index, for_write); |
| if (!page) |
| return ERR_PTR(-ENOMEM); |
| |
| if (f2fs_lookup_extent_cache(inode, index, &ei)) { |
| dn.data_blkaddr = ei.blk + index - ei.fofs; |
| goto got_it; |
| } |
| |
| set_new_dnode(&dn, inode, NULL, NULL, 0); |
| err = get_dnode_of_data(&dn, index, LOOKUP_NODE); |
| if (err) |
| goto put_err; |
| f2fs_put_dnode(&dn); |
| |
| if (unlikely(dn.data_blkaddr == NULL_ADDR)) { |
| err = -ENOENT; |
| goto put_err; |
| } |
| got_it: |
| if (PageUptodate(page)) { |
| unlock_page(page); |
| return page; |
| } |
| |
| /* |
| * A new dentry page is allocated but not able to be written, since its |
| * new inode page couldn't be allocated due to -ENOSPC. |
| * In such the case, its blkaddr can be remained as NEW_ADDR. |
| * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata. |
| */ |
| if (dn.data_blkaddr == NEW_ADDR) { |
| zero_user_segment(page, 0, PAGE_SIZE); |
| if (!PageUptodate(page)) |
| SetPageUptodate(page); |
| unlock_page(page); |
| return page; |
| } |
| |
| fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; |
| fio.page = page; |
| err = f2fs_submit_page_bio(&fio); |
| if (err) |
| goto put_err; |
| return page; |
| |
| put_err: |
| f2fs_put_page(page, 1); |
| return ERR_PTR(err); |
| } |
| |
| struct page *find_data_page(struct inode *inode, pgoff_t index) |
| { |
| struct address_space *mapping = inode->i_mapping; |
| struct page *page; |
| |
| page = find_get_page(mapping, index); |
| if (page && PageUptodate(page)) |
| return page; |
| f2fs_put_page(page, 0); |
| |
| page = get_read_data_page(inode, index, 0, false); |
| if (IS_ERR(page)) |
| return page; |
| |
| if (PageUptodate(page)) |
| return page; |
| |
| wait_on_page_locked(page); |
| if (unlikely(!PageUptodate(page))) { |
| f2fs_put_page(page, 0); |
| return ERR_PTR(-EIO); |
| } |
| return page; |
| } |
| |
| /* |
| * If it tries to access a hole, return an error. |
| * Because, the callers, functions in dir.c and GC, should be able to know |
| * whether this page exists or not. |
| */ |
| struct page *get_lock_data_page(struct inode *inode, pgoff_t index, |
| bool for_write) |
| { |
| struct address_space *mapping = inode->i_mapping; |
| struct page *page; |
| repeat: |
| page = get_read_data_page(inode, index, 0, for_write); |
| if (IS_ERR(page)) |
| return page; |
| |
| /* wait for read completion */ |
| lock_page(page); |
| if (unlikely(page->mapping != mapping)) { |
| f2fs_put_page(page, 1); |
| goto repeat; |
| } |
| if (unlikely(!PageUptodate(page))) { |
| f2fs_put_page(page, 1); |
| return ERR_PTR(-EIO); |
| } |
| return page; |
| } |
| |
| /* |
| * Caller ensures that this data page is never allocated. |
| * A new zero-filled data page is allocated in the page cache. |
| * |
| * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and |
| * f2fs_unlock_op(). |
| * Note that, ipage is set only by make_empty_dir, and if any error occur, |
| * ipage should be released by this function. |
| */ |
| struct page *get_new_data_page(struct inode *inode, |
| struct page *ipage, pgoff_t index, bool new_i_size) |
| { |
| struct address_space *mapping = inode->i_mapping; |
| struct page *page; |
| struct dnode_of_data dn; |
| int err; |
| |
| page = f2fs_grab_cache_page(mapping, index, true); |
| if (!page) { |
| /* |
| * before exiting, we should make sure ipage will be released |
| * if any error occur. |
| */ |
| f2fs_put_page(ipage, 1); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| set_new_dnode(&dn, inode, ipage, NULL, 0); |
| err = f2fs_reserve_block(&dn, index); |
| if (err) { |
| f2fs_put_page(page, 1); |
| return ERR_PTR(err); |
| } |
| if (!ipage) |
| f2fs_put_dnode(&dn); |
| |
| if (PageUptodate(page)) |
| goto got_it; |
| |
| if (dn.data_blkaddr == NEW_ADDR) { |
| zero_user_segment(page, 0, PAGE_SIZE); |
| if (!PageUptodate(page)) |
| SetPageUptodate(page); |
| } else { |
| f2fs_put_page(page, 1); |
| |
| /* if ipage exists, blkaddr should be NEW_ADDR */ |
| f2fs_bug_on(F2FS_I_SB(inode), ipage); |
| page = get_lock_data_page(inode, index, true); |
| if (IS_ERR(page)) |
| return page; |
| } |
| got_it: |
| if (new_i_size && i_size_read(inode) < |
| ((loff_t)(index + 1) << PAGE_SHIFT)) |
| f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); |
| return page; |
| } |
| |
| static int __allocate_data_block(struct dnode_of_data *dn) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); |
| struct f2fs_summary sum; |
| struct node_info ni; |
| pgoff_t fofs; |
| blkcnt_t count = 1; |
| |
| if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) |
| return -EPERM; |
| |
| dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); |
| if (dn->data_blkaddr == NEW_ADDR) |
| goto alloc; |
| |
| if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count))) |
| return -ENOSPC; |
| |
| alloc: |
| get_node_info(sbi, dn->nid, &ni); |
| set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); |
| |
| allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr, |
| &sum, CURSEG_WARM_DATA); |
| set_data_blkaddr(dn); |
| |
| /* update i_size */ |
| fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + |
| dn->ofs_in_node; |
| if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT)) |
| f2fs_i_size_write(dn->inode, |
| ((loff_t)(fofs + 1) << PAGE_SHIFT)); |
| return 0; |
| } |
| |
| static inline bool __force_buffered_io(struct inode *inode, int rw) |
| { |
| return ((f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) || |
| (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) || |
| F2FS_I_SB(inode)->s_ndevs); |
| } |
| |
| int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) |
| { |
| struct inode *inode = file_inode(iocb->ki_filp); |
| struct f2fs_map_blocks map; |
| int err = 0; |
| |
| map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); |
| map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); |
| if (map.m_len > map.m_lblk) |
| map.m_len -= map.m_lblk; |
| else |
| map.m_len = 0; |
| |
| map.m_next_pgofs = NULL; |
| |
| if (iocb->ki_flags & IOCB_DIRECT) { |
| err = f2fs_convert_inline_inode(inode); |
| if (err) |
| return err; |
| return f2fs_map_blocks(inode, &map, 1, |
| __force_buffered_io(inode, WRITE) ? |
| F2FS_GET_BLOCK_PRE_AIO : |
| F2FS_GET_BLOCK_PRE_DIO); |
| } |
| if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) { |
| err = f2fs_convert_inline_inode(inode); |
| if (err) |
| return err; |
| } |
| if (!f2fs_has_inline_data(inode)) |
| return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); |
| return err; |
| } |
| |
| /* |
| * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with |
| * f2fs_map_blocks structure. |
| * If original data blocks are allocated, then give them to blockdev. |
| * Otherwise, |
| * a. preallocate requested block addresses |
| * b. do not use extent cache for better performance |
| * c. give the block addresses to blockdev |
| */ |
| int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, |
| int create, int flag) |
| { |
| unsigned int maxblocks = map->m_len; |
| struct dnode_of_data dn; |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| int mode = create ? ALLOC_NODE : LOOKUP_NODE; |
| pgoff_t pgofs, end_offset, end; |
| int err = 0, ofs = 1; |
| unsigned int ofs_in_node, last_ofs_in_node; |
| blkcnt_t prealloc; |
| struct extent_info ei; |
| block_t blkaddr; |
| |
| if (!maxblocks) |
| return 0; |
| |
| map->m_len = 0; |
| map->m_flags = 0; |
| |
| /* it only supports block size == page size */ |
| pgofs = (pgoff_t)map->m_lblk; |
| end = pgofs + maxblocks; |
| |
| if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { |
| map->m_pblk = ei.blk + pgofs - ei.fofs; |
| map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); |
| map->m_flags = F2FS_MAP_MAPPED; |
| goto out; |
| } |
| |
| next_dnode: |
| if (create) |
| f2fs_lock_op(sbi); |
| |
| /* When reading holes, we need its node page */ |
| set_new_dnode(&dn, inode, NULL, NULL, 0); |
| err = get_dnode_of_data(&dn, pgofs, mode); |
| if (err) { |
| if (flag == F2FS_GET_BLOCK_BMAP) |
| map->m_pblk = 0; |
| if (err == -ENOENT) { |
| err = 0; |
| if (map->m_next_pgofs) |
| *map->m_next_pgofs = |
| get_next_page_offset(&dn, pgofs); |
| } |
| goto unlock_out; |
| } |
| |
| prealloc = 0; |
| last_ofs_in_node = ofs_in_node = dn.ofs_in_node; |
| end_offset = ADDRS_PER_PAGE(dn.node_page, inode); |
| |
| next_block: |
| blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); |
| |
| if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) { |
| if (create) { |
| if (unlikely(f2fs_cp_error(sbi))) { |
| err = -EIO; |
| goto sync_out; |
| } |
| if (flag == F2FS_GET_BLOCK_PRE_AIO) { |
| if (blkaddr == NULL_ADDR) { |
| prealloc++; |
| last_ofs_in_node = dn.ofs_in_node; |
| } |
| } else { |
| err = __allocate_data_block(&dn); |
| if (!err) |
| set_inode_flag(inode, FI_APPEND_WRITE); |
| } |
| if (err) |
| goto sync_out; |
| map->m_flags = F2FS_MAP_NEW; |
| blkaddr = dn.data_blkaddr; |
| } else { |
| if (flag == F2FS_GET_BLOCK_BMAP) { |
| map->m_pblk = 0; |
| goto sync_out; |
| } |
| if (flag == F2FS_GET_BLOCK_FIEMAP && |
| blkaddr == NULL_ADDR) { |
| if (map->m_next_pgofs) |
| *map->m_next_pgofs = pgofs + 1; |
| } |
| if (flag != F2FS_GET_BLOCK_FIEMAP || |
| blkaddr != NEW_ADDR) |
| goto sync_out; |
| } |
| } |
| |
| if (flag == F2FS_GET_BLOCK_PRE_AIO) |
| goto skip; |
| |
| if (map->m_len == 0) { |
| /* preallocated unwritten block should be mapped for fiemap. */ |
| if (blkaddr == NEW_ADDR) |
| map->m_flags |= F2FS_MAP_UNWRITTEN; |
| map->m_flags |= F2FS_MAP_MAPPED; |
| |
| map->m_pblk = blkaddr; |
| map->m_len = 1; |
| } else if ((map->m_pblk != NEW_ADDR && |
| blkaddr == (map->m_pblk + ofs)) || |
| (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || |
| flag == F2FS_GET_BLOCK_PRE_DIO) { |
| ofs++; |
| map->m_len++; |
| } else { |
| goto sync_out; |
| } |
| |
| skip: |
| dn.ofs_in_node++; |
| pgofs++; |
| |
| /* preallocate blocks in batch for one dnode page */ |
| if (flag == F2FS_GET_BLOCK_PRE_AIO && |
| (pgofs == end || dn.ofs_in_node == end_offset)) { |
| |
| dn.ofs_in_node = ofs_in_node; |
| err = reserve_new_blocks(&dn, prealloc); |
| if (err) |
| goto sync_out; |
| |
| map->m_len += dn.ofs_in_node - ofs_in_node; |
| if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { |
| err = -ENOSPC; |
| goto sync_out; |
| } |
| dn.ofs_in_node = end_offset; |
| } |
| |
| if (pgofs >= end) |
| goto sync_out; |
| else if (dn.ofs_in_node < end_offset) |
| goto next_block; |
| |
| f2fs_put_dnode(&dn); |
| |
| if (create) { |
| f2fs_unlock_op(sbi); |
| f2fs_balance_fs(sbi, dn.node_changed); |
| } |
| goto next_dnode; |
| |
| sync_out: |
| f2fs_put_dnode(&dn); |
| unlock_out: |
| if (create) { |
| f2fs_unlock_op(sbi); |
| f2fs_balance_fs(sbi, dn.node_changed); |
| } |
| out: |
| trace_f2fs_map_blocks(inode, map, err); |
| return err; |
| } |
| |
| static int __get_data_block(struct inode *inode, sector_t iblock, |
| struct buffer_head *bh, int create, int flag, |
| pgoff_t *next_pgofs) |
| { |
| struct f2fs_map_blocks map; |
| int err; |
| |
| map.m_lblk = iblock; |
| map.m_len = bh->b_size >> inode->i_blkbits; |
| map.m_next_pgofs = next_pgofs; |
| |
| err = f2fs_map_blocks(inode, &map, create, flag); |
| if (!err) { |
| map_bh(bh, inode->i_sb, map.m_pblk); |
| bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; |
| bh->b_size = map.m_len << inode->i_blkbits; |
| } |
| return err; |
| } |
| |
| static int get_data_block(struct inode *inode, sector_t iblock, |
| struct buffer_head *bh_result, int create, int flag, |
| pgoff_t *next_pgofs) |
| { |
| return __get_data_block(inode, iblock, bh_result, create, |
| flag, next_pgofs); |
| } |
| |
| static int get_data_block_dio(struct inode *inode, sector_t iblock, |
| struct buffer_head *bh_result, int create) |
| { |
| return __get_data_block(inode, iblock, bh_result, create, |
| F2FS_GET_BLOCK_DIO, NULL); |
| } |
| |
| static int get_data_block_bmap(struct inode *inode, sector_t iblock, |
| struct buffer_head *bh_result, int create) |
| { |
| /* Block number less than F2FS MAX BLOCKS */ |
| if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) |
| return -EFBIG; |
| |
| return __get_data_block(inode, iblock, bh_result, create, |
| F2FS_GET_BLOCK_BMAP, NULL); |
| } |
| |
| static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) |
| { |
| return (offset >> inode->i_blkbits); |
| } |
| |
| static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) |
| { |
| return (blk << inode->i_blkbits); |
| } |
| |
| int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, |
| u64 start, u64 len) |
| { |
| struct buffer_head map_bh; |
| sector_t start_blk, last_blk; |
| pgoff_t next_pgofs; |
| u64 logical = 0, phys = 0, size = 0; |
| u32 flags = 0; |
| int ret = 0; |
| |
| ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC); |
| if (ret) |
| return ret; |
| |
| if (f2fs_has_inline_data(inode)) { |
| ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); |
| if (ret != -EAGAIN) |
| return ret; |
| } |
| |
| inode_lock(inode); |
| |
| if (logical_to_blk(inode, len) == 0) |
| len = blk_to_logical(inode, 1); |
| |
| start_blk = logical_to_blk(inode, start); |
| last_blk = logical_to_blk(inode, start + len - 1); |
| |
| next: |
| memset(&map_bh, 0, sizeof(struct buffer_head)); |
| map_bh.b_size = len; |
| |
| ret = get_data_block(inode, start_blk, &map_bh, 0, |
| F2FS_GET_BLOCK_FIEMAP, &next_pgofs); |
| if (ret) |
| goto out; |
| |
| /* HOLE */ |
| if (!buffer_mapped(&map_bh)) { |
| start_blk = next_pgofs; |
| |
| if (blk_to_logical(inode, start_blk) < blk_to_logical(inode, |
| F2FS_I_SB(inode)->max_file_blocks)) |
| goto prep_next; |
| |
| flags |= FIEMAP_EXTENT_LAST; |
| } |
| |
| if (size) { |
| if (f2fs_encrypted_inode(inode)) |
| flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; |
| |
| ret = fiemap_fill_next_extent(fieinfo, logical, |
| phys, size, flags); |
| } |
| |
| if (start_blk > last_blk || ret) |
| goto out; |
| |
| logical = blk_to_logical(inode, start_blk); |
| phys = blk_to_logical(inode, map_bh.b_blocknr); |
| size = map_bh.b_size; |
| flags = 0; |
| if (buffer_unwritten(&map_bh)) |
| flags = FIEMAP_EXTENT_UNWRITTEN; |
| |
| start_blk += logical_to_blk(inode, size); |
| |
| prep_next: |
| cond_resched(); |
| if (fatal_signal_pending(current)) |
| ret = -EINTR; |
| else |
| goto next; |
| out: |
| if (ret == 1) |
| ret = 0; |
| |
| inode_unlock(inode); |
| return ret; |
| } |
| |
| static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr, |
| unsigned nr_pages) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct fscrypt_ctx *ctx = NULL; |
| struct bio *bio; |
| |
| if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { |
| ctx = fscrypt_get_ctx(inode, GFP_NOFS); |
| if (IS_ERR(ctx)) |
| return ERR_CAST(ctx); |
| |
| /* wait the page to be moved by cleaning */ |
| f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); |
| } |
| |
| bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES)); |
| if (!bio) { |
| if (ctx) |
| fscrypt_release_ctx(ctx); |
| return ERR_PTR(-ENOMEM); |
| } |
| f2fs_target_device(sbi, blkaddr, bio); |
| bio->bi_end_io = f2fs_read_end_io; |
| bio->bi_private = ctx; |
| |
| return bio; |
| } |
| |
| /* |
| * This function was originally taken from fs/mpage.c, and customized for f2fs. |
| * Major change was from block_size == page_size in f2fs by default. |
| */ |
| static int f2fs_mpage_readpages(struct address_space *mapping, |
| struct list_head *pages, struct page *page, |
| unsigned nr_pages) |
| { |
| struct bio *bio = NULL; |
| unsigned page_idx; |
| sector_t last_block_in_bio = 0; |
| struct inode *inode = mapping->host; |
| const unsigned blkbits = inode->i_blkbits; |
| const unsigned blocksize = 1 << blkbits; |
| sector_t block_in_file; |
| sector_t last_block; |
| sector_t last_block_in_file; |
| sector_t block_nr; |
| struct f2fs_map_blocks map; |
| |
| map.m_pblk = 0; |
| map.m_lblk = 0; |
| map.m_len = 0; |
| map.m_flags = 0; |
| map.m_next_pgofs = NULL; |
| |
| for (page_idx = 0; nr_pages; page_idx++, nr_pages--) { |
| |
| prefetchw(&page->flags); |
| if (pages) { |
| page = list_entry(pages->prev, struct page, lru); |
| list_del(&page->lru); |
| if (add_to_page_cache_lru(page, mapping, |
| page->index, |
| readahead_gfp_mask(mapping))) |
| goto next_page; |
| } |
| |
| block_in_file = (sector_t)page->index; |
| last_block = block_in_file + nr_pages; |
| last_block_in_file = (i_size_read(inode) + blocksize - 1) >> |
| blkbits; |
| if (last_block > last_block_in_file) |
| last_block = last_block_in_file; |
| |
| /* |
| * Map blocks using the previous result first. |
| */ |
| if ((map.m_flags & F2FS_MAP_MAPPED) && |
| block_in_file > map.m_lblk && |
| block_in_file < (map.m_lblk + map.m_len)) |
| goto got_it; |
| |
| /* |
| * Then do more f2fs_map_blocks() calls until we are |
| * done with this page. |
| */ |
| map.m_flags = 0; |
| |
| if (block_in_file < last_block) { |
| map.m_lblk = block_in_file; |
| map.m_len = last_block - block_in_file; |
| |
| if (f2fs_map_blocks(inode, &map, 0, |
| F2FS_GET_BLOCK_READ)) |
| goto set_error_page; |
| } |
| got_it: |
| if ((map.m_flags & F2FS_MAP_MAPPED)) { |
| block_nr = map.m_pblk + block_in_file - map.m_lblk; |
| SetPageMappedToDisk(page); |
| |
| if (!PageUptodate(page) && !cleancache_get_page(page)) { |
| SetPageUptodate(page); |
| goto confused; |
| } |
| } else { |
| zero_user_segment(page, 0, PAGE_SIZE); |
| if (!PageUptodate(page)) |
| SetPageUptodate(page); |
| unlock_page(page); |
| goto next_page; |
| } |
| |
| /* |
| * This page will go to BIO. Do we need to send this |
| * BIO off first? |
| */ |
| if (bio && (last_block_in_bio != block_nr - 1 || |
| !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) { |
| submit_and_realloc: |
| __submit_bio(F2FS_I_SB(inode), bio, DATA); |
| bio = NULL; |
| } |
| if (bio == NULL) { |
| bio = f2fs_grab_bio(inode, block_nr, nr_pages); |
| if (IS_ERR(bio)) { |
| bio = NULL; |
| goto set_error_page; |
| } |
| bio_set_op_attrs(bio, REQ_OP_READ, 0); |
| } |
| |
| if (bio_add_page(bio, page, blocksize, 0) < blocksize) |
| goto submit_and_realloc; |
| |
| last_block_in_bio = block_nr; |
| goto next_page; |
| set_error_page: |
| SetPageError(page); |
| zero_user_segment(page, 0, PAGE_SIZE); |
| unlock_page(page); |
| goto next_page; |
| confused: |
| if (bio) { |
| __submit_bio(F2FS_I_SB(inode), bio, DATA); |
| bio = NULL; |
| } |
| unlock_page(page); |
| next_page: |
| if (pages) |
| put_page(page); |
| } |
| BUG_ON(pages && !list_empty(pages)); |
| if (bio) |
| __submit_bio(F2FS_I_SB(inode), bio, DATA); |
| return 0; |
| } |
| |
| static int f2fs_read_data_page(struct file *file, struct page *page) |
| { |
| struct inode *inode = page->mapping->host; |
| int ret = -EAGAIN; |
| |
| trace_f2fs_readpage(page, DATA); |
| |
| /* If the file has inline data, try to read it directly */ |
| if (f2fs_has_inline_data(inode)) |
| ret = f2fs_read_inline_data(inode, page); |
| if (ret == -EAGAIN) |
| ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1); |
| return ret; |
| } |
| |
| static int f2fs_read_data_pages(struct file *file, |
| struct address_space *mapping, |
| struct list_head *pages, unsigned nr_pages) |
| { |
| struct inode *inode = file->f_mapping->host; |
| struct page *page = list_entry(pages->prev, struct page, lru); |
| |
| trace_f2fs_readpages(inode, page, nr_pages); |
| |
| /* If the file has inline data, skip readpages */ |
| if (f2fs_has_inline_data(inode)) |
| return 0; |
| |
| return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages); |
| } |
| |
| int do_write_data_page(struct f2fs_io_info *fio) |
| { |
| struct page *page = fio->page; |
| struct inode *inode = page->mapping->host; |
| struct dnode_of_data dn; |
| int err = 0; |
| |
| set_new_dnode(&dn, inode, NULL, NULL, 0); |
| err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); |
| if (err) |
| return err; |
| |
| fio->old_blkaddr = dn.data_blkaddr; |
| |
| /* This page is already truncated */ |
| if (fio->old_blkaddr == NULL_ADDR) { |
| ClearPageUptodate(page); |
| goto out_writepage; |
| } |
| |
| if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { |
| gfp_t gfp_flags = GFP_NOFS; |
| |
| /* wait for GCed encrypted page writeback */ |
| f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode), |
| fio->old_blkaddr); |
| retry_encrypt: |
| fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page, |
| PAGE_SIZE, 0, |
| fio->page->index, |
| gfp_flags); |
| if (IS_ERR(fio->encrypted_page)) { |
| err = PTR_ERR(fio->encrypted_page); |
| if (err == -ENOMEM) { |
| /* flush pending ios and wait for a while */ |
| f2fs_flush_merged_bios(F2FS_I_SB(inode)); |
| congestion_wait(BLK_RW_ASYNC, HZ/50); |
| gfp_flags |= __GFP_NOFAIL; |
| err = 0; |
| goto retry_encrypt; |
| } |
| goto out_writepage; |
| } |
| } |
| |
| set_page_writeback(page); |
| |
| /* |
| * If current allocation needs SSR, |
| * it had better in-place writes for updated data. |
| */ |
| if (unlikely(fio->old_blkaddr != NEW_ADDR && |
| !is_cold_data(page) && |
| !IS_ATOMIC_WRITTEN_PAGE(page) && |
| need_inplace_update(inode))) { |
| rewrite_data_page(fio); |
| set_inode_flag(inode, FI_UPDATE_WRITE); |
| trace_f2fs_do_write_data_page(page, IPU); |
| } else { |
| write_data_page(&dn, fio); |
| trace_f2fs_do_write_data_page(page, OPU); |
| set_inode_flag(inode, FI_APPEND_WRITE); |
| if (page->index == 0) |
| set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); |
| } |
| out_writepage: |
| f2fs_put_dnode(&dn); |
| return err; |
| } |
| |
| static int f2fs_write_data_page(struct page *page, |
| struct writeback_control *wbc) |
| { |
| struct inode *inode = page->mapping->host; |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| loff_t i_size = i_size_read(inode); |
| const pgoff_t end_index = ((unsigned long long) i_size) |
| >> PAGE_SHIFT; |
| loff_t psize = (page->index + 1) << PAGE_SHIFT; |
| unsigned offset = 0; |
| bool need_balance_fs = false; |
| int err = 0; |
| struct f2fs_io_info fio = { |
| .sbi = sbi, |
| .type = DATA, |
| .op = REQ_OP_WRITE, |
| .op_flags = wbc_to_write_flags(wbc), |
| .page = page, |
| .encrypted_page = NULL, |
| }; |
| |
| trace_f2fs_writepage(page, DATA); |
| |
| if (page->index < end_index) |
| goto write; |
| |
| /* |
| * If the offset is out-of-range of file size, |
| * this page does not have to be written to disk. |
| */ |
| offset = i_size & (PAGE_SIZE - 1); |
| if ((page->index >= end_index + 1) || !offset) |
| goto out; |
| |
| zero_user_segment(page, offset, PAGE_SIZE); |
| write: |
| if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) |
| goto redirty_out; |
| if (f2fs_is_drop_cache(inode)) |
| goto out; |
| /* we should not write 0'th page having journal header */ |
| if (f2fs_is_volatile_file(inode) && (!page->index || |
| (!wbc->for_reclaim && |
| available_free_memory(sbi, BASE_CHECK)))) |
| goto redirty_out; |
| |
| /* we should bypass data pages to proceed the kworkder jobs */ |
| if (unlikely(f2fs_cp_error(sbi))) { |
| mapping_set_error(page->mapping, -EIO); |
| goto out; |
| } |
| |
| /* Dentry blocks are controlled by checkpoint */ |
| if (S_ISDIR(inode->i_mode)) { |
| err = do_write_data_page(&fio); |
| goto done; |
| } |
| |
| if (!wbc->for_reclaim) |
| need_balance_fs = true; |
| else if (has_not_enough_free_secs(sbi, 0, 0)) |
| goto redirty_out; |
| |
| err = -EAGAIN; |
| f2fs_lock_op(sbi); |
| if (f2fs_has_inline_data(inode)) |
| err = f2fs_write_inline_data(inode, page); |
| if (err == -EAGAIN) |
| err = do_write_data_page(&fio); |
| if (F2FS_I(inode)->last_disk_size < psize) |
| F2FS_I(inode)->last_disk_size = psize; |
| f2fs_unlock_op(sbi); |
| done: |
| if (err && err != -ENOENT) |
| goto redirty_out; |
| |
| out: |
| inode_dec_dirty_pages(inode); |
| if (err) |
| ClearPageUptodate(page); |
| |
| if (wbc->for_reclaim) { |
| f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE); |
| remove_dirty_inode(inode); |
| } |
| |
| unlock_page(page); |
| f2fs_balance_fs(sbi, need_balance_fs); |
| |
| if (unlikely(f2fs_cp_error(sbi))) |
| f2fs_submit_merged_bio(sbi, DATA, WRITE); |
| |
| return 0; |
| |
| redirty_out: |
| redirty_page_for_writepage(wbc, page); |
| if (!err) |
| return AOP_WRITEPAGE_ACTIVATE; |
| unlock_page(page); |
| return err; |
| } |
| |
| /* |
| * This function was copied from write_cche_pages from mm/page-writeback.c. |
| * The major change is making write step of cold data page separately from |
| * warm/hot data page. |
| */ |
| static int f2fs_write_cache_pages(struct address_space *mapping, |
| struct writeback_control *wbc) |
| { |
| int ret = 0; |
| int done = 0; |
| struct pagevec pvec; |
| int nr_pages; |
| pgoff_t uninitialized_var(writeback_index); |
| pgoff_t index; |
| pgoff_t end; /* Inclusive */ |
| pgoff_t done_index; |
| int cycled; |
| int range_whole = 0; |
| int tag; |
| int nwritten = 0; |
| |
| pagevec_init(&pvec, 0); |
| |
| if (wbc->range_cyclic) { |
| writeback_index = mapping->writeback_index; /* prev offset */ |
| index = writeback_index; |
| if (index == 0) |
| cycled = 1; |
| else |
| cycled = 0; |
| end = -1; |
| } else { |
| index = wbc->range_start >> PAGE_SHIFT; |
| end = wbc->range_end >> PAGE_SHIFT; |
| if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) |
| range_whole = 1; |
| cycled = 1; /* ignore range_cyclic tests */ |
| } |
| if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) |
| tag = PAGECACHE_TAG_TOWRITE; |
| else |
| tag = PAGECACHE_TAG_DIRTY; |
| retry: |
| if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) |
| tag_pages_for_writeback(mapping, index, end); |
| done_index = index; |
| while (!done && (index <= end)) { |
| int i; |
| |
| nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, |
| min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1); |
| if (nr_pages == 0) |
| break; |
| |
| for (i = 0; i < nr_pages; i++) { |
| struct page *page = pvec.pages[i]; |
| |
| if (page->index > end) { |
| done = 1; |
| break; |
| } |
| |
| done_index = page->index; |
| |
| lock_page(page); |
| |
| if (unlikely(page->mapping != mapping)) { |
| continue_unlock: |
| unlock_page(page); |
| continue; |
| } |
| |
| if (!PageDirty(page)) { |
| /* someone wrote it for us */ |
| goto continue_unlock; |
| } |
| |
| if (PageWriteback(page)) { |
| if (wbc->sync_mode != WB_SYNC_NONE) |
| f2fs_wait_on_page_writeback(page, |
| DATA, true); |
| else |
| goto continue_unlock; |
| } |
| |
| BUG_ON(PageWriteback(page)); |
| if (!clear_page_dirty_for_io(page)) |
| goto continue_unlock; |
| |
| ret = mapping->a_ops->writepage(page, wbc); |
| if (unlikely(ret)) { |
| /* |
| * keep nr_to_write, since vfs uses this to |
| * get # of written pages. |
| */ |
| if (ret == AOP_WRITEPAGE_ACTIVATE) { |
| unlock_page(page); |
| ret = 0; |
| continue; |
| } |
| done_index = page->index + 1; |
| done = 1; |
| break; |
| } else { |
| nwritten++; |
| } |
| |
| if (--wbc->nr_to_write <= 0 && |
| wbc->sync_mode == WB_SYNC_NONE) { |
| done = 1; |
| break; |
| } |
| } |
| pagevec_release(&pvec); |
| cond_resched(); |
| } |
| |
| if (!cycled && !done) { |
| cycled = 1; |
| index = 0; |
| end = writeback_index - 1; |
| goto retry; |
| } |
| if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) |
| mapping->writeback_index = done_index; |
| |
| if (nwritten) |
| f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host, |
| NULL, 0, DATA, WRITE); |
| |
| return ret; |
| } |
| |
| static int f2fs_write_data_pages(struct address_space *mapping, |
| struct writeback_control *wbc) |
| { |
| struct inode *inode = mapping->host; |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct blk_plug plug; |
| int ret; |
| |
| /* deal with chardevs and other special file */ |
| if (!mapping->a_ops->writepage) |
| return 0; |
| |
| /* skip writing if there is no dirty page in this inode */ |
| if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) |
| return 0; |
| |
| if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE && |
| get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && |
| available_free_memory(sbi, DIRTY_DENTS)) |
| goto skip_write; |
| |
| /* skip writing during file defragment */ |
| if (is_inode_flag_set(inode, FI_DO_DEFRAG)) |
| goto skip_write; |
| |
| /* during POR, we don't need to trigger writepage at all. */ |
| if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) |
| goto skip_write; |
| |
| trace_f2fs_writepages(mapping->host, wbc, DATA); |
| |
| blk_start_plug(&plug); |
| ret = f2fs_write_cache_pages(mapping, wbc); |
| blk_finish_plug(&plug); |
| /* |
| * if some pages were truncated, we cannot guarantee its mapping->host |
| * to detect pending bios. |
| */ |
| |
| remove_dirty_inode(inode); |
| return ret; |
| |
| skip_write: |
| wbc->pages_skipped += get_dirty_pages(inode); |
| trace_f2fs_writepages(mapping->host, wbc, DATA); |
| return 0; |
| } |
| |
| static void f2fs_write_failed(struct address_space *mapping, loff_t to) |
| { |
| struct inode *inode = mapping->host; |
| loff_t i_size = i_size_read(inode); |
| |
| if (to > i_size) { |
| truncate_pagecache(inode, i_size); |
| truncate_blocks(inode, i_size, true); |
| } |
| } |
| |
| static int prepare_write_begin(struct f2fs_sb_info *sbi, |
| struct page *page, loff_t pos, unsigned len, |
| block_t *blk_addr, bool *node_changed) |
| { |
| struct inode *inode = page->mapping->host; |
| pgoff_t index = page->index; |
| struct dnode_of_data dn; |
| struct page *ipage; |
| bool locked = false; |
| struct extent_info ei; |
| int err = 0; |
| |
| /* |
| * we already allocated all the blocks, so we don't need to get |
| * the block addresses when there is no need to fill the page. |
| */ |
| if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE) |
| return 0; |
| |
| if (f2fs_has_inline_data(inode) || |
| (pos & PAGE_MASK) >= i_size_read(inode)) { |
| f2fs_lock_op(sbi); |
| locked = true; |
| } |
| restart: |
| /* check inline_data */ |
| ipage = get_node_page(sbi, inode->i_ino); |
| if (IS_ERR(ipage)) { |
| err = PTR_ERR(ipage); |
| goto unlock_out; |
| } |
| |
| set_new_dnode(&dn, inode, ipage, ipage, 0); |
| |
| if (f2fs_has_inline_data(inode)) { |
| if (pos + len <= MAX_INLINE_DATA) { |
| read_inline_data(page, ipage); |
| set_inode_flag(inode, FI_DATA_EXIST); |
| if (inode->i_nlink) |
| set_inline_node(ipage); |
| } else { |
| err = f2fs_convert_inline_page(&dn, page); |
| if (err) |
| goto out; |
| if (dn.data_blkaddr == NULL_ADDR) |
| err = f2fs_get_block(&dn, index); |
| } |
| } else if (locked) { |
| err = f2fs_get_block(&dn, index); |
| } else { |
| if (f2fs_lookup_extent_cache(inode, index, &ei)) { |
| dn.data_blkaddr = ei.blk + index - ei.fofs; |
| } else { |
| /* hole case */ |
| err = get_dnode_of_data(&dn, index, LOOKUP_NODE); |
| if (err || dn.data_blkaddr == NULL_ADDR) { |
| f2fs_put_dnode(&dn); |
| f2fs_lock_op(sbi); |
| locked = true; |
| goto restart; |
| } |
| } |
| } |
| |
| /* convert_inline_page can make node_changed */ |
| *blk_addr = dn.data_blkaddr; |
| *node_changed = dn.node_changed; |
| out: |
| f2fs_put_dnode(&dn); |
| unlock_out: |
| if (locked) |
| f2fs_unlock_op(sbi); |
| return err; |
| } |
| |
| static int f2fs_write_begin(struct file *file, struct address_space *mapping, |
| loff_t pos, unsigned len, unsigned flags, |
| struct page **pagep, void **fsdata) |
| { |
| struct inode *inode = mapping->host; |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct page *page = NULL; |
| pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; |
| bool need_balance = false; |
| block_t blkaddr = NULL_ADDR; |
| int err = 0; |
| |
| trace_f2fs_write_begin(inode, pos, len, flags); |
| |
| /* |
| * We should check this at this moment to avoid deadlock on inode page |
| * and #0 page. The locking rule for inline_data conversion should be: |
| * lock_page(page #0) -> lock_page(inode_page) |
| */ |
| if (index != 0) { |
| err = f2fs_convert_inline_inode(inode); |
| if (err) |
| goto fail; |
| } |
| repeat: |
| page = grab_cache_page_write_begin(mapping, index, flags); |
| if (!page) { |
| err = -ENOMEM; |
| goto fail; |
| } |
| |
| *pagep = page; |
| |
| err = prepare_write_begin(sbi, page, pos, len, |
| &blkaddr, &need_balance); |
| if (err) |
| goto fail; |
| |
| if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) { |
| unlock_page(page); |
| f2fs_balance_fs(sbi, true); |
| lock_page(page); |
| if (page->mapping != mapping) { |
| /* The page got truncated from under us */ |
| f2fs_put_page(page, 1); |
| goto repeat; |
| } |
| } |
| |
| f2fs_wait_on_page_writeback(page, DATA, false); |
| |
| /* wait for GCed encrypted page writeback */ |
| if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) |
| f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); |
| |
| if (len == PAGE_SIZE || PageUptodate(page)) |
| return 0; |
| |
| if (blkaddr == NEW_ADDR) { |
| zero_user_segment(page, 0, PAGE_SIZE); |
| SetPageUptodate(page); |
| } else { |
| struct bio *bio; |
| |
| bio = f2fs_grab_bio(inode, blkaddr, 1); |
| if (IS_ERR(bio)) { |
| err = PTR_ERR(bio); |
| goto fail; |
| } |
| bio->bi_opf = REQ_OP_READ; |
| if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { |
| bio_put(bio); |
| err = -EFAULT; |
| goto fail; |
| } |
| |
| __submit_bio(sbi, bio, DATA); |
| |
| lock_page(page); |
| if (unlikely(page->mapping != mapping)) { |
| f2fs_put_page(page, 1); |
| goto repeat; |
| } |
| if (unlikely(!PageUptodate(page))) { |
| err = -EIO; |
| goto fail; |
| } |
| } |
| return 0; |
| |
| fail: |
| f2fs_put_page(page, 1); |
| f2fs_write_failed(mapping, pos + len); |
| return err; |
| } |
| |
| static int f2fs_write_end(struct file *file, |
| struct address_space *mapping, |
| loff_t pos, unsigned len, unsigned copied, |
| struct page *page, void *fsdata) |
| { |
| struct inode *inode = page->mapping->host; |
| |
| trace_f2fs_write_end(inode, pos, len, copied); |
| |
| /* |
| * This should be come from len == PAGE_SIZE, and we expect copied |
| * should be PAGE_SIZE. Otherwise, we treat it with zero copied and |
| * let generic_perform_write() try to copy data again through copied=0. |
| */ |
| if (!PageUptodate(page)) { |
| if (unlikely(copied != PAGE_SIZE)) |
| copied = 0; |
| else |
| SetPageUptodate(page); |
| } |
| if (!copied) |
| goto unlock_out; |
| |
| set_page_dirty(page); |
| |
| if (pos + copied > i_size_read(inode)) |
| f2fs_i_size_write(inode, pos + copied); |
| unlock_out: |
| f2fs_put_page(page, 1); |
| f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); |
| return copied; |
| } |
| |
| static int check_direct_IO(struct inode *inode, struct iov_iter *iter, |
| loff_t offset) |
| { |
| unsigned blocksize_mask = inode->i_sb->s_blocksize - 1; |
| |
| if (offset & blocksize_mask) |
| return -EINVAL; |
| |
| if (iov_iter_alignment(iter) & blocksize_mask) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) |
| { |
| struct address_space *mapping = iocb->ki_filp->f_mapping; |
| struct inode *inode = mapping->host; |
| size_t count = iov_iter_count(iter); |
| loff_t offset = iocb->ki_pos; |
| int rw = iov_iter_rw(iter); |
| int err; |
| |
| err = check_direct_IO(inode, iter, offset); |
| if (err) |
| return err; |
| |
| if (__force_buffered_io(inode, rw)) |
| return 0; |
| |
| trace_f2fs_direct_IO_enter(inode, offset, count, rw); |
| |
| down_read(&F2FS_I(inode)->dio_rwsem[rw]); |
| err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio); |
| up_read(&F2FS_I(inode)->dio_rwsem[rw]); |
| |
| if (rw == WRITE) { |
| if (err > 0) |
| set_inode_flag(inode, FI_UPDATE_WRITE); |
| else if (err < 0) |
| f2fs_write_failed(mapping, offset + count); |
| } |
| |
| trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); |
| |
| return err; |
| } |
| |
| void f2fs_invalidate_page(struct page *page, unsigned int offset, |
| unsigned int length) |
| { |
| struct inode *inode = page->mapping->host; |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| |
| if (inode->i_ino >= F2FS_ROOT_INO(sbi) && |
| (offset % PAGE_SIZE || length != PAGE_SIZE)) |
| return; |
| |
| if (PageDirty(page)) { |
| if (inode->i_ino == F2FS_META_INO(sbi)) { |
| dec_page_count(sbi, F2FS_DIRTY_META); |
| } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { |
| dec_page_count(sbi, F2FS_DIRTY_NODES); |
| } else { |
| inode_dec_dirty_pages(inode); |
| remove_dirty_inode(inode); |
| } |
| } |
| |
| /* This is atomic written page, keep Private */ |
| if (IS_ATOMIC_WRITTEN_PAGE(page)) |
| return; |
| |
| set_page_private(page, 0); |
| ClearPagePrivate(page); |
| } |
| |
| int f2fs_release_page(struct page *page, gfp_t wait) |
| { |
| /* If this is dirty page, keep PagePrivate */ |
| if (PageDirty(page)) |
| return 0; |
| |
| /* This is atomic written page, keep Private */ |
| if (IS_ATOMIC_WRITTEN_PAGE(page)) |
| return 0; |
| |
| set_page_private(page, 0); |
| ClearPagePrivate(page); |
| return 1; |
| } |
| |
| /* |
| * This was copied from __set_page_dirty_buffers which gives higher performance |
| * in very high speed storages. (e.g., pmem) |
| */ |
| void f2fs_set_page_dirty_nobuffers(struct page *page) |
| { |
| struct address_space *mapping = page->mapping; |
| unsigned long flags; |
| |
| if (unlikely(!mapping)) |
| return; |
| |
| spin_lock(&mapping->private_lock); |
| lock_page_memcg(page); |
| SetPageDirty(page); |
| spin_unlock(&mapping->private_lock); |
| |
| spin_lock_irqsave(&mapping->tree_lock, flags); |
| WARN_ON_ONCE(!PageUptodate(page)); |
| account_page_dirtied(page, mapping); |
| radix_tree_tag_set(&mapping->page_tree, |
| page_index(page), PAGECACHE_TAG_DIRTY); |
| spin_unlock_irqrestore(&mapping->tree_lock, flags); |
| unlock_page_memcg(page); |
| |
| __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); |
| return; |
| } |
| |
| static int f2fs_set_data_page_dirty(struct page *page) |
| { |
| struct address_space *mapping = page->mapping; |
| struct inode *inode = mapping->host; |
| |
| trace_f2fs_set_page_dirty(page, DATA); |
| |
| if (!PageUptodate(page)) |
| SetPageUptodate(page); |
| |
| if (f2fs_is_atomic_file(inode)) { |
| if (!IS_ATOMIC_WRITTEN_PAGE(page)) { |
| register_inmem_page(inode, page); |
| return 1; |
| } |
| /* |
| * Previously, this page has been registered, we just |
| * return here. |
| */ |
| return 0; |
| } |
| |
| if (!PageDirty(page)) { |
| f2fs_set_page_dirty_nobuffers(page); |
| update_dirty_page(inode, page); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) |
| { |
| struct inode *inode = mapping->host; |
| |
| if (f2fs_has_inline_data(inode)) |
| return 0; |
| |
| /* make sure allocating whole blocks */ |
| if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) |
| filemap_write_and_wait(mapping); |
| |
| return generic_block_bmap(mapping, block, get_data_block_bmap); |
| } |
| |
| #ifdef CONFIG_MIGRATION |
| #include <linux/migrate.h> |
| |
| int f2fs_migrate_page(struct address_space *mapping, |
| struct page *newpage, struct page *page, enum migrate_mode mode) |
| { |
| int rc, extra_count; |
| struct f2fs_inode_info *fi = F2FS_I(mapping->host); |
| bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); |
| |
| BUG_ON(PageWriteback(page)); |
| |
| /* migrating an atomic written page is safe with the inmem_lock hold */ |
| if (atomic_written && !mutex_trylock(&fi->inmem_lock)) |
| return -EAGAIN; |
| |
| /* |
| * A reference is expected if PagePrivate set when move mapping, |
| * however F2FS breaks this for maintaining dirty page counts when |
| * truncating pages. So here adjusting the 'extra_count' make it work. |
| */ |
| extra_count = (atomic_written ? 1 : 0) - page_has_private(page); |
| rc = migrate_page_move_mapping(mapping, newpage, |
| page, NULL, mode, extra_count); |
| if (rc != MIGRATEPAGE_SUCCESS) { |
| if (atomic_written) |
| mutex_unlock(&fi->inmem_lock); |
| return rc; |
| } |
| |
| if (atomic_written) { |
| struct inmem_pages *cur; |
| list_for_each_entry(cur, &fi->inmem_pages, list) |
| if (cur->page == page) { |
| cur->page = newpage; |
| break; |
| } |
| mutex_unlock(&fi->inmem_lock); |
| put_page(page); |
| get_page(newpage); |
| } |
| |
| if (PagePrivate(page)) |
| SetPagePrivate(newpage); |
| set_page_private(newpage, page_private(page)); |
| |
| migrate_page_copy(newpage, page); |
| |
| return MIGRATEPAGE_SUCCESS; |
| } |
| #endif |
| |
| const struct address_space_operations f2fs_dblock_aops = { |
| .readpage = f2fs_read_data_page, |
| .readpages = f2fs_read_data_pages, |
| .writepage = f2fs_write_data_page, |
| .writepages = f2fs_write_data_pages, |
| .write_begin = f2fs_write_begin, |
| .write_end = f2fs_write_end, |
| .set_page_dirty = f2fs_set_data_page_dirty, |
| .invalidatepage = f2fs_invalidate_page, |
| .releasepage = f2fs_release_page, |
| .direct_IO = f2fs_direct_IO, |
| .bmap = f2fs_bmap, |
| #ifdef CONFIG_MIGRATION |
| .migratepage = f2fs_migrate_page, |
| #endif |
| }; |