| /* |
| * arch/v850/kernel/setup.c -- Arch-dependent initialization functions |
| * |
| * Copyright (C) 2001,02,03 NEC Electronics Corporation |
| * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> |
| * |
| * This file is subject to the terms and conditions of the GNU General |
| * Public License. See the file COPYING in the main directory of this |
| * archive for more details. |
| * |
| * Written by Miles Bader <miles@gnu.org> |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/bootmem.h> |
| #include <linux/swap.h> /* we don't have swap, but for nr_free_pages */ |
| #include <linux/irq.h> |
| #include <linux/reboot.h> |
| #include <linux/personality.h> |
| #include <linux/major.h> |
| #include <linux/root_dev.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/init.h> |
| |
| #include <asm/irq.h> |
| #include <asm/setup.h> |
| |
| #include "mach.h" |
| |
| /* These symbols are all defined in the linker map to delineate various |
| statically allocated regions of memory. */ |
| |
| extern char _intv_start, _intv_end; |
| /* `kram' is only used if the kernel uses part of normal user RAM. */ |
| extern char _kram_start __attribute__ ((__weak__)); |
| extern char _kram_end __attribute__ ((__weak__)); |
| extern char _init_start, _init_end; |
| extern char _bootmap; |
| extern char _stext, _etext, _sdata, _edata, _sbss, _ebss; |
| /* Many platforms use an embedded root image. */ |
| extern char _root_fs_image_start __attribute__ ((__weak__)); |
| extern char _root_fs_image_end __attribute__ ((__weak__)); |
| |
| |
| char command_line[COMMAND_LINE_SIZE]; |
| |
| /* Memory not used by the kernel. */ |
| static unsigned long total_ram_pages; |
| |
| /* System RAM. */ |
| static unsigned long ram_start = 0, ram_len = 0; |
| |
| |
| #define ADDR_TO_PAGE_UP(x) ((((unsigned long)x) + PAGE_SIZE-1) >> PAGE_SHIFT) |
| #define ADDR_TO_PAGE(x) (((unsigned long)x) >> PAGE_SHIFT) |
| #define PAGE_TO_ADDR(x) (((unsigned long)x) << PAGE_SHIFT) |
| |
| static void init_mem_alloc (unsigned long ram_start, unsigned long ram_len); |
| |
| void set_mem_root (void *addr, size_t len, char *cmd_line); |
| |
| |
| void __init setup_arch (char **cmdline) |
| { |
| /* Keep a copy of command line */ |
| *cmdline = command_line; |
| memcpy (saved_command_line, command_line, COMMAND_LINE_SIZE); |
| saved_command_line[COMMAND_LINE_SIZE - 1] = '\0'; |
| |
| console_verbose (); |
| |
| init_mm.start_code = (unsigned long) &_stext; |
| init_mm.end_code = (unsigned long) &_etext; |
| init_mm.end_data = (unsigned long) &_edata; |
| init_mm.brk = (unsigned long) &_kram_end; |
| |
| /* Find out what mem this machine has. */ |
| mach_get_physical_ram (&ram_start, &ram_len); |
| /* ... and tell the kernel about it. */ |
| init_mem_alloc (ram_start, ram_len); |
| |
| printk (KERN_INFO "CPU: %s\nPlatform: %s\n", |
| CPU_MODEL_LONG, PLATFORM_LONG); |
| |
| /* do machine-specific setups. */ |
| mach_setup (cmdline); |
| |
| #ifdef CONFIG_MTD |
| if (!ROOT_DEV && &_root_fs_image_end > &_root_fs_image_start) |
| set_mem_root (&_root_fs_image_start, |
| &_root_fs_image_end - &_root_fs_image_start, |
| *cmdline); |
| #endif |
| } |
| |
| void __init trap_init (void) |
| { |
| } |
| |
| #ifdef CONFIG_MTD |
| /* Set the root filesystem to be the given memory region. |
| Some parameter may be appended to CMD_LINE. */ |
| void set_mem_root (void *addr, size_t len, char *cmd_line) |
| { |
| /* The only way to pass info to the MTD slram driver is via |
| the command line. */ |
| if (*cmd_line) { |
| cmd_line += strlen (cmd_line); |
| *cmd_line++ = ' '; |
| } |
| sprintf (cmd_line, "slram=root,0x%x,+0x%x", (u32)addr, (u32)len); |
| |
| ROOT_DEV = MKDEV (MTD_BLOCK_MAJOR, 0); |
| } |
| #endif |
| |
| |
| static void irq_nop (unsigned irq) { } |
| static unsigned irq_zero (unsigned irq) { return 0; } |
| |
| static void nmi_end (unsigned irq) |
| { |
| if (irq != IRQ_NMI (0)) { |
| printk (KERN_CRIT "NMI %d is unrecoverable; restarting...", |
| irq - IRQ_NMI (0)); |
| machine_restart (0); |
| } |
| } |
| |
| static struct hw_interrupt_type nmi_irq_type = { |
| "NMI", |
| irq_zero, /* startup */ |
| irq_nop, /* shutdown */ |
| irq_nop, /* enable */ |
| irq_nop, /* disable */ |
| irq_nop, /* ack */ |
| nmi_end, /* end */ |
| }; |
| |
| void __init init_IRQ (void) |
| { |
| init_irq_handlers (0, NUM_MACH_IRQS, 1, 0); |
| init_irq_handlers (IRQ_NMI (0), NUM_NMIS, 1, &nmi_irq_type); |
| mach_init_irqs (); |
| } |
| |
| |
| void __init mem_init (void) |
| { |
| max_mapnr = MAP_NR (ram_start + ram_len); |
| |
| num_physpages = ADDR_TO_PAGE (ram_len); |
| |
| total_ram_pages = free_all_bootmem (); |
| |
| printk (KERN_INFO |
| "Memory: %luK/%luK available" |
| " (%luK kernel code, %luK data)\n", |
| PAGE_TO_ADDR (nr_free_pages()) / 1024, |
| ram_len / 1024, |
| ((unsigned long)&_etext - (unsigned long)&_stext) / 1024, |
| ((unsigned long)&_ebss - (unsigned long)&_sdata) / 1024); |
| } |
| |
| void free_initmem (void) |
| { |
| unsigned long ram_end = ram_start + ram_len; |
| unsigned long start = PAGE_ALIGN ((unsigned long)(&_init_start)); |
| |
| if (start >= ram_start && start < ram_end) { |
| unsigned long addr; |
| unsigned long end = PAGE_ALIGN ((unsigned long)(&_init_end)); |
| |
| if (end > ram_end) |
| end = ram_end; |
| |
| printk("Freeing unused kernel memory: %ldK freed\n", |
| (end - start) / 1024); |
| |
| for (addr = start; addr < end; addr += PAGE_SIZE) { |
| struct page *page = virt_to_page (addr); |
| ClearPageReserved (page); |
| set_page_count (page, 1); |
| __free_page (page); |
| total_ram_pages++; |
| } |
| } |
| } |
| |
| |
| /* Initialize the `bootmem allocator'. RAM_START and RAM_LEN identify |
| what RAM may be used. */ |
| static void __init |
| init_bootmem_alloc (unsigned long ram_start, unsigned long ram_len) |
| { |
| /* The part of the kernel that's in the same managed RAM space |
| used for general allocation. */ |
| unsigned long kram_start = (unsigned long)&_kram_start; |
| unsigned long kram_end = (unsigned long)&_kram_end; |
| /* End of the managed RAM space. */ |
| unsigned long ram_end = ram_start + ram_len; |
| /* Address range of the interrupt vector table. */ |
| unsigned long intv_start = (unsigned long)&_intv_start; |
| unsigned long intv_end = (unsigned long)&_intv_end; |
| /* True if the interrupt vectors are in the managed RAM area. */ |
| int intv_in_ram = (intv_end > ram_start && intv_start < ram_end); |
| /* True if the interrupt vectors are inside the kernel's RAM. */ |
| int intv_in_kram = (intv_end > kram_start && intv_start < kram_end); |
| /* A pointer to an optional function that reserves platform-specific |
| memory regions. We declare the pointer `volatile' to avoid gcc |
| turning the call into a static call (the problem is that since |
| it's a weak symbol, a static call may end up trying to reference |
| the location 0x0, which is not always reachable). */ |
| void (*volatile mrb) (void) = mach_reserve_bootmem; |
| /* The bootmem allocator's allocation bitmap. */ |
| unsigned long bootmap = (unsigned long)&_bootmap; |
| unsigned long bootmap_len; |
| |
| /* Round bootmap location up to next page. */ |
| bootmap = PAGE_TO_ADDR (ADDR_TO_PAGE_UP (bootmap)); |
| |
| /* Initialize bootmem allocator. */ |
| bootmap_len = init_bootmem_node (NODE_DATA (0), |
| ADDR_TO_PAGE (bootmap), |
| ADDR_TO_PAGE (PAGE_OFFSET), |
| ADDR_TO_PAGE (ram_end)); |
| |
| /* Now make the RAM actually allocatable (it starts out `reserved'). */ |
| free_bootmem (ram_start, ram_len); |
| |
| if (kram_end > kram_start) |
| /* Reserve the RAM part of the kernel's address space, so it |
| doesn't get allocated. */ |
| reserve_bootmem (kram_start, kram_end - kram_start); |
| |
| if (intv_in_ram && !intv_in_kram) |
| /* Reserve the interrupt vector space. */ |
| reserve_bootmem (intv_start, intv_end - intv_start); |
| |
| if (bootmap >= ram_start && bootmap < ram_end) |
| /* Reserve the bootmap space. */ |
| reserve_bootmem (bootmap, bootmap_len); |
| |
| /* Reserve the memory used by the root filesystem image if it's |
| in RAM. */ |
| if (&_root_fs_image_end > &_root_fs_image_start |
| && (unsigned long)&_root_fs_image_start >= ram_start |
| && (unsigned long)&_root_fs_image_start < ram_end) |
| reserve_bootmem ((unsigned long)&_root_fs_image_start, |
| &_root_fs_image_end - &_root_fs_image_start); |
| |
| /* Let the platform-dependent code reserve some too. */ |
| if (mrb) |
| (*mrb) (); |
| } |
| |
| /* Tell the kernel about what RAM it may use for memory allocation. */ |
| static void __init |
| init_mem_alloc (unsigned long ram_start, unsigned long ram_len) |
| { |
| unsigned i; |
| unsigned long zones_size[MAX_NR_ZONES]; |
| |
| init_bootmem_alloc (ram_start, ram_len); |
| |
| for (i = 0; i < MAX_NR_ZONES; i++) |
| zones_size[i] = 0; |
| |
| /* We stuff all the memory into one area, which includes the |
| initial gap from PAGE_OFFSET to ram_start. */ |
| zones_size[ZONE_DMA] |
| = ADDR_TO_PAGE (ram_len + (ram_start - PAGE_OFFSET)); |
| |
| /* The allocator is very picky about the address of the first |
| allocatable page -- it must be at least as aligned as the |
| maximum allocation -- so try to detect cases where it will get |
| confused and signal them at compile time (this is a common |
| problem when porting to a new platform with ). There is a |
| similar runtime check in free_area_init_core. */ |
| #if ((PAGE_OFFSET >> PAGE_SHIFT) & ((1UL << (MAX_ORDER - 1)) - 1)) |
| #error MAX_ORDER is too large for given PAGE_OFFSET (use CONFIG_FORCE_MAX_ZONEORDER to change it) |
| #endif |
| NODE_DATA(0)->node_mem_map = NULL; |
| free_area_init_node (0, NODE_DATA(0), zones_size, |
| ADDR_TO_PAGE (PAGE_OFFSET), 0); |
| } |