| /* |
| * Copyright (C) 2004-2006 Atmel Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/dma-mapping.h> |
| #include <linux/gfp.h> |
| #include <linux/export.h> |
| #include <linux/mm.h> |
| #include <linux/device.h> |
| #include <linux/scatterlist.h> |
| |
| #include <asm/processor.h> |
| #include <asm/cacheflush.h> |
| #include <asm/io.h> |
| #include <asm/addrspace.h> |
| |
| void dma_cache_sync(struct device *dev, void *vaddr, size_t size, int direction) |
| { |
| /* |
| * No need to sync an uncached area |
| */ |
| if (PXSEG(vaddr) == P2SEG) |
| return; |
| |
| switch (direction) { |
| case DMA_FROM_DEVICE: /* invalidate only */ |
| invalidate_dcache_region(vaddr, size); |
| break; |
| case DMA_TO_DEVICE: /* writeback only */ |
| clean_dcache_region(vaddr, size); |
| break; |
| case DMA_BIDIRECTIONAL: /* writeback and invalidate */ |
| flush_dcache_region(vaddr, size); |
| break; |
| default: |
| BUG(); |
| } |
| } |
| EXPORT_SYMBOL(dma_cache_sync); |
| |
| static struct page *__dma_alloc(struct device *dev, size_t size, |
| dma_addr_t *handle, gfp_t gfp) |
| { |
| struct page *page, *free, *end; |
| int order; |
| |
| /* Following is a work-around (a.k.a. hack) to prevent pages |
| * with __GFP_COMP being passed to split_page() which cannot |
| * handle them. The real problem is that this flag probably |
| * should be 0 on AVR32 as it is not supported on this |
| * platform--see CONFIG_HUGETLB_PAGE. */ |
| gfp &= ~(__GFP_COMP); |
| |
| size = PAGE_ALIGN(size); |
| order = get_order(size); |
| |
| page = alloc_pages(gfp, order); |
| if (!page) |
| return NULL; |
| split_page(page, order); |
| |
| /* |
| * When accessing physical memory with valid cache data, we |
| * get a cache hit even if the virtual memory region is marked |
| * as uncached. |
| * |
| * Since the memory is newly allocated, there is no point in |
| * doing a writeback. If the previous owner cares, he should |
| * have flushed the cache before releasing the memory. |
| */ |
| invalidate_dcache_region(phys_to_virt(page_to_phys(page)), size); |
| |
| *handle = page_to_bus(page); |
| free = page + (size >> PAGE_SHIFT); |
| end = page + (1 << order); |
| |
| /* |
| * Free any unused pages |
| */ |
| while (free < end) { |
| __free_page(free); |
| free++; |
| } |
| |
| return page; |
| } |
| |
| static void __dma_free(struct device *dev, size_t size, |
| struct page *page, dma_addr_t handle) |
| { |
| struct page *end = page + (PAGE_ALIGN(size) >> PAGE_SHIFT); |
| |
| while (page < end) |
| __free_page(page++); |
| } |
| |
| static void *avr32_dma_alloc(struct device *dev, size_t size, |
| dma_addr_t *handle, gfp_t gfp, unsigned long attrs) |
| { |
| struct page *page; |
| dma_addr_t phys; |
| |
| page = __dma_alloc(dev, size, handle, gfp); |
| if (!page) |
| return NULL; |
| phys = page_to_phys(page); |
| |
| if (attrs & DMA_ATTR_WRITE_COMBINE) { |
| /* Now, map the page into P3 with write-combining turned on */ |
| *handle = phys; |
| return __ioremap(phys, size, _PAGE_BUFFER); |
| } else { |
| return phys_to_uncached(phys); |
| } |
| } |
| |
| static void avr32_dma_free(struct device *dev, size_t size, |
| void *cpu_addr, dma_addr_t handle, unsigned long attrs) |
| { |
| struct page *page; |
| |
| if (attrs & DMA_ATTR_WRITE_COMBINE) { |
| iounmap(cpu_addr); |
| |
| page = phys_to_page(handle); |
| } else { |
| void *addr = phys_to_cached(uncached_to_phys(cpu_addr)); |
| |
| pr_debug("avr32_dma_free addr %p (phys %08lx) size %u\n", |
| cpu_addr, (unsigned long)handle, (unsigned)size); |
| |
| BUG_ON(!virt_addr_valid(addr)); |
| page = virt_to_page(addr); |
| } |
| |
| __dma_free(dev, size, page, handle); |
| } |
| |
| static dma_addr_t avr32_dma_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, |
| enum dma_data_direction direction, unsigned long attrs) |
| { |
| void *cpu_addr = page_address(page) + offset; |
| |
| if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) |
| dma_cache_sync(dev, cpu_addr, size, direction); |
| return virt_to_bus(cpu_addr); |
| } |
| |
| static int avr32_dma_map_sg(struct device *dev, struct scatterlist *sglist, |
| int nents, enum dma_data_direction direction, |
| unsigned long attrs) |
| { |
| int i; |
| struct scatterlist *sg; |
| |
| for_each_sg(sglist, sg, nents, i) { |
| char *virt; |
| |
| sg->dma_address = page_to_bus(sg_page(sg)) + sg->offset; |
| virt = sg_virt(sg); |
| |
| if (attrs & DMA_ATTR_SKIP_CPU_SYNC) |
| continue; |
| |
| dma_cache_sync(dev, virt, sg->length, direction); |
| } |
| |
| return nents; |
| } |
| |
| static void avr32_dma_sync_single_for_device(struct device *dev, |
| dma_addr_t dma_handle, size_t size, |
| enum dma_data_direction direction) |
| { |
| dma_cache_sync(dev, bus_to_virt(dma_handle), size, direction); |
| } |
| |
| static void avr32_dma_sync_sg_for_device(struct device *dev, |
| struct scatterlist *sglist, int nents, |
| enum dma_data_direction direction) |
| { |
| int i; |
| struct scatterlist *sg; |
| |
| for_each_sg(sglist, sg, nents, i) |
| dma_cache_sync(dev, sg_virt(sg), sg->length, direction); |
| } |
| |
| struct dma_map_ops avr32_dma_ops = { |
| .alloc = avr32_dma_alloc, |
| .free = avr32_dma_free, |
| .map_page = avr32_dma_map_page, |
| .map_sg = avr32_dma_map_sg, |
| .sync_single_for_device = avr32_dma_sync_single_for_device, |
| .sync_sg_for_device = avr32_dma_sync_sg_for_device, |
| }; |
| EXPORT_SYMBOL(avr32_dma_ops); |