| /* |
| * Copyright (c) 2005-2011 Atheros Communications Inc. |
| * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include <linux/pci.h> |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/spinlock.h> |
| |
| #include "core.h" |
| #include "debug.h" |
| |
| #include "targaddrs.h" |
| #include "bmi.h" |
| |
| #include "hif.h" |
| #include "htc.h" |
| |
| #include "ce.h" |
| #include "pci.h" |
| |
| unsigned int ath10k_target_ps; |
| module_param(ath10k_target_ps, uint, 0644); |
| MODULE_PARM_DESC(ath10k_target_ps, "Enable ath10k Target (SoC) PS option"); |
| |
| #define QCA988X_1_0_DEVICE_ID (0xabcd) |
| #define QCA988X_2_0_DEVICE_ID (0x003c) |
| |
| static DEFINE_PCI_DEVICE_TABLE(ath10k_pci_id_table) = { |
| { PCI_VDEVICE(ATHEROS, QCA988X_1_0_DEVICE_ID) }, /* PCI-E QCA988X V1 */ |
| { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */ |
| {0} |
| }; |
| |
| static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address, |
| u32 *data); |
| |
| static void ath10k_pci_process_ce(struct ath10k *ar); |
| static int ath10k_pci_post_rx(struct ath10k *ar); |
| static int ath10k_pci_post_rx_pipe(struct hif_ce_pipe_info *pipe_info, |
| int num); |
| static void ath10k_pci_rx_pipe_cleanup(struct hif_ce_pipe_info *pipe_info); |
| static void ath10k_pci_stop_ce(struct ath10k *ar); |
| |
| static const struct ce_attr host_ce_config_wlan[] = { |
| /* host->target HTC control and raw streams */ |
| { /* CE0 */ CE_ATTR_FLAGS, 0, 16, 256, 0, NULL,}, |
| /* could be moved to share CE3 */ |
| /* target->host HTT + HTC control */ |
| { /* CE1 */ CE_ATTR_FLAGS, 0, 0, 512, 512, NULL,}, |
| /* target->host WMI */ |
| { /* CE2 */ CE_ATTR_FLAGS, 0, 0, 2048, 32, NULL,}, |
| /* host->target WMI */ |
| { /* CE3 */ CE_ATTR_FLAGS, 0, 32, 2048, 0, NULL,}, |
| /* host->target HTT */ |
| { /* CE4 */ CE_ATTR_FLAGS | CE_ATTR_DIS_INTR, 0, |
| CE_HTT_H2T_MSG_SRC_NENTRIES, 256, 0, NULL,}, |
| /* unused */ |
| { /* CE5 */ CE_ATTR_FLAGS, 0, 0, 0, 0, NULL,}, |
| /* Target autonomous hif_memcpy */ |
| { /* CE6 */ CE_ATTR_FLAGS, 0, 0, 0, 0, NULL,}, |
| /* ce_diag, the Diagnostic Window */ |
| { /* CE7 */ CE_ATTR_FLAGS, 0, 2, DIAG_TRANSFER_LIMIT, 2, NULL,}, |
| }; |
| |
| /* Target firmware's Copy Engine configuration. */ |
| static const struct ce_pipe_config target_ce_config_wlan[] = { |
| /* host->target HTC control and raw streams */ |
| { /* CE0 */ 0, PIPEDIR_OUT, 32, 256, CE_ATTR_FLAGS, 0,}, |
| /* target->host HTT + HTC control */ |
| { /* CE1 */ 1, PIPEDIR_IN, 32, 512, CE_ATTR_FLAGS, 0,}, |
| /* target->host WMI */ |
| { /* CE2 */ 2, PIPEDIR_IN, 32, 2048, CE_ATTR_FLAGS, 0,}, |
| /* host->target WMI */ |
| { /* CE3 */ 3, PIPEDIR_OUT, 32, 2048, CE_ATTR_FLAGS, 0,}, |
| /* host->target HTT */ |
| { /* CE4 */ 4, PIPEDIR_OUT, 256, 256, CE_ATTR_FLAGS, 0,}, |
| /* NB: 50% of src nentries, since tx has 2 frags */ |
| /* unused */ |
| { /* CE5 */ 5, PIPEDIR_OUT, 32, 2048, CE_ATTR_FLAGS, 0,}, |
| /* Reserved for target autonomous hif_memcpy */ |
| { /* CE6 */ 6, PIPEDIR_INOUT, 32, 4096, CE_ATTR_FLAGS, 0,}, |
| /* CE7 used only by Host */ |
| }; |
| |
| /* |
| * Diagnostic read/write access is provided for startup/config/debug usage. |
| * Caller must guarantee proper alignment, when applicable, and single user |
| * at any moment. |
| */ |
| static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data, |
| int nbytes) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret = 0; |
| u32 buf; |
| unsigned int completed_nbytes, orig_nbytes, remaining_bytes; |
| unsigned int id; |
| unsigned int flags; |
| struct ce_state *ce_diag; |
| /* Host buffer address in CE space */ |
| u32 ce_data; |
| dma_addr_t ce_data_base = 0; |
| void *data_buf = NULL; |
| int i; |
| |
| /* |
| * This code cannot handle reads to non-memory space. Redirect to the |
| * register read fn but preserve the multi word read capability of |
| * this fn |
| */ |
| if (address < DRAM_BASE_ADDRESS) { |
| if (!IS_ALIGNED(address, 4) || |
| !IS_ALIGNED((unsigned long)data, 4)) |
| return -EIO; |
| |
| while ((nbytes >= 4) && ((ret = ath10k_pci_diag_read_access( |
| ar, address, (u32 *)data)) == 0)) { |
| nbytes -= sizeof(u32); |
| address += sizeof(u32); |
| data += sizeof(u32); |
| } |
| return ret; |
| } |
| |
| ce_diag = ar_pci->ce_diag; |
| |
| /* |
| * Allocate a temporary bounce buffer to hold caller's data |
| * to be DMA'ed from Target. This guarantees |
| * 1) 4-byte alignment |
| * 2) Buffer in DMA-able space |
| */ |
| orig_nbytes = nbytes; |
| data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev, |
| orig_nbytes, |
| &ce_data_base); |
| |
| if (!data_buf) { |
| ret = -ENOMEM; |
| goto done; |
| } |
| memset(data_buf, 0, orig_nbytes); |
| |
| remaining_bytes = orig_nbytes; |
| ce_data = ce_data_base; |
| while (remaining_bytes) { |
| nbytes = min_t(unsigned int, remaining_bytes, |
| DIAG_TRANSFER_LIMIT); |
| |
| ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, ce_data); |
| if (ret != 0) |
| goto done; |
| |
| /* Request CE to send from Target(!) address to Host buffer */ |
| /* |
| * The address supplied by the caller is in the |
| * Target CPU virtual address space. |
| * |
| * In order to use this address with the diagnostic CE, |
| * convert it from Target CPU virtual address space |
| * to CE address space |
| */ |
| ath10k_pci_wake(ar); |
| address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, |
| address); |
| ath10k_pci_sleep(ar); |
| |
| ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, |
| 0); |
| if (ret) |
| goto done; |
| |
| i = 0; |
| while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf, |
| &completed_nbytes, |
| &id) != 0) { |
| mdelay(1); |
| if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { |
| ret = -EBUSY; |
| goto done; |
| } |
| } |
| |
| if (nbytes != completed_nbytes) { |
| ret = -EIO; |
| goto done; |
| } |
| |
| if (buf != (u32) address) { |
| ret = -EIO; |
| goto done; |
| } |
| |
| i = 0; |
| while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf, |
| &completed_nbytes, |
| &id, &flags) != 0) { |
| mdelay(1); |
| |
| if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { |
| ret = -EBUSY; |
| goto done; |
| } |
| } |
| |
| if (nbytes != completed_nbytes) { |
| ret = -EIO; |
| goto done; |
| } |
| |
| if (buf != ce_data) { |
| ret = -EIO; |
| goto done; |
| } |
| |
| remaining_bytes -= nbytes; |
| address += nbytes; |
| ce_data += nbytes; |
| } |
| |
| done: |
| if (ret == 0) { |
| /* Copy data from allocated DMA buf to caller's buf */ |
| WARN_ON_ONCE(orig_nbytes & 3); |
| for (i = 0; i < orig_nbytes / sizeof(__le32); i++) { |
| ((u32 *)data)[i] = |
| __le32_to_cpu(((__le32 *)data_buf)[i]); |
| } |
| } else |
| ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n", |
| __func__, address); |
| |
| if (data_buf) |
| pci_free_consistent(ar_pci->pdev, orig_nbytes, |
| data_buf, ce_data_base); |
| |
| return ret; |
| } |
| |
| /* Read 4-byte aligned data from Target memory or register */ |
| static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address, |
| u32 *data) |
| { |
| /* Assume range doesn't cross this boundary */ |
| if (address >= DRAM_BASE_ADDRESS) |
| return ath10k_pci_diag_read_mem(ar, address, data, sizeof(u32)); |
| |
| ath10k_pci_wake(ar); |
| *data = ath10k_pci_read32(ar, address); |
| ath10k_pci_sleep(ar); |
| return 0; |
| } |
| |
| static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address, |
| const void *data, int nbytes) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret = 0; |
| u32 buf; |
| unsigned int completed_nbytes, orig_nbytes, remaining_bytes; |
| unsigned int id; |
| unsigned int flags; |
| struct ce_state *ce_diag; |
| void *data_buf = NULL; |
| u32 ce_data; /* Host buffer address in CE space */ |
| dma_addr_t ce_data_base = 0; |
| int i; |
| |
| ce_diag = ar_pci->ce_diag; |
| |
| /* |
| * Allocate a temporary bounce buffer to hold caller's data |
| * to be DMA'ed to Target. This guarantees |
| * 1) 4-byte alignment |
| * 2) Buffer in DMA-able space |
| */ |
| orig_nbytes = nbytes; |
| data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev, |
| orig_nbytes, |
| &ce_data_base); |
| if (!data_buf) { |
| ret = -ENOMEM; |
| goto done; |
| } |
| |
| /* Copy caller's data to allocated DMA buf */ |
| WARN_ON_ONCE(orig_nbytes & 3); |
| for (i = 0; i < orig_nbytes / sizeof(__le32); i++) |
| ((__le32 *)data_buf)[i] = __cpu_to_le32(((u32 *)data)[i]); |
| |
| /* |
| * The address supplied by the caller is in the |
| * Target CPU virtual address space. |
| * |
| * In order to use this address with the diagnostic CE, |
| * convert it from |
| * Target CPU virtual address space |
| * to |
| * CE address space |
| */ |
| ath10k_pci_wake(ar); |
| address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address); |
| ath10k_pci_sleep(ar); |
| |
| remaining_bytes = orig_nbytes; |
| ce_data = ce_data_base; |
| while (remaining_bytes) { |
| /* FIXME: check cast */ |
| nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT); |
| |
| /* Set up to receive directly into Target(!) address */ |
| ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, address); |
| if (ret != 0) |
| goto done; |
| |
| /* |
| * Request CE to send caller-supplied data that |
| * was copied to bounce buffer to Target(!) address. |
| */ |
| ret = ath10k_ce_send(ce_diag, NULL, (u32) ce_data, |
| nbytes, 0, 0); |
| if (ret != 0) |
| goto done; |
| |
| i = 0; |
| while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf, |
| &completed_nbytes, |
| &id) != 0) { |
| mdelay(1); |
| |
| if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { |
| ret = -EBUSY; |
| goto done; |
| } |
| } |
| |
| if (nbytes != completed_nbytes) { |
| ret = -EIO; |
| goto done; |
| } |
| |
| if (buf != ce_data) { |
| ret = -EIO; |
| goto done; |
| } |
| |
| i = 0; |
| while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf, |
| &completed_nbytes, |
| &id, &flags) != 0) { |
| mdelay(1); |
| |
| if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { |
| ret = -EBUSY; |
| goto done; |
| } |
| } |
| |
| if (nbytes != completed_nbytes) { |
| ret = -EIO; |
| goto done; |
| } |
| |
| if (buf != address) { |
| ret = -EIO; |
| goto done; |
| } |
| |
| remaining_bytes -= nbytes; |
| address += nbytes; |
| ce_data += nbytes; |
| } |
| |
| done: |
| if (data_buf) { |
| pci_free_consistent(ar_pci->pdev, orig_nbytes, data_buf, |
| ce_data_base); |
| } |
| |
| if (ret != 0) |
| ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n", __func__, |
| address); |
| |
| return ret; |
| } |
| |
| /* Write 4B data to Target memory or register */ |
| static int ath10k_pci_diag_write_access(struct ath10k *ar, u32 address, |
| u32 data) |
| { |
| /* Assume range doesn't cross this boundary */ |
| if (address >= DRAM_BASE_ADDRESS) |
| return ath10k_pci_diag_write_mem(ar, address, &data, |
| sizeof(u32)); |
| |
| ath10k_pci_wake(ar); |
| ath10k_pci_write32(ar, address, data); |
| ath10k_pci_sleep(ar); |
| return 0; |
| } |
| |
| static bool ath10k_pci_target_is_awake(struct ath10k *ar) |
| { |
| void __iomem *mem = ath10k_pci_priv(ar)->mem; |
| u32 val; |
| val = ioread32(mem + PCIE_LOCAL_BASE_ADDRESS + |
| RTC_STATE_ADDRESS); |
| return (RTC_STATE_V_GET(val) == RTC_STATE_V_ON); |
| } |
| |
| static void ath10k_pci_wait(struct ath10k *ar) |
| { |
| int n = 100; |
| |
| while (n-- && !ath10k_pci_target_is_awake(ar)) |
| msleep(10); |
| |
| if (n < 0) |
| ath10k_warn("Unable to wakeup target\n"); |
| } |
| |
| void ath10k_do_pci_wake(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| void __iomem *pci_addr = ar_pci->mem; |
| int tot_delay = 0; |
| int curr_delay = 5; |
| |
| if (atomic_read(&ar_pci->keep_awake_count) == 0) { |
| /* Force AWAKE */ |
| iowrite32(PCIE_SOC_WAKE_V_MASK, |
| pci_addr + PCIE_LOCAL_BASE_ADDRESS + |
| PCIE_SOC_WAKE_ADDRESS); |
| } |
| atomic_inc(&ar_pci->keep_awake_count); |
| |
| if (ar_pci->verified_awake) |
| return; |
| |
| for (;;) { |
| if (ath10k_pci_target_is_awake(ar)) { |
| ar_pci->verified_awake = true; |
| break; |
| } |
| |
| if (tot_delay > PCIE_WAKE_TIMEOUT) { |
| ath10k_warn("target takes too long to wake up (awake count %d)\n", |
| atomic_read(&ar_pci->keep_awake_count)); |
| break; |
| } |
| |
| udelay(curr_delay); |
| tot_delay += curr_delay; |
| |
| if (curr_delay < 50) |
| curr_delay += 5; |
| } |
| } |
| |
| void ath10k_do_pci_sleep(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| void __iomem *pci_addr = ar_pci->mem; |
| |
| if (atomic_dec_and_test(&ar_pci->keep_awake_count)) { |
| /* Allow sleep */ |
| ar_pci->verified_awake = false; |
| iowrite32(PCIE_SOC_WAKE_RESET, |
| pci_addr + PCIE_LOCAL_BASE_ADDRESS + |
| PCIE_SOC_WAKE_ADDRESS); |
| } |
| } |
| |
| /* |
| * FIXME: Handle OOM properly. |
| */ |
| static inline |
| struct ath10k_pci_compl *get_free_compl(struct hif_ce_pipe_info *pipe_info) |
| { |
| struct ath10k_pci_compl *compl = NULL; |
| |
| spin_lock_bh(&pipe_info->pipe_lock); |
| if (list_empty(&pipe_info->compl_free)) { |
| ath10k_warn("Completion buffers are full\n"); |
| goto exit; |
| } |
| compl = list_first_entry(&pipe_info->compl_free, |
| struct ath10k_pci_compl, list); |
| list_del(&compl->list); |
| exit: |
| spin_unlock_bh(&pipe_info->pipe_lock); |
| return compl; |
| } |
| |
| /* Called by lower (CE) layer when a send to Target completes. */ |
| static void ath10k_pci_ce_send_done(struct ce_state *ce_state, |
| void *transfer_context, |
| u32 ce_data, |
| unsigned int nbytes, |
| unsigned int transfer_id) |
| { |
| struct ath10k *ar = ce_state->ar; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct hif_ce_pipe_info *pipe_info = &ar_pci->pipe_info[ce_state->id]; |
| struct ath10k_pci_compl *compl; |
| bool process = false; |
| |
| do { |
| /* |
| * For the send completion of an item in sendlist, just |
| * increment num_sends_allowed. The upper layer callback will |
| * be triggered when last fragment is done with send. |
| */ |
| if (transfer_context == CE_SENDLIST_ITEM_CTXT) { |
| spin_lock_bh(&pipe_info->pipe_lock); |
| pipe_info->num_sends_allowed++; |
| spin_unlock_bh(&pipe_info->pipe_lock); |
| continue; |
| } |
| |
| compl = get_free_compl(pipe_info); |
| if (!compl) |
| break; |
| |
| compl->send_or_recv = HIF_CE_COMPLETE_SEND; |
| compl->ce_state = ce_state; |
| compl->pipe_info = pipe_info; |
| compl->transfer_context = transfer_context; |
| compl->nbytes = nbytes; |
| compl->transfer_id = transfer_id; |
| compl->flags = 0; |
| |
| /* |
| * Add the completion to the processing queue. |
| */ |
| spin_lock_bh(&ar_pci->compl_lock); |
| list_add_tail(&compl->list, &ar_pci->compl_process); |
| spin_unlock_bh(&ar_pci->compl_lock); |
| |
| process = true; |
| } while (ath10k_ce_completed_send_next(ce_state, |
| &transfer_context, |
| &ce_data, &nbytes, |
| &transfer_id) == 0); |
| |
| /* |
| * If only some of the items within a sendlist have completed, |
| * don't invoke completion processing until the entire sendlist |
| * has been sent. |
| */ |
| if (!process) |
| return; |
| |
| ath10k_pci_process_ce(ar); |
| } |
| |
| /* Called by lower (CE) layer when data is received from the Target. */ |
| static void ath10k_pci_ce_recv_data(struct ce_state *ce_state, |
| void *transfer_context, u32 ce_data, |
| unsigned int nbytes, |
| unsigned int transfer_id, |
| unsigned int flags) |
| { |
| struct ath10k *ar = ce_state->ar; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct hif_ce_pipe_info *pipe_info = &ar_pci->pipe_info[ce_state->id]; |
| struct ath10k_pci_compl *compl; |
| struct sk_buff *skb; |
| |
| do { |
| compl = get_free_compl(pipe_info); |
| if (!compl) |
| break; |
| |
| compl->send_or_recv = HIF_CE_COMPLETE_RECV; |
| compl->ce_state = ce_state; |
| compl->pipe_info = pipe_info; |
| compl->transfer_context = transfer_context; |
| compl->nbytes = nbytes; |
| compl->transfer_id = transfer_id; |
| compl->flags = flags; |
| |
| skb = transfer_context; |
| dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr, |
| skb->len + skb_tailroom(skb), |
| DMA_FROM_DEVICE); |
| /* |
| * Add the completion to the processing queue. |
| */ |
| spin_lock_bh(&ar_pci->compl_lock); |
| list_add_tail(&compl->list, &ar_pci->compl_process); |
| spin_unlock_bh(&ar_pci->compl_lock); |
| |
| } while (ath10k_ce_completed_recv_next(ce_state, |
| &transfer_context, |
| &ce_data, &nbytes, |
| &transfer_id, |
| &flags) == 0); |
| |
| ath10k_pci_process_ce(ar); |
| } |
| |
| /* Send the first nbytes bytes of the buffer */ |
| static int ath10k_pci_hif_send_head(struct ath10k *ar, u8 pipe_id, |
| unsigned int transfer_id, |
| unsigned int bytes, struct sk_buff *nbuf) |
| { |
| struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(nbuf); |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct hif_ce_pipe_info *pipe_info = &(ar_pci->pipe_info[pipe_id]); |
| struct ce_state *ce_hdl = pipe_info->ce_hdl; |
| struct ce_sendlist sendlist; |
| unsigned int len; |
| u32 flags = 0; |
| int ret; |
| |
| memset(&sendlist, 0, sizeof(struct ce_sendlist)); |
| |
| len = min(bytes, nbuf->len); |
| bytes -= len; |
| |
| if (len & 3) |
| ath10k_warn("skb not aligned to 4-byte boundary (%d)\n", len); |
| |
| ath10k_dbg(ATH10K_DBG_PCI, |
| "pci send data vaddr %p paddr 0x%llx len %d as %d bytes\n", |
| nbuf->data, (unsigned long long) skb_cb->paddr, |
| nbuf->len, len); |
| ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL, |
| "ath10k tx: data: ", |
| nbuf->data, nbuf->len); |
| |
| ath10k_ce_sendlist_buf_add(&sendlist, skb_cb->paddr, len, flags); |
| |
| /* Make sure we have resources to handle this request */ |
| spin_lock_bh(&pipe_info->pipe_lock); |
| if (!pipe_info->num_sends_allowed) { |
| ath10k_warn("Pipe: %d is full\n", pipe_id); |
| spin_unlock_bh(&pipe_info->pipe_lock); |
| return -ENOSR; |
| } |
| pipe_info->num_sends_allowed--; |
| spin_unlock_bh(&pipe_info->pipe_lock); |
| |
| ret = ath10k_ce_sendlist_send(ce_hdl, nbuf, &sendlist, transfer_id); |
| if (ret) |
| ath10k_warn("CE send failed: %p\n", nbuf); |
| |
| return ret; |
| } |
| |
| static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct hif_ce_pipe_info *pipe_info = &(ar_pci->pipe_info[pipe]); |
| int ret; |
| |
| spin_lock_bh(&pipe_info->pipe_lock); |
| ret = pipe_info->num_sends_allowed; |
| spin_unlock_bh(&pipe_info->pipe_lock); |
| |
| return ret; |
| } |
| |
| static void ath10k_pci_hif_dump_area(struct ath10k *ar) |
| { |
| u32 reg_dump_area = 0; |
| u32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {}; |
| u32 host_addr; |
| int ret; |
| u32 i; |
| |
| ath10k_err("firmware crashed!\n"); |
| ath10k_err("hardware name %s version 0x%x\n", |
| ar->hw_params.name, ar->target_version); |
| ath10k_err("firmware version: %u.%u.%u.%u\n", ar->fw_version_major, |
| ar->fw_version_minor, ar->fw_version_release, |
| ar->fw_version_build); |
| |
| host_addr = host_interest_item_address(HI_ITEM(hi_failure_state)); |
| if (ath10k_pci_diag_read_mem(ar, host_addr, |
| ®_dump_area, sizeof(u32)) != 0) { |
| ath10k_warn("could not read hi_failure_state\n"); |
| return; |
| } |
| |
| ath10k_err("target register Dump Location: 0x%08X\n", reg_dump_area); |
| |
| ret = ath10k_pci_diag_read_mem(ar, reg_dump_area, |
| ®_dump_values[0], |
| REG_DUMP_COUNT_QCA988X * sizeof(u32)); |
| if (ret != 0) { |
| ath10k_err("could not dump FW Dump Area\n"); |
| return; |
| } |
| |
| BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4); |
| |
| ath10k_err("target Register Dump\n"); |
| for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4) |
| ath10k_err("[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n", |
| i, |
| reg_dump_values[i], |
| reg_dump_values[i + 1], |
| reg_dump_values[i + 2], |
| reg_dump_values[i + 3]); |
| } |
| |
| static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe, |
| int force) |
| { |
| if (!force) { |
| int resources; |
| /* |
| * Decide whether to actually poll for completions, or just |
| * wait for a later chance. |
| * If there seem to be plenty of resources left, then just wait |
| * since checking involves reading a CE register, which is a |
| * relatively expensive operation. |
| */ |
| resources = ath10k_pci_hif_get_free_queue_number(ar, pipe); |
| |
| /* |
| * If at least 50% of the total resources are still available, |
| * don't bother checking again yet. |
| */ |
| if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1)) |
| return; |
| } |
| ath10k_ce_per_engine_service(ar, pipe); |
| } |
| |
| static void ath10k_pci_hif_post_init(struct ath10k *ar, |
| struct ath10k_hif_cb *callbacks) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__); |
| |
| memcpy(&ar_pci->msg_callbacks_current, callbacks, |
| sizeof(ar_pci->msg_callbacks_current)); |
| } |
| |
| static int ath10k_pci_start_ce(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ce_state *ce_diag = ar_pci->ce_diag; |
| const struct ce_attr *attr; |
| struct hif_ce_pipe_info *pipe_info; |
| struct ath10k_pci_compl *compl; |
| int i, pipe_num, completions, disable_interrupts; |
| |
| spin_lock_init(&ar_pci->compl_lock); |
| INIT_LIST_HEAD(&ar_pci->compl_process); |
| |
| for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) { |
| pipe_info = &ar_pci->pipe_info[pipe_num]; |
| |
| spin_lock_init(&pipe_info->pipe_lock); |
| INIT_LIST_HEAD(&pipe_info->compl_free); |
| |
| /* Handle Diagnostic CE specially */ |
| if (pipe_info->ce_hdl == ce_diag) |
| continue; |
| |
| attr = &host_ce_config_wlan[pipe_num]; |
| completions = 0; |
| |
| if (attr->src_nentries) { |
| disable_interrupts = attr->flags & CE_ATTR_DIS_INTR; |
| ath10k_ce_send_cb_register(pipe_info->ce_hdl, |
| ath10k_pci_ce_send_done, |
| disable_interrupts); |
| completions += attr->src_nentries; |
| pipe_info->num_sends_allowed = attr->src_nentries - 1; |
| } |
| |
| if (attr->dest_nentries) { |
| ath10k_ce_recv_cb_register(pipe_info->ce_hdl, |
| ath10k_pci_ce_recv_data); |
| completions += attr->dest_nentries; |
| } |
| |
| if (completions == 0) |
| continue; |
| |
| for (i = 0; i < completions; i++) { |
| compl = kmalloc(sizeof(struct ath10k_pci_compl), |
| GFP_KERNEL); |
| if (!compl) { |
| ath10k_warn("No memory for completion state\n"); |
| ath10k_pci_stop_ce(ar); |
| return -ENOMEM; |
| } |
| |
| compl->send_or_recv = HIF_CE_COMPLETE_FREE; |
| list_add_tail(&compl->list, &pipe_info->compl_free); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void ath10k_pci_stop_ce(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_pci_compl *compl; |
| struct sk_buff *skb; |
| int i; |
| |
| ath10k_ce_disable_interrupts(ar); |
| |
| /* Cancel the pending tasklet */ |
| tasklet_kill(&ar_pci->intr_tq); |
| |
| for (i = 0; i < CE_COUNT; i++) |
| tasklet_kill(&ar_pci->pipe_info[i].intr); |
| |
| /* Mark pending completions as aborted, so that upper layers free up |
| * their associated resources */ |
| spin_lock_bh(&ar_pci->compl_lock); |
| list_for_each_entry(compl, &ar_pci->compl_process, list) { |
| skb = (struct sk_buff *)compl->transfer_context; |
| ATH10K_SKB_CB(skb)->is_aborted = true; |
| } |
| spin_unlock_bh(&ar_pci->compl_lock); |
| } |
| |
| static void ath10k_pci_cleanup_ce(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_pci_compl *compl, *tmp; |
| struct hif_ce_pipe_info *pipe_info; |
| struct sk_buff *netbuf; |
| int pipe_num; |
| |
| /* Free pending completions. */ |
| spin_lock_bh(&ar_pci->compl_lock); |
| if (!list_empty(&ar_pci->compl_process)) |
| ath10k_warn("pending completions still present! possible memory leaks.\n"); |
| |
| list_for_each_entry_safe(compl, tmp, &ar_pci->compl_process, list) { |
| list_del(&compl->list); |
| netbuf = (struct sk_buff *)compl->transfer_context; |
| dev_kfree_skb_any(netbuf); |
| kfree(compl); |
| } |
| spin_unlock_bh(&ar_pci->compl_lock); |
| |
| /* Free unused completions for each pipe. */ |
| for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) { |
| pipe_info = &ar_pci->pipe_info[pipe_num]; |
| |
| spin_lock_bh(&pipe_info->pipe_lock); |
| list_for_each_entry_safe(compl, tmp, |
| &pipe_info->compl_free, list) { |
| list_del(&compl->list); |
| kfree(compl); |
| } |
| spin_unlock_bh(&pipe_info->pipe_lock); |
| } |
| } |
| |
| static void ath10k_pci_process_ce(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ar->hif.priv; |
| struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current; |
| struct ath10k_pci_compl *compl; |
| struct sk_buff *skb; |
| unsigned int nbytes; |
| int ret, send_done = 0; |
| |
| /* Upper layers aren't ready to handle tx/rx completions in parallel so |
| * we must serialize all completion processing. */ |
| |
| spin_lock_bh(&ar_pci->compl_lock); |
| if (ar_pci->compl_processing) { |
| spin_unlock_bh(&ar_pci->compl_lock); |
| return; |
| } |
| ar_pci->compl_processing = true; |
| spin_unlock_bh(&ar_pci->compl_lock); |
| |
| for (;;) { |
| spin_lock_bh(&ar_pci->compl_lock); |
| if (list_empty(&ar_pci->compl_process)) { |
| spin_unlock_bh(&ar_pci->compl_lock); |
| break; |
| } |
| compl = list_first_entry(&ar_pci->compl_process, |
| struct ath10k_pci_compl, list); |
| list_del(&compl->list); |
| spin_unlock_bh(&ar_pci->compl_lock); |
| |
| if (compl->send_or_recv == HIF_CE_COMPLETE_SEND) { |
| cb->tx_completion(ar, |
| compl->transfer_context, |
| compl->transfer_id); |
| send_done = 1; |
| } else { |
| ret = ath10k_pci_post_rx_pipe(compl->pipe_info, 1); |
| if (ret) { |
| ath10k_warn("Unable to post recv buffer for pipe: %d\n", |
| compl->pipe_info->pipe_num); |
| break; |
| } |
| |
| skb = (struct sk_buff *)compl->transfer_context; |
| nbytes = compl->nbytes; |
| |
| ath10k_dbg(ATH10K_DBG_PCI, |
| "ath10k_pci_ce_recv_data netbuf=%p nbytes=%d\n", |
| skb, nbytes); |
| ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL, |
| "ath10k rx: ", skb->data, nbytes); |
| |
| if (skb->len + skb_tailroom(skb) >= nbytes) { |
| skb_trim(skb, 0); |
| skb_put(skb, nbytes); |
| cb->rx_completion(ar, skb, |
| compl->pipe_info->pipe_num); |
| } else { |
| ath10k_warn("rxed more than expected (nbytes %d, max %d)", |
| nbytes, |
| skb->len + skb_tailroom(skb)); |
| } |
| } |
| |
| compl->send_or_recv = HIF_CE_COMPLETE_FREE; |
| |
| /* |
| * Add completion back to the pipe's free list. |
| */ |
| spin_lock_bh(&compl->pipe_info->pipe_lock); |
| list_add_tail(&compl->list, &compl->pipe_info->compl_free); |
| compl->pipe_info->num_sends_allowed += send_done; |
| spin_unlock_bh(&compl->pipe_info->pipe_lock); |
| } |
| |
| spin_lock_bh(&ar_pci->compl_lock); |
| ar_pci->compl_processing = false; |
| spin_unlock_bh(&ar_pci->compl_lock); |
| } |
| |
| /* TODO - temporary mapping while we have too few CE's */ |
| static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, |
| u16 service_id, u8 *ul_pipe, |
| u8 *dl_pipe, int *ul_is_polled, |
| int *dl_is_polled) |
| { |
| int ret = 0; |
| |
| /* polling for received messages not supported */ |
| *dl_is_polled = 0; |
| |
| switch (service_id) { |
| case ATH10K_HTC_SVC_ID_HTT_DATA_MSG: |
| /* |
| * Host->target HTT gets its own pipe, so it can be polled |
| * while other pipes are interrupt driven. |
| */ |
| *ul_pipe = 4; |
| /* |
| * Use the same target->host pipe for HTC ctrl, HTC raw |
| * streams, and HTT. |
| */ |
| *dl_pipe = 1; |
| break; |
| |
| case ATH10K_HTC_SVC_ID_RSVD_CTRL: |
| case ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS: |
| /* |
| * Note: HTC_RAW_STREAMS_SVC is currently unused, and |
| * HTC_CTRL_RSVD_SVC could share the same pipe as the |
| * WMI services. So, if another CE is needed, change |
| * this to *ul_pipe = 3, which frees up CE 0. |
| */ |
| /* *ul_pipe = 3; */ |
| *ul_pipe = 0; |
| *dl_pipe = 1; |
| break; |
| |
| case ATH10K_HTC_SVC_ID_WMI_DATA_BK: |
| case ATH10K_HTC_SVC_ID_WMI_DATA_BE: |
| case ATH10K_HTC_SVC_ID_WMI_DATA_VI: |
| case ATH10K_HTC_SVC_ID_WMI_DATA_VO: |
| |
| case ATH10K_HTC_SVC_ID_WMI_CONTROL: |
| *ul_pipe = 3; |
| *dl_pipe = 2; |
| break; |
| |
| /* pipe 5 unused */ |
| /* pipe 6 reserved */ |
| /* pipe 7 reserved */ |
| |
| default: |
| ret = -1; |
| break; |
| } |
| *ul_is_polled = |
| (host_ce_config_wlan[*ul_pipe].flags & CE_ATTR_DIS_INTR) != 0; |
| |
| return ret; |
| } |
| |
| static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar, |
| u8 *ul_pipe, u8 *dl_pipe) |
| { |
| int ul_is_polled, dl_is_polled; |
| |
| (void)ath10k_pci_hif_map_service_to_pipe(ar, |
| ATH10K_HTC_SVC_ID_RSVD_CTRL, |
| ul_pipe, |
| dl_pipe, |
| &ul_is_polled, |
| &dl_is_polled); |
| } |
| |
| static int ath10k_pci_post_rx_pipe(struct hif_ce_pipe_info *pipe_info, |
| int num) |
| { |
| struct ath10k *ar = pipe_info->hif_ce_state; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ce_state *ce_state = pipe_info->ce_hdl; |
| struct sk_buff *skb; |
| dma_addr_t ce_data; |
| int i, ret = 0; |
| |
| if (pipe_info->buf_sz == 0) |
| return 0; |
| |
| for (i = 0; i < num; i++) { |
| skb = dev_alloc_skb(pipe_info->buf_sz); |
| if (!skb) { |
| ath10k_warn("could not allocate skbuff for pipe %d\n", |
| num); |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb"); |
| |
| ce_data = dma_map_single(ar->dev, skb->data, |
| skb->len + skb_tailroom(skb), |
| DMA_FROM_DEVICE); |
| |
| if (unlikely(dma_mapping_error(ar->dev, ce_data))) { |
| ath10k_warn("could not dma map skbuff\n"); |
| dev_kfree_skb_any(skb); |
| ret = -EIO; |
| goto err; |
| } |
| |
| ATH10K_SKB_CB(skb)->paddr = ce_data; |
| |
| pci_dma_sync_single_for_device(ar_pci->pdev, ce_data, |
| pipe_info->buf_sz, |
| PCI_DMA_FROMDEVICE); |
| |
| ret = ath10k_ce_recv_buf_enqueue(ce_state, (void *)skb, |
| ce_data); |
| if (ret) { |
| ath10k_warn("could not enqueue to pipe %d (%d)\n", |
| num, ret); |
| goto err; |
| } |
| } |
| |
| return ret; |
| |
| err: |
| ath10k_pci_rx_pipe_cleanup(pipe_info); |
| return ret; |
| } |
| |
| static int ath10k_pci_post_rx(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct hif_ce_pipe_info *pipe_info; |
| const struct ce_attr *attr; |
| int pipe_num, ret = 0; |
| |
| for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) { |
| pipe_info = &ar_pci->pipe_info[pipe_num]; |
| attr = &host_ce_config_wlan[pipe_num]; |
| |
| if (attr->dest_nentries == 0) |
| continue; |
| |
| ret = ath10k_pci_post_rx_pipe(pipe_info, |
| attr->dest_nentries - 1); |
| if (ret) { |
| ath10k_warn("Unable to replenish recv buffers for pipe: %d\n", |
| pipe_num); |
| |
| for (; pipe_num >= 0; pipe_num--) { |
| pipe_info = &ar_pci->pipe_info[pipe_num]; |
| ath10k_pci_rx_pipe_cleanup(pipe_info); |
| } |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int ath10k_pci_hif_start(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret; |
| |
| ret = ath10k_pci_start_ce(ar); |
| if (ret) { |
| ath10k_warn("could not start CE (%d)\n", ret); |
| return ret; |
| } |
| |
| /* Post buffers once to start things off. */ |
| ret = ath10k_pci_post_rx(ar); |
| if (ret) { |
| ath10k_warn("could not post rx pipes (%d)\n", ret); |
| return ret; |
| } |
| |
| ar_pci->started = 1; |
| return 0; |
| } |
| |
| static void ath10k_pci_rx_pipe_cleanup(struct hif_ce_pipe_info *pipe_info) |
| { |
| struct ath10k *ar; |
| struct ath10k_pci *ar_pci; |
| struct ce_state *ce_hdl; |
| u32 buf_sz; |
| struct sk_buff *netbuf; |
| u32 ce_data; |
| |
| buf_sz = pipe_info->buf_sz; |
| |
| /* Unused Copy Engine */ |
| if (buf_sz == 0) |
| return; |
| |
| ar = pipe_info->hif_ce_state; |
| ar_pci = ath10k_pci_priv(ar); |
| |
| if (!ar_pci->started) |
| return; |
| |
| ce_hdl = pipe_info->ce_hdl; |
| |
| while (ath10k_ce_revoke_recv_next(ce_hdl, (void **)&netbuf, |
| &ce_data) == 0) { |
| dma_unmap_single(ar->dev, ATH10K_SKB_CB(netbuf)->paddr, |
| netbuf->len + skb_tailroom(netbuf), |
| DMA_FROM_DEVICE); |
| dev_kfree_skb_any(netbuf); |
| } |
| } |
| |
| static void ath10k_pci_tx_pipe_cleanup(struct hif_ce_pipe_info *pipe_info) |
| { |
| struct ath10k *ar; |
| struct ath10k_pci *ar_pci; |
| struct ce_state *ce_hdl; |
| struct sk_buff *netbuf; |
| u32 ce_data; |
| unsigned int nbytes; |
| unsigned int id; |
| u32 buf_sz; |
| |
| buf_sz = pipe_info->buf_sz; |
| |
| /* Unused Copy Engine */ |
| if (buf_sz == 0) |
| return; |
| |
| ar = pipe_info->hif_ce_state; |
| ar_pci = ath10k_pci_priv(ar); |
| |
| if (!ar_pci->started) |
| return; |
| |
| ce_hdl = pipe_info->ce_hdl; |
| |
| while (ath10k_ce_cancel_send_next(ce_hdl, (void **)&netbuf, |
| &ce_data, &nbytes, &id) == 0) { |
| if (netbuf != CE_SENDLIST_ITEM_CTXT) |
| /* |
| * Indicate the completion to higer layer to free |
| * the buffer |
| */ |
| ATH10K_SKB_CB(netbuf)->is_aborted = true; |
| ar_pci->msg_callbacks_current.tx_completion(ar, |
| netbuf, |
| id); |
| } |
| } |
| |
| /* |
| * Cleanup residual buffers for device shutdown: |
| * buffers that were enqueued for receive |
| * buffers that were to be sent |
| * Note: Buffers that had completed but which were |
| * not yet processed are on a completion queue. They |
| * are handled when the completion thread shuts down. |
| */ |
| static void ath10k_pci_buffer_cleanup(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int pipe_num; |
| |
| for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) { |
| struct hif_ce_pipe_info *pipe_info; |
| |
| pipe_info = &ar_pci->pipe_info[pipe_num]; |
| ath10k_pci_rx_pipe_cleanup(pipe_info); |
| ath10k_pci_tx_pipe_cleanup(pipe_info); |
| } |
| } |
| |
| static void ath10k_pci_ce_deinit(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct hif_ce_pipe_info *pipe_info; |
| int pipe_num; |
| |
| for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) { |
| pipe_info = &ar_pci->pipe_info[pipe_num]; |
| if (pipe_info->ce_hdl) { |
| ath10k_ce_deinit(pipe_info->ce_hdl); |
| pipe_info->ce_hdl = NULL; |
| pipe_info->buf_sz = 0; |
| } |
| } |
| } |
| |
| static void ath10k_pci_hif_stop(struct ath10k *ar) |
| { |
| ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__); |
| |
| ath10k_pci_stop_ce(ar); |
| |
| /* At this point, asynchronous threads are stopped, the target should |
| * not DMA nor interrupt. We process the leftovers and then free |
| * everything else up. */ |
| |
| ath10k_pci_process_ce(ar); |
| ath10k_pci_cleanup_ce(ar); |
| ath10k_pci_buffer_cleanup(ar); |
| ath10k_pci_ce_deinit(ar); |
| } |
| |
| static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar, |
| void *req, u32 req_len, |
| void *resp, u32 *resp_len) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ce_state *ce_tx = ar_pci->pipe_info[BMI_CE_NUM_TO_TARG].ce_hdl; |
| struct ce_state *ce_rx = ar_pci->pipe_info[BMI_CE_NUM_TO_HOST].ce_hdl; |
| dma_addr_t req_paddr = 0; |
| dma_addr_t resp_paddr = 0; |
| struct bmi_xfer xfer = {}; |
| void *treq, *tresp = NULL; |
| int ret = 0; |
| |
| if (resp && !resp_len) |
| return -EINVAL; |
| |
| if (resp && resp_len && *resp_len == 0) |
| return -EINVAL; |
| |
| treq = kmemdup(req, req_len, GFP_KERNEL); |
| if (!treq) |
| return -ENOMEM; |
| |
| req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE); |
| ret = dma_mapping_error(ar->dev, req_paddr); |
| if (ret) |
| goto err_dma; |
| |
| if (resp && resp_len) { |
| tresp = kzalloc(*resp_len, GFP_KERNEL); |
| if (!tresp) { |
| ret = -ENOMEM; |
| goto err_req; |
| } |
| |
| resp_paddr = dma_map_single(ar->dev, tresp, *resp_len, |
| DMA_FROM_DEVICE); |
| ret = dma_mapping_error(ar->dev, resp_paddr); |
| if (ret) |
| goto err_req; |
| |
| xfer.wait_for_resp = true; |
| xfer.resp_len = 0; |
| |
| ath10k_ce_recv_buf_enqueue(ce_rx, &xfer, resp_paddr); |
| } |
| |
| init_completion(&xfer.done); |
| |
| ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0); |
| if (ret) |
| goto err_resp; |
| |
| ret = wait_for_completion_timeout(&xfer.done, |
| BMI_COMMUNICATION_TIMEOUT_HZ); |
| if (ret <= 0) { |
| u32 unused_buffer; |
| unsigned int unused_nbytes; |
| unsigned int unused_id; |
| |
| ret = -ETIMEDOUT; |
| ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer, |
| &unused_nbytes, &unused_id); |
| } else { |
| /* non-zero means we did not time out */ |
| ret = 0; |
| } |
| |
| err_resp: |
| if (resp) { |
| u32 unused_buffer; |
| |
| ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer); |
| dma_unmap_single(ar->dev, resp_paddr, |
| *resp_len, DMA_FROM_DEVICE); |
| } |
| err_req: |
| dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE); |
| |
| if (ret == 0 && resp_len) { |
| *resp_len = min(*resp_len, xfer.resp_len); |
| memcpy(resp, tresp, xfer.resp_len); |
| } |
| err_dma: |
| kfree(treq); |
| kfree(tresp); |
| |
| return ret; |
| } |
| |
| static void ath10k_pci_bmi_send_done(struct ce_state *ce_state, |
| void *transfer_context, |
| u32 data, |
| unsigned int nbytes, |
| unsigned int transfer_id) |
| { |
| struct bmi_xfer *xfer = transfer_context; |
| |
| if (xfer->wait_for_resp) |
| return; |
| |
| complete(&xfer->done); |
| } |
| |
| static void ath10k_pci_bmi_recv_data(struct ce_state *ce_state, |
| void *transfer_context, |
| u32 data, |
| unsigned int nbytes, |
| unsigned int transfer_id, |
| unsigned int flags) |
| { |
| struct bmi_xfer *xfer = transfer_context; |
| |
| if (!xfer->wait_for_resp) { |
| ath10k_warn("unexpected: BMI data received; ignoring\n"); |
| return; |
| } |
| |
| xfer->resp_len = nbytes; |
| complete(&xfer->done); |
| } |
| |
| /* |
| * Map from service/endpoint to Copy Engine. |
| * This table is derived from the CE_PCI TABLE, above. |
| * It is passed to the Target at startup for use by firmware. |
| */ |
| static const struct service_to_pipe target_service_to_ce_map_wlan[] = { |
| { |
| ATH10K_HTC_SVC_ID_WMI_DATA_VO, |
| PIPEDIR_OUT, /* out = UL = host -> target */ |
| 3, |
| }, |
| { |
| ATH10K_HTC_SVC_ID_WMI_DATA_VO, |
| PIPEDIR_IN, /* in = DL = target -> host */ |
| 2, |
| }, |
| { |
| ATH10K_HTC_SVC_ID_WMI_DATA_BK, |
| PIPEDIR_OUT, /* out = UL = host -> target */ |
| 3, |
| }, |
| { |
| ATH10K_HTC_SVC_ID_WMI_DATA_BK, |
| PIPEDIR_IN, /* in = DL = target -> host */ |
| 2, |
| }, |
| { |
| ATH10K_HTC_SVC_ID_WMI_DATA_BE, |
| PIPEDIR_OUT, /* out = UL = host -> target */ |
| 3, |
| }, |
| { |
| ATH10K_HTC_SVC_ID_WMI_DATA_BE, |
| PIPEDIR_IN, /* in = DL = target -> host */ |
| 2, |
| }, |
| { |
| ATH10K_HTC_SVC_ID_WMI_DATA_VI, |
| PIPEDIR_OUT, /* out = UL = host -> target */ |
| 3, |
| }, |
| { |
| ATH10K_HTC_SVC_ID_WMI_DATA_VI, |
| PIPEDIR_IN, /* in = DL = target -> host */ |
| 2, |
| }, |
| { |
| ATH10K_HTC_SVC_ID_WMI_CONTROL, |
| PIPEDIR_OUT, /* out = UL = host -> target */ |
| 3, |
| }, |
| { |
| ATH10K_HTC_SVC_ID_WMI_CONTROL, |
| PIPEDIR_IN, /* in = DL = target -> host */ |
| 2, |
| }, |
| { |
| ATH10K_HTC_SVC_ID_RSVD_CTRL, |
| PIPEDIR_OUT, /* out = UL = host -> target */ |
| 0, /* could be moved to 3 (share with WMI) */ |
| }, |
| { |
| ATH10K_HTC_SVC_ID_RSVD_CTRL, |
| PIPEDIR_IN, /* in = DL = target -> host */ |
| 1, |
| }, |
| { |
| ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS, /* not currently used */ |
| PIPEDIR_OUT, /* out = UL = host -> target */ |
| 0, |
| }, |
| { |
| ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS, /* not currently used */ |
| PIPEDIR_IN, /* in = DL = target -> host */ |
| 1, |
| }, |
| { |
| ATH10K_HTC_SVC_ID_HTT_DATA_MSG, |
| PIPEDIR_OUT, /* out = UL = host -> target */ |
| 4, |
| }, |
| { |
| ATH10K_HTC_SVC_ID_HTT_DATA_MSG, |
| PIPEDIR_IN, /* in = DL = target -> host */ |
| 1, |
| }, |
| |
| /* (Additions here) */ |
| |
| { /* Must be last */ |
| 0, |
| 0, |
| 0, |
| }, |
| }; |
| |
| /* |
| * Send an interrupt to the device to wake up the Target CPU |
| * so it has an opportunity to notice any changed state. |
| */ |
| static int ath10k_pci_wake_target_cpu(struct ath10k *ar) |
| { |
| int ret; |
| u32 core_ctrl; |
| |
| ret = ath10k_pci_diag_read_access(ar, SOC_CORE_BASE_ADDRESS | |
| CORE_CTRL_ADDRESS, |
| &core_ctrl); |
| if (ret) { |
| ath10k_warn("Unable to read core ctrl\n"); |
| return ret; |
| } |
| |
| /* A_INUM_FIRMWARE interrupt to Target CPU */ |
| core_ctrl |= CORE_CTRL_CPU_INTR_MASK; |
| |
| ret = ath10k_pci_diag_write_access(ar, SOC_CORE_BASE_ADDRESS | |
| CORE_CTRL_ADDRESS, |
| core_ctrl); |
| if (ret) |
| ath10k_warn("Unable to set interrupt mask\n"); |
| |
| return ret; |
| } |
| |
| static int ath10k_pci_init_config(struct ath10k *ar) |
| { |
| u32 interconnect_targ_addr; |
| u32 pcie_state_targ_addr = 0; |
| u32 pipe_cfg_targ_addr = 0; |
| u32 svc_to_pipe_map = 0; |
| u32 pcie_config_flags = 0; |
| u32 ealloc_value; |
| u32 ealloc_targ_addr; |
| u32 flag2_value; |
| u32 flag2_targ_addr; |
| int ret = 0; |
| |
| /* Download to Target the CE Config and the service-to-CE map */ |
| interconnect_targ_addr = |
| host_interest_item_address(HI_ITEM(hi_interconnect_state)); |
| |
| /* Supply Target-side CE configuration */ |
| ret = ath10k_pci_diag_read_access(ar, interconnect_targ_addr, |
| &pcie_state_targ_addr); |
| if (ret != 0) { |
| ath10k_err("Failed to get pcie state addr: %d\n", ret); |
| return ret; |
| } |
| |
| if (pcie_state_targ_addr == 0) { |
| ret = -EIO; |
| ath10k_err("Invalid pcie state addr\n"); |
| return ret; |
| } |
| |
| ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr + |
| offsetof(struct pcie_state, |
| pipe_cfg_addr), |
| &pipe_cfg_targ_addr); |
| if (ret != 0) { |
| ath10k_err("Failed to get pipe cfg addr: %d\n", ret); |
| return ret; |
| } |
| |
| if (pipe_cfg_targ_addr == 0) { |
| ret = -EIO; |
| ath10k_err("Invalid pipe cfg addr\n"); |
| return ret; |
| } |
| |
| ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr, |
| target_ce_config_wlan, |
| sizeof(target_ce_config_wlan)); |
| |
| if (ret != 0) { |
| ath10k_err("Failed to write pipe cfg: %d\n", ret); |
| return ret; |
| } |
| |
| ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr + |
| offsetof(struct pcie_state, |
| svc_to_pipe_map), |
| &svc_to_pipe_map); |
| if (ret != 0) { |
| ath10k_err("Failed to get svc/pipe map: %d\n", ret); |
| return ret; |
| } |
| |
| if (svc_to_pipe_map == 0) { |
| ret = -EIO; |
| ath10k_err("Invalid svc_to_pipe map\n"); |
| return ret; |
| } |
| |
| ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map, |
| target_service_to_ce_map_wlan, |
| sizeof(target_service_to_ce_map_wlan)); |
| if (ret != 0) { |
| ath10k_err("Failed to write svc/pipe map: %d\n", ret); |
| return ret; |
| } |
| |
| ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr + |
| offsetof(struct pcie_state, |
| config_flags), |
| &pcie_config_flags); |
| if (ret != 0) { |
| ath10k_err("Failed to get pcie config_flags: %d\n", ret); |
| return ret; |
| } |
| |
| pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1; |
| |
| ret = ath10k_pci_diag_write_mem(ar, pcie_state_targ_addr + |
| offsetof(struct pcie_state, config_flags), |
| &pcie_config_flags, |
| sizeof(pcie_config_flags)); |
| if (ret != 0) { |
| ath10k_err("Failed to write pcie config_flags: %d\n", ret); |
| return ret; |
| } |
| |
| /* configure early allocation */ |
| ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc)); |
| |
| ret = ath10k_pci_diag_read_access(ar, ealloc_targ_addr, &ealloc_value); |
| if (ret != 0) { |
| ath10k_err("Faile to get early alloc val: %d\n", ret); |
| return ret; |
| } |
| |
| /* first bank is switched to IRAM */ |
| ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) & |
| HI_EARLY_ALLOC_MAGIC_MASK); |
| ealloc_value |= ((1 << HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) & |
| HI_EARLY_ALLOC_IRAM_BANKS_MASK); |
| |
| ret = ath10k_pci_diag_write_access(ar, ealloc_targ_addr, ealloc_value); |
| if (ret != 0) { |
| ath10k_err("Failed to set early alloc val: %d\n", ret); |
| return ret; |
| } |
| |
| /* Tell Target to proceed with initialization */ |
| flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2)); |
| |
| ret = ath10k_pci_diag_read_access(ar, flag2_targ_addr, &flag2_value); |
| if (ret != 0) { |
| ath10k_err("Failed to get option val: %d\n", ret); |
| return ret; |
| } |
| |
| flag2_value |= HI_OPTION_EARLY_CFG_DONE; |
| |
| ret = ath10k_pci_diag_write_access(ar, flag2_targ_addr, flag2_value); |
| if (ret != 0) { |
| ath10k_err("Failed to set option val: %d\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| |
| |
| static int ath10k_pci_ce_init(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct hif_ce_pipe_info *pipe_info; |
| const struct ce_attr *attr; |
| int pipe_num; |
| |
| for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) { |
| pipe_info = &ar_pci->pipe_info[pipe_num]; |
| pipe_info->pipe_num = pipe_num; |
| pipe_info->hif_ce_state = ar; |
| attr = &host_ce_config_wlan[pipe_num]; |
| |
| pipe_info->ce_hdl = ath10k_ce_init(ar, pipe_num, attr); |
| if (pipe_info->ce_hdl == NULL) { |
| ath10k_err("Unable to initialize CE for pipe: %d\n", |
| pipe_num); |
| |
| /* It is safe to call it here. It checks if ce_hdl is |
| * valid for each pipe */ |
| ath10k_pci_ce_deinit(ar); |
| return -1; |
| } |
| |
| if (pipe_num == ar_pci->ce_count - 1) { |
| /* |
| * Reserve the ultimate CE for |
| * diagnostic Window support |
| */ |
| ar_pci->ce_diag = |
| ar_pci->pipe_info[ar_pci->ce_count - 1].ce_hdl; |
| continue; |
| } |
| |
| pipe_info->buf_sz = (size_t) (attr->src_sz_max); |
| } |
| |
| /* |
| * Initially, establish CE completion handlers for use with BMI. |
| * These are overwritten with generic handlers after we exit BMI phase. |
| */ |
| pipe_info = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG]; |
| ath10k_ce_send_cb_register(pipe_info->ce_hdl, |
| ath10k_pci_bmi_send_done, 0); |
| |
| pipe_info = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST]; |
| ath10k_ce_recv_cb_register(pipe_info->ce_hdl, |
| ath10k_pci_bmi_recv_data); |
| |
| return 0; |
| } |
| |
| static void ath10k_pci_fw_interrupt_handler(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| u32 fw_indicator_address, fw_indicator; |
| |
| ath10k_pci_wake(ar); |
| |
| fw_indicator_address = ar_pci->fw_indicator_address; |
| fw_indicator = ath10k_pci_read32(ar, fw_indicator_address); |
| |
| if (fw_indicator & FW_IND_EVENT_PENDING) { |
| /* ACK: clear Target-side pending event */ |
| ath10k_pci_write32(ar, fw_indicator_address, |
| fw_indicator & ~FW_IND_EVENT_PENDING); |
| |
| if (ar_pci->started) { |
| ath10k_pci_hif_dump_area(ar); |
| } else { |
| /* |
| * Probable Target failure before we're prepared |
| * to handle it. Generally unexpected. |
| */ |
| ath10k_warn("early firmware event indicated\n"); |
| } |
| } |
| |
| ath10k_pci_sleep(ar); |
| } |
| |
| static const struct ath10k_hif_ops ath10k_pci_hif_ops = { |
| .send_head = ath10k_pci_hif_send_head, |
| .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg, |
| .start = ath10k_pci_hif_start, |
| .stop = ath10k_pci_hif_stop, |
| .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe, |
| .get_default_pipe = ath10k_pci_hif_get_default_pipe, |
| .send_complete_check = ath10k_pci_hif_send_complete_check, |
| .init = ath10k_pci_hif_post_init, |
| .get_free_queue_number = ath10k_pci_hif_get_free_queue_number, |
| }; |
| |
| static void ath10k_pci_ce_tasklet(unsigned long ptr) |
| { |
| struct hif_ce_pipe_info *pipe = (struct hif_ce_pipe_info *)ptr; |
| struct ath10k_pci *ar_pci = pipe->ar_pci; |
| |
| ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num); |
| } |
| |
| static void ath10k_msi_err_tasklet(unsigned long data) |
| { |
| struct ath10k *ar = (struct ath10k *)data; |
| |
| ath10k_pci_fw_interrupt_handler(ar); |
| } |
| |
| /* |
| * Handler for a per-engine interrupt on a PARTICULAR CE. |
| * This is used in cases where each CE has a private MSI interrupt. |
| */ |
| static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg) |
| { |
| struct ath10k *ar = arg; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL; |
| |
| if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) { |
| ath10k_warn("unexpected/invalid irq %d ce_id %d\n", irq, ce_id); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * NOTE: We are able to derive ce_id from irq because we |
| * use a one-to-one mapping for CE's 0..5. |
| * CE's 6 & 7 do not use interrupts at all. |
| * |
| * This mapping must be kept in sync with the mapping |
| * used by firmware. |
| */ |
| tasklet_schedule(&ar_pci->pipe_info[ce_id].intr); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg) |
| { |
| struct ath10k *ar = arg; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| tasklet_schedule(&ar_pci->msi_fw_err); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Top-level interrupt handler for all PCI interrupts from a Target. |
| * When a block of MSI interrupts is allocated, this top-level handler |
| * is not used; instead, we directly call the correct sub-handler. |
| */ |
| static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg) |
| { |
| struct ath10k *ar = arg; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| if (ar_pci->num_msi_intrs == 0) { |
| /* |
| * IMPORTANT: INTR_CLR regiser has to be set after |
| * INTR_ENABLE is set to 0, otherwise interrupt can not be |
| * really cleared. |
| */ |
| iowrite32(0, ar_pci->mem + |
| (SOC_CORE_BASE_ADDRESS | |
| PCIE_INTR_ENABLE_ADDRESS)); |
| iowrite32(PCIE_INTR_FIRMWARE_MASK | |
| PCIE_INTR_CE_MASK_ALL, |
| ar_pci->mem + (SOC_CORE_BASE_ADDRESS | |
| PCIE_INTR_CLR_ADDRESS)); |
| /* |
| * IMPORTANT: this extra read transaction is required to |
| * flush the posted write buffer. |
| */ |
| (void) ioread32(ar_pci->mem + |
| (SOC_CORE_BASE_ADDRESS | |
| PCIE_INTR_ENABLE_ADDRESS)); |
| } |
| |
| tasklet_schedule(&ar_pci->intr_tq); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void ath10k_pci_tasklet(unsigned long data) |
| { |
| struct ath10k *ar = (struct ath10k *)data; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| ath10k_pci_fw_interrupt_handler(ar); /* FIXME: Handle FW error */ |
| ath10k_ce_per_engine_service_any(ar); |
| |
| if (ar_pci->num_msi_intrs == 0) { |
| /* Enable Legacy PCI line interrupts */ |
| iowrite32(PCIE_INTR_FIRMWARE_MASK | |
| PCIE_INTR_CE_MASK_ALL, |
| ar_pci->mem + (SOC_CORE_BASE_ADDRESS | |
| PCIE_INTR_ENABLE_ADDRESS)); |
| /* |
| * IMPORTANT: this extra read transaction is required to |
| * flush the posted write buffer |
| */ |
| (void) ioread32(ar_pci->mem + |
| (SOC_CORE_BASE_ADDRESS | |
| PCIE_INTR_ENABLE_ADDRESS)); |
| } |
| } |
| |
| static int ath10k_pci_start_intr_msix(struct ath10k *ar, int num) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret; |
| int i; |
| |
| ret = pci_enable_msi_block(ar_pci->pdev, num); |
| if (ret) |
| return ret; |
| |
| ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, |
| ath10k_pci_msi_fw_handler, |
| IRQF_SHARED, "ath10k_pci", ar); |
| if (ret) |
| return ret; |
| |
| for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) { |
| ret = request_irq(ar_pci->pdev->irq + i, |
| ath10k_pci_per_engine_handler, |
| IRQF_SHARED, "ath10k_pci", ar); |
| if (ret) { |
| ath10k_warn("request_irq(%d) failed %d\n", |
| ar_pci->pdev->irq + i, ret); |
| |
| for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--) |
| free_irq(ar_pci->pdev->irq + i, ar); |
| |
| free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar); |
| pci_disable_msi(ar_pci->pdev); |
| return ret; |
| } |
| } |
| |
| ath10k_info("MSI-X interrupt handling (%d intrs)\n", num); |
| return 0; |
| } |
| |
| static int ath10k_pci_start_intr_msi(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret; |
| |
| ret = pci_enable_msi(ar_pci->pdev); |
| if (ret < 0) |
| return ret; |
| |
| ret = request_irq(ar_pci->pdev->irq, |
| ath10k_pci_interrupt_handler, |
| IRQF_SHARED, "ath10k_pci", ar); |
| if (ret < 0) { |
| pci_disable_msi(ar_pci->pdev); |
| return ret; |
| } |
| |
| ath10k_info("MSI interrupt handling\n"); |
| return 0; |
| } |
| |
| static int ath10k_pci_start_intr_legacy(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret; |
| |
| ret = request_irq(ar_pci->pdev->irq, |
| ath10k_pci_interrupt_handler, |
| IRQF_SHARED, "ath10k_pci", ar); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * Make sure to wake the Target before enabling Legacy |
| * Interrupt. |
| */ |
| iowrite32(PCIE_SOC_WAKE_V_MASK, |
| ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + |
| PCIE_SOC_WAKE_ADDRESS); |
| |
| ath10k_pci_wait(ar); |
| |
| /* |
| * A potential race occurs here: The CORE_BASE write |
| * depends on target correctly decoding AXI address but |
| * host won't know when target writes BAR to CORE_CTRL. |
| * This write might get lost if target has NOT written BAR. |
| * For now, fix the race by repeating the write in below |
| * synchronization checking. |
| */ |
| iowrite32(PCIE_INTR_FIRMWARE_MASK | |
| PCIE_INTR_CE_MASK_ALL, |
| ar_pci->mem + (SOC_CORE_BASE_ADDRESS | |
| PCIE_INTR_ENABLE_ADDRESS)); |
| iowrite32(PCIE_SOC_WAKE_RESET, |
| ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + |
| PCIE_SOC_WAKE_ADDRESS); |
| |
| ath10k_info("legacy interrupt handling\n"); |
| return 0; |
| } |
| |
| static int ath10k_pci_start_intr(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int num = MSI_NUM_REQUEST; |
| int ret; |
| int i; |
| |
| tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long) ar); |
| tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet, |
| (unsigned long) ar); |
| |
| for (i = 0; i < CE_COUNT; i++) { |
| ar_pci->pipe_info[i].ar_pci = ar_pci; |
| tasklet_init(&ar_pci->pipe_info[i].intr, |
| ath10k_pci_ce_tasklet, |
| (unsigned long)&ar_pci->pipe_info[i]); |
| } |
| |
| if (!test_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features)) |
| num = 1; |
| |
| if (num > 1) { |
| ret = ath10k_pci_start_intr_msix(ar, num); |
| if (ret == 0) |
| goto exit; |
| |
| ath10k_warn("MSI-X didn't succeed (%d), trying MSI\n", ret); |
| num = 1; |
| } |
| |
| if (num == 1) { |
| ret = ath10k_pci_start_intr_msi(ar); |
| if (ret == 0) |
| goto exit; |
| |
| ath10k_warn("MSI didn't succeed (%d), trying legacy INTR\n", |
| ret); |
| num = 0; |
| } |
| |
| ret = ath10k_pci_start_intr_legacy(ar); |
| |
| exit: |
| ar_pci->num_msi_intrs = num; |
| ar_pci->ce_count = CE_COUNT; |
| return ret; |
| } |
| |
| static void ath10k_pci_stop_intr(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int i; |
| |
| /* There's at least one interrupt irregardless whether its legacy INTR |
| * or MSI or MSI-X */ |
| for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++) |
| free_irq(ar_pci->pdev->irq + i, ar); |
| |
| if (ar_pci->num_msi_intrs > 0) |
| pci_disable_msi(ar_pci->pdev); |
| } |
| |
| static int ath10k_pci_reset_target(struct ath10k *ar) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int wait_limit = 300; /* 3 sec */ |
| |
| /* Wait for Target to finish initialization before we proceed. */ |
| iowrite32(PCIE_SOC_WAKE_V_MASK, |
| ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + |
| PCIE_SOC_WAKE_ADDRESS); |
| |
| ath10k_pci_wait(ar); |
| |
| while (wait_limit-- && |
| !(ioread32(ar_pci->mem + FW_INDICATOR_ADDRESS) & |
| FW_IND_INITIALIZED)) { |
| if (ar_pci->num_msi_intrs == 0) |
| /* Fix potential race by repeating CORE_BASE writes */ |
| iowrite32(PCIE_INTR_FIRMWARE_MASK | |
| PCIE_INTR_CE_MASK_ALL, |
| ar_pci->mem + (SOC_CORE_BASE_ADDRESS | |
| PCIE_INTR_ENABLE_ADDRESS)); |
| mdelay(10); |
| } |
| |
| if (wait_limit < 0) { |
| ath10k_err("Target stalled\n"); |
| iowrite32(PCIE_SOC_WAKE_RESET, |
| ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + |
| PCIE_SOC_WAKE_ADDRESS); |
| return -EIO; |
| } |
| |
| iowrite32(PCIE_SOC_WAKE_RESET, |
| ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + |
| PCIE_SOC_WAKE_ADDRESS); |
| |
| return 0; |
| } |
| |
| static void ath10k_pci_device_reset(struct ath10k_pci *ar_pci) |
| { |
| struct ath10k *ar = ar_pci->ar; |
| void __iomem *mem = ar_pci->mem; |
| int i; |
| u32 val; |
| |
| if (!SOC_GLOBAL_RESET_ADDRESS) |
| return; |
| |
| if (!mem) |
| return; |
| |
| ath10k_pci_reg_write32(mem, PCIE_SOC_WAKE_ADDRESS, |
| PCIE_SOC_WAKE_V_MASK); |
| for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) { |
| if (ath10k_pci_target_is_awake(ar)) |
| break; |
| msleep(1); |
| } |
| |
| /* Put Target, including PCIe, into RESET. */ |
| val = ath10k_pci_reg_read32(mem, SOC_GLOBAL_RESET_ADDRESS); |
| val |= 1; |
| ath10k_pci_reg_write32(mem, SOC_GLOBAL_RESET_ADDRESS, val); |
| |
| for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) { |
| if (ath10k_pci_reg_read32(mem, RTC_STATE_ADDRESS) & |
| RTC_STATE_COLD_RESET_MASK) |
| break; |
| msleep(1); |
| } |
| |
| /* Pull Target, including PCIe, out of RESET. */ |
| val &= ~1; |
| ath10k_pci_reg_write32(mem, SOC_GLOBAL_RESET_ADDRESS, val); |
| |
| for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) { |
| if (!(ath10k_pci_reg_read32(mem, RTC_STATE_ADDRESS) & |
| RTC_STATE_COLD_RESET_MASK)) |
| break; |
| msleep(1); |
| } |
| |
| ath10k_pci_reg_write32(mem, PCIE_SOC_WAKE_ADDRESS, PCIE_SOC_WAKE_RESET); |
| } |
| |
| static void ath10k_pci_dump_features(struct ath10k_pci *ar_pci) |
| { |
| int i; |
| |
| for (i = 0; i < ATH10K_PCI_FEATURE_COUNT; i++) { |
| if (!test_bit(i, ar_pci->features)) |
| continue; |
| |
| switch (i) { |
| case ATH10K_PCI_FEATURE_MSI_X: |
| ath10k_dbg(ATH10K_DBG_PCI, "device supports MSI-X\n"); |
| break; |
| case ATH10K_PCI_FEATURE_HW_1_0_WARKAROUND: |
| ath10k_dbg(ATH10K_DBG_PCI, "QCA988X_1.0 workaround enabled\n"); |
| break; |
| } |
| } |
| } |
| |
| static int ath10k_pci_probe(struct pci_dev *pdev, |
| const struct pci_device_id *pci_dev) |
| { |
| void __iomem *mem; |
| int ret = 0; |
| struct ath10k *ar; |
| struct ath10k_pci *ar_pci; |
| u32 lcr_val; |
| |
| ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__); |
| |
| ar_pci = kzalloc(sizeof(*ar_pci), GFP_KERNEL); |
| if (ar_pci == NULL) |
| return -ENOMEM; |
| |
| ar_pci->pdev = pdev; |
| ar_pci->dev = &pdev->dev; |
| |
| switch (pci_dev->device) { |
| case QCA988X_1_0_DEVICE_ID: |
| set_bit(ATH10K_PCI_FEATURE_HW_1_0_WARKAROUND, ar_pci->features); |
| break; |
| case QCA988X_2_0_DEVICE_ID: |
| set_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features); |
| break; |
| default: |
| ret = -ENODEV; |
| ath10k_err("Unkown device ID: %d\n", pci_dev->device); |
| goto err_ar_pci; |
| } |
| |
| ath10k_pci_dump_features(ar_pci); |
| |
| ar = ath10k_core_create(ar_pci, ar_pci->dev, ATH10K_BUS_PCI, |
| &ath10k_pci_hif_ops); |
| if (!ar) { |
| ath10k_err("ath10k_core_create failed!\n"); |
| ret = -EINVAL; |
| goto err_ar_pci; |
| } |
| |
| /* Enable QCA988X_1.0 HW workarounds */ |
| if (test_bit(ATH10K_PCI_FEATURE_HW_1_0_WARKAROUND, ar_pci->features)) |
| spin_lock_init(&ar_pci->hw_v1_workaround_lock); |
| |
| ar_pci->ar = ar; |
| ar_pci->fw_indicator_address = FW_INDICATOR_ADDRESS; |
| atomic_set(&ar_pci->keep_awake_count, 0); |
| |
| pci_set_drvdata(pdev, ar); |
| |
| /* |
| * Without any knowledge of the Host, the Target may have been reset or |
| * power cycled and its Config Space may no longer reflect the PCI |
| * address space that was assigned earlier by the PCI infrastructure. |
| * Refresh it now. |
| */ |
| ret = pci_assign_resource(pdev, BAR_NUM); |
| if (ret) { |
| ath10k_err("cannot assign PCI space: %d\n", ret); |
| goto err_ar; |
| } |
| |
| ret = pci_enable_device(pdev); |
| if (ret) { |
| ath10k_err("cannot enable PCI device: %d\n", ret); |
| goto err_ar; |
| } |
| |
| /* Request MMIO resources */ |
| ret = pci_request_region(pdev, BAR_NUM, "ath"); |
| if (ret) { |
| ath10k_err("PCI MMIO reservation error: %d\n", ret); |
| goto err_device; |
| } |
| |
| /* |
| * Target structures have a limit of 32 bit DMA pointers. |
| * DMA pointers can be wider than 32 bits by default on some systems. |
| */ |
| ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); |
| if (ret) { |
| ath10k_err("32-bit DMA not available: %d\n", ret); |
| goto err_region; |
| } |
| |
| ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); |
| if (ret) { |
| ath10k_err("cannot enable 32-bit consistent DMA\n"); |
| goto err_region; |
| } |
| |
| /* Set bus master bit in PCI_COMMAND to enable DMA */ |
| pci_set_master(pdev); |
| |
| /* |
| * Temporary FIX: disable ASPM |
| * Will be removed after the OTP is programmed |
| */ |
| pci_read_config_dword(pdev, 0x80, &lcr_val); |
| pci_write_config_dword(pdev, 0x80, (lcr_val & 0xffffff00)); |
| |
| /* Arrange for access to Target SoC registers. */ |
| mem = pci_iomap(pdev, BAR_NUM, 0); |
| if (!mem) { |
| ath10k_err("PCI iomap error\n"); |
| ret = -EIO; |
| goto err_master; |
| } |
| |
| ar_pci->mem = mem; |
| |
| spin_lock_init(&ar_pci->ce_lock); |
| |
| ar_pci->cacheline_sz = dma_get_cache_alignment(); |
| |
| ret = ath10k_pci_start_intr(ar); |
| if (ret) { |
| ath10k_err("could not start interrupt handling (%d)\n", ret); |
| goto err_iomap; |
| } |
| |
| /* |
| * Bring the target up cleanly. |
| * |
| * The target may be in an undefined state with an AUX-powered Target |
| * and a Host in WoW mode. If the Host crashes, loses power, or is |
| * restarted (without unloading the driver) then the Target is left |
| * (aux) powered and running. On a subsequent driver load, the Target |
| * is in an unexpected state. We try to catch that here in order to |
| * reset the Target and retry the probe. |
| */ |
| ath10k_pci_device_reset(ar_pci); |
| |
| ret = ath10k_pci_reset_target(ar); |
| if (ret) |
| goto err_intr; |
| |
| if (ath10k_target_ps) { |
| ath10k_dbg(ATH10K_DBG_PCI, "on-chip power save enabled\n"); |
| } else { |
| /* Force AWAKE forever */ |
| ath10k_dbg(ATH10K_DBG_PCI, "on-chip power save disabled\n"); |
| ath10k_do_pci_wake(ar); |
| } |
| |
| ret = ath10k_pci_ce_init(ar); |
| if (ret) |
| goto err_intr; |
| |
| ret = ath10k_pci_init_config(ar); |
| if (ret) |
| goto err_ce; |
| |
| ret = ath10k_pci_wake_target_cpu(ar); |
| if (ret) { |
| ath10k_err("could not wake up target CPU (%d)\n", ret); |
| goto err_ce; |
| } |
| |
| ret = ath10k_core_register(ar); |
| if (ret) { |
| ath10k_err("could not register driver core (%d)\n", ret); |
| goto err_ce; |
| } |
| |
| return 0; |
| |
| err_ce: |
| ath10k_pci_ce_deinit(ar); |
| err_intr: |
| ath10k_pci_stop_intr(ar); |
| err_iomap: |
| pci_iounmap(pdev, mem); |
| err_master: |
| pci_clear_master(pdev); |
| err_region: |
| pci_release_region(pdev, BAR_NUM); |
| err_device: |
| pci_disable_device(pdev); |
| err_ar: |
| pci_set_drvdata(pdev, NULL); |
| ath10k_core_destroy(ar); |
| err_ar_pci: |
| /* call HIF PCI free here */ |
| kfree(ar_pci); |
| |
| return ret; |
| } |
| |
| static void ath10k_pci_remove(struct pci_dev *pdev) |
| { |
| struct ath10k *ar = pci_get_drvdata(pdev); |
| struct ath10k_pci *ar_pci; |
| |
| ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__); |
| |
| if (!ar) |
| return; |
| |
| ar_pci = ath10k_pci_priv(ar); |
| |
| if (!ar_pci) |
| return; |
| |
| tasklet_kill(&ar_pci->msi_fw_err); |
| |
| ath10k_core_unregister(ar); |
| ath10k_pci_stop_intr(ar); |
| |
| pci_set_drvdata(pdev, NULL); |
| pci_iounmap(pdev, ar_pci->mem); |
| pci_release_region(pdev, BAR_NUM); |
| pci_clear_master(pdev); |
| pci_disable_device(pdev); |
| |
| ath10k_core_destroy(ar); |
| kfree(ar_pci); |
| } |
| |
| #if defined(CONFIG_PM_SLEEP) |
| |
| #define ATH10K_PCI_PM_CONTROL 0x44 |
| |
| static int ath10k_pci_suspend(struct device *device) |
| { |
| struct pci_dev *pdev = to_pci_dev(device); |
| struct ath10k *ar = pci_get_drvdata(pdev); |
| struct ath10k_pci *ar_pci; |
| u32 val; |
| int ret, retval; |
| |
| ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__); |
| |
| if (!ar) |
| return -ENODEV; |
| |
| ar_pci = ath10k_pci_priv(ar); |
| if (!ar_pci) |
| return -ENODEV; |
| |
| if (ath10k_core_target_suspend(ar)) |
| return -EBUSY; |
| |
| ret = wait_event_interruptible_timeout(ar->event_queue, |
| ar->is_target_paused == true, |
| 1 * HZ); |
| if (ret < 0) { |
| ath10k_warn("suspend interrupted (%d)\n", ret); |
| retval = ret; |
| goto resume; |
| } else if (ret == 0) { |
| ath10k_warn("suspend timed out - target pause event never came\n"); |
| retval = EIO; |
| goto resume; |
| } |
| |
| /* |
| * reset is_target_paused and host can check that in next time, |
| * or it will always be TRUE and host just skip the waiting |
| * condition, it causes target assert due to host already |
| * suspend |
| */ |
| ar->is_target_paused = false; |
| |
| pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val); |
| |
| if ((val & 0x000000ff) != 0x3) { |
| pci_save_state(pdev); |
| pci_disable_device(pdev); |
| pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL, |
| (val & 0xffffff00) | 0x03); |
| } |
| |
| return 0; |
| resume: |
| ret = ath10k_core_target_resume(ar); |
| if (ret) |
| ath10k_warn("could not resume (%d)\n", ret); |
| |
| return retval; |
| } |
| |
| static int ath10k_pci_resume(struct device *device) |
| { |
| struct pci_dev *pdev = to_pci_dev(device); |
| struct ath10k *ar = pci_get_drvdata(pdev); |
| struct ath10k_pci *ar_pci; |
| int ret; |
| u32 val; |
| |
| ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__); |
| |
| if (!ar) |
| return -ENODEV; |
| ar_pci = ath10k_pci_priv(ar); |
| |
| if (!ar_pci) |
| return -ENODEV; |
| |
| ret = pci_enable_device(pdev); |
| if (ret) { |
| ath10k_warn("cannot enable PCI device: %d\n", ret); |
| return ret; |
| } |
| |
| pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val); |
| |
| if ((val & 0x000000ff) != 0) { |
| pci_restore_state(pdev); |
| pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL, |
| val & 0xffffff00); |
| /* |
| * Suspend/Resume resets the PCI configuration space, |
| * so we have to re-disable the RETRY_TIMEOUT register (0x41) |
| * to keep PCI Tx retries from interfering with C3 CPU state |
| */ |
| pci_read_config_dword(pdev, 0x40, &val); |
| |
| if ((val & 0x0000ff00) != 0) |
| pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); |
| } |
| |
| ret = ath10k_core_target_resume(ar); |
| if (ret) |
| ath10k_warn("target resume failed: %d\n", ret); |
| |
| return ret; |
| } |
| |
| static SIMPLE_DEV_PM_OPS(ath10k_dev_pm_ops, |
| ath10k_pci_suspend, |
| ath10k_pci_resume); |
| |
| #define ATH10K_PCI_PM_OPS (&ath10k_dev_pm_ops) |
| |
| #else |
| |
| #define ATH10K_PCI_PM_OPS NULL |
| |
| #endif /* CONFIG_PM_SLEEP */ |
| |
| MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table); |
| |
| static struct pci_driver ath10k_pci_driver = { |
| .name = "ath10k_pci", |
| .id_table = ath10k_pci_id_table, |
| .probe = ath10k_pci_probe, |
| .remove = ath10k_pci_remove, |
| .driver.pm = ATH10K_PCI_PM_OPS, |
| }; |
| |
| static int __init ath10k_pci_init(void) |
| { |
| int ret; |
| |
| ret = pci_register_driver(&ath10k_pci_driver); |
| if (ret) |
| ath10k_err("pci_register_driver failed [%d]\n", ret); |
| |
| return ret; |
| } |
| module_init(ath10k_pci_init); |
| |
| static void __exit ath10k_pci_exit(void) |
| { |
| pci_unregister_driver(&ath10k_pci_driver); |
| } |
| |
| module_exit(ath10k_pci_exit); |
| |
| MODULE_AUTHOR("Qualcomm Atheros"); |
| MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices"); |
| MODULE_LICENSE("Dual BSD/GPL"); |
| MODULE_FIRMWARE(QCA988X_HW_1_0_FW_DIR "/" QCA988X_HW_1_0_FW_FILE); |
| MODULE_FIRMWARE(QCA988X_HW_1_0_FW_DIR "/" QCA988X_HW_1_0_OTP_FILE); |
| MODULE_FIRMWARE(QCA988X_HW_1_0_FW_DIR "/" QCA988X_HW_1_0_BOARD_DATA_FILE); |
| MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_FILE); |
| MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_OTP_FILE); |
| MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE); |