| /* |
| * linux/ipc/sem.c |
| * Copyright (C) 1992 Krishna Balasubramanian |
| * Copyright (C) 1995 Eric Schenk, Bruno Haible |
| * |
| * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995): |
| * This code underwent a massive rewrite in order to solve some problems |
| * with the original code. In particular the original code failed to |
| * wake up processes that were waiting for semval to go to 0 if the |
| * value went to 0 and was then incremented rapidly enough. In solving |
| * this problem I have also modified the implementation so that it |
| * processes pending operations in a FIFO manner, thus give a guarantee |
| * that processes waiting for a lock on the semaphore won't starve |
| * unless another locking process fails to unlock. |
| * In addition the following two changes in behavior have been introduced: |
| * - The original implementation of semop returned the value |
| * last semaphore element examined on success. This does not |
| * match the manual page specifications, and effectively |
| * allows the user to read the semaphore even if they do not |
| * have read permissions. The implementation now returns 0 |
| * on success as stated in the manual page. |
| * - There is some confusion over whether the set of undo adjustments |
| * to be performed at exit should be done in an atomic manner. |
| * That is, if we are attempting to decrement the semval should we queue |
| * up and wait until we can do so legally? |
| * The original implementation attempted to do this. |
| * The current implementation does not do so. This is because I don't |
| * think it is the right thing (TM) to do, and because I couldn't |
| * see a clean way to get the old behavior with the new design. |
| * The POSIX standard and SVID should be consulted to determine |
| * what behavior is mandated. |
| * |
| * Further notes on refinement (Christoph Rohland, December 1998): |
| * - The POSIX standard says, that the undo adjustments simply should |
| * redo. So the current implementation is o.K. |
| * - The previous code had two flaws: |
| * 1) It actively gave the semaphore to the next waiting process |
| * sleeping on the semaphore. Since this process did not have the |
| * cpu this led to many unnecessary context switches and bad |
| * performance. Now we only check which process should be able to |
| * get the semaphore and if this process wants to reduce some |
| * semaphore value we simply wake it up without doing the |
| * operation. So it has to try to get it later. Thus e.g. the |
| * running process may reacquire the semaphore during the current |
| * time slice. If it only waits for zero or increases the semaphore, |
| * we do the operation in advance and wake it up. |
| * 2) It did not wake up all zero waiting processes. We try to do |
| * better but only get the semops right which only wait for zero or |
| * increase. If there are decrement operations in the operations |
| * array we do the same as before. |
| * |
| * With the incarnation of O(1) scheduler, it becomes unnecessary to perform |
| * check/retry algorithm for waking up blocked processes as the new scheduler |
| * is better at handling thread switch than the old one. |
| * |
| * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> |
| * |
| * SMP-threaded, sysctl's added |
| * (c) 1999 Manfred Spraul <manfred@colorfullife.com> |
| * Enforced range limit on SEM_UNDO |
| * (c) 2001 Red Hat Inc <alan@redhat.com> |
| * Lockless wakeup |
| * (c) 2003 Manfred Spraul <manfred@colorfullife.com> |
| * |
| * support for audit of ipc object properties and permission changes |
| * Dustin Kirkland <dustin.kirkland@us.ibm.com> |
| * |
| * namespaces support |
| * OpenVZ, SWsoft Inc. |
| * Pavel Emelianov <xemul@openvz.org> |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/init.h> |
| #include <linux/proc_fs.h> |
| #include <linux/time.h> |
| #include <linux/security.h> |
| #include <linux/syscalls.h> |
| #include <linux/audit.h> |
| #include <linux/capability.h> |
| #include <linux/seq_file.h> |
| #include <linux/rwsem.h> |
| #include <linux/nsproxy.h> |
| #include <linux/ipc_namespace.h> |
| |
| #include <asm/uaccess.h> |
| #include "util.h" |
| |
| #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) |
| |
| #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm) |
| #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid) |
| |
| static int newary(struct ipc_namespace *, struct ipc_params *); |
| static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); |
| #ifdef CONFIG_PROC_FS |
| static int sysvipc_sem_proc_show(struct seq_file *s, void *it); |
| #endif |
| |
| #define SEMMSL_FAST 256 /* 512 bytes on stack */ |
| #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ |
| |
| /* |
| * linked list protection: |
| * sem_undo.id_next, |
| * sem_array.sem_pending{,last}, |
| * sem_array.sem_undo: sem_lock() for read/write |
| * sem_undo.proc_next: only "current" is allowed to read/write that field. |
| * |
| */ |
| |
| #define sc_semmsl sem_ctls[0] |
| #define sc_semmns sem_ctls[1] |
| #define sc_semopm sem_ctls[2] |
| #define sc_semmni sem_ctls[3] |
| |
| void sem_init_ns(struct ipc_namespace *ns) |
| { |
| ns->sc_semmsl = SEMMSL; |
| ns->sc_semmns = SEMMNS; |
| ns->sc_semopm = SEMOPM; |
| ns->sc_semmni = SEMMNI; |
| ns->used_sems = 0; |
| ipc_init_ids(&ns->ids[IPC_SEM_IDS]); |
| } |
| |
| #ifdef CONFIG_IPC_NS |
| void sem_exit_ns(struct ipc_namespace *ns) |
| { |
| free_ipcs(ns, &sem_ids(ns), freeary); |
| } |
| #endif |
| |
| void __init sem_init (void) |
| { |
| sem_init_ns(&init_ipc_ns); |
| ipc_init_proc_interface("sysvipc/sem", |
| " key semid perms nsems uid gid cuid cgid otime ctime\n", |
| IPC_SEM_IDS, sysvipc_sem_proc_show); |
| } |
| |
| /* |
| * This routine is called in the paths where the rw_mutex is held to protect |
| * access to the idr tree. |
| */ |
| static inline struct sem_array *sem_lock_check_down(struct ipc_namespace *ns, |
| int id) |
| { |
| struct kern_ipc_perm *ipcp = ipc_lock_check_down(&sem_ids(ns), id); |
| |
| if (IS_ERR(ipcp)) |
| return (struct sem_array *)ipcp; |
| |
| return container_of(ipcp, struct sem_array, sem_perm); |
| } |
| |
| /* |
| * sem_lock_(check_) routines are called in the paths where the rw_mutex |
| * is not held. |
| */ |
| static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id) |
| { |
| struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id); |
| |
| if (IS_ERR(ipcp)) |
| return (struct sem_array *)ipcp; |
| |
| return container_of(ipcp, struct sem_array, sem_perm); |
| } |
| |
| static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns, |
| int id) |
| { |
| struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id); |
| |
| if (IS_ERR(ipcp)) |
| return (struct sem_array *)ipcp; |
| |
| return container_of(ipcp, struct sem_array, sem_perm); |
| } |
| |
| static inline void sem_lock_and_putref(struct sem_array *sma) |
| { |
| ipc_lock_by_ptr(&sma->sem_perm); |
| ipc_rcu_putref(sma); |
| } |
| |
| static inline void sem_getref_and_unlock(struct sem_array *sma) |
| { |
| ipc_rcu_getref(sma); |
| ipc_unlock(&(sma)->sem_perm); |
| } |
| |
| static inline void sem_putref(struct sem_array *sma) |
| { |
| ipc_lock_by_ptr(&sma->sem_perm); |
| ipc_rcu_putref(sma); |
| ipc_unlock(&(sma)->sem_perm); |
| } |
| |
| static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) |
| { |
| ipc_rmid(&sem_ids(ns), &s->sem_perm); |
| } |
| |
| /* |
| * Lockless wakeup algorithm: |
| * Without the check/retry algorithm a lockless wakeup is possible: |
| * - queue.status is initialized to -EINTR before blocking. |
| * - wakeup is performed by |
| * * unlinking the queue entry from sma->sem_pending |
| * * setting queue.status to IN_WAKEUP |
| * This is the notification for the blocked thread that a |
| * result value is imminent. |
| * * call wake_up_process |
| * * set queue.status to the final value. |
| * - the previously blocked thread checks queue.status: |
| * * if it's IN_WAKEUP, then it must wait until the value changes |
| * * if it's not -EINTR, then the operation was completed by |
| * update_queue. semtimedop can return queue.status without |
| * performing any operation on the sem array. |
| * * otherwise it must acquire the spinlock and check what's up. |
| * |
| * The two-stage algorithm is necessary to protect against the following |
| * races: |
| * - if queue.status is set after wake_up_process, then the woken up idle |
| * thread could race forward and try (and fail) to acquire sma->lock |
| * before update_queue had a chance to set queue.status |
| * - if queue.status is written before wake_up_process and if the |
| * blocked process is woken up by a signal between writing |
| * queue.status and the wake_up_process, then the woken up |
| * process could return from semtimedop and die by calling |
| * sys_exit before wake_up_process is called. Then wake_up_process |
| * will oops, because the task structure is already invalid. |
| * (yes, this happened on s390 with sysv msg). |
| * |
| */ |
| #define IN_WAKEUP 1 |
| |
| /** |
| * newary - Create a new semaphore set |
| * @ns: namespace |
| * @params: ptr to the structure that contains key, semflg and nsems |
| * |
| * Called with sem_ids.rw_mutex held (as a writer) |
| */ |
| |
| static int newary(struct ipc_namespace *ns, struct ipc_params *params) |
| { |
| int id; |
| int retval; |
| struct sem_array *sma; |
| int size; |
| key_t key = params->key; |
| int nsems = params->u.nsems; |
| int semflg = params->flg; |
| |
| if (!nsems) |
| return -EINVAL; |
| if (ns->used_sems + nsems > ns->sc_semmns) |
| return -ENOSPC; |
| |
| size = sizeof (*sma) + nsems * sizeof (struct sem); |
| sma = ipc_rcu_alloc(size); |
| if (!sma) { |
| return -ENOMEM; |
| } |
| memset (sma, 0, size); |
| |
| sma->sem_perm.mode = (semflg & S_IRWXUGO); |
| sma->sem_perm.key = key; |
| |
| sma->sem_perm.security = NULL; |
| retval = security_sem_alloc(sma); |
| if (retval) { |
| ipc_rcu_putref(sma); |
| return retval; |
| } |
| |
| id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); |
| if (id < 0) { |
| security_sem_free(sma); |
| ipc_rcu_putref(sma); |
| return id; |
| } |
| ns->used_sems += nsems; |
| |
| sma->sem_base = (struct sem *) &sma[1]; |
| /* sma->sem_pending = NULL; */ |
| sma->sem_pending_last = &sma->sem_pending; |
| /* sma->undo = NULL; */ |
| sma->sem_nsems = nsems; |
| sma->sem_ctime = get_seconds(); |
| sem_unlock(sma); |
| |
| return sma->sem_perm.id; |
| } |
| |
| |
| /* |
| * Called with sem_ids.rw_mutex and ipcp locked. |
| */ |
| static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) |
| { |
| struct sem_array *sma; |
| |
| sma = container_of(ipcp, struct sem_array, sem_perm); |
| return security_sem_associate(sma, semflg); |
| } |
| |
| /* |
| * Called with sem_ids.rw_mutex and ipcp locked. |
| */ |
| static inline int sem_more_checks(struct kern_ipc_perm *ipcp, |
| struct ipc_params *params) |
| { |
| struct sem_array *sma; |
| |
| sma = container_of(ipcp, struct sem_array, sem_perm); |
| if (params->u.nsems > sma->sem_nsems) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| asmlinkage long sys_semget(key_t key, int nsems, int semflg) |
| { |
| struct ipc_namespace *ns; |
| struct ipc_ops sem_ops; |
| struct ipc_params sem_params; |
| |
| ns = current->nsproxy->ipc_ns; |
| |
| if (nsems < 0 || nsems > ns->sc_semmsl) |
| return -EINVAL; |
| |
| sem_ops.getnew = newary; |
| sem_ops.associate = sem_security; |
| sem_ops.more_checks = sem_more_checks; |
| |
| sem_params.key = key; |
| sem_params.flg = semflg; |
| sem_params.u.nsems = nsems; |
| |
| return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); |
| } |
| |
| /* Manage the doubly linked list sma->sem_pending as a FIFO: |
| * insert new queue elements at the tail sma->sem_pending_last. |
| */ |
| static inline void append_to_queue (struct sem_array * sma, |
| struct sem_queue * q) |
| { |
| *(q->prev = sma->sem_pending_last) = q; |
| *(sma->sem_pending_last = &q->next) = NULL; |
| } |
| |
| static inline void prepend_to_queue (struct sem_array * sma, |
| struct sem_queue * q) |
| { |
| q->next = sma->sem_pending; |
| *(q->prev = &sma->sem_pending) = q; |
| if (q->next) |
| q->next->prev = &q->next; |
| else /* sma->sem_pending_last == &sma->sem_pending */ |
| sma->sem_pending_last = &q->next; |
| } |
| |
| static inline void remove_from_queue (struct sem_array * sma, |
| struct sem_queue * q) |
| { |
| *(q->prev) = q->next; |
| if (q->next) |
| q->next->prev = q->prev; |
| else /* sma->sem_pending_last == &q->next */ |
| sma->sem_pending_last = q->prev; |
| q->prev = NULL; /* mark as removed */ |
| } |
| |
| /* |
| * Determine whether a sequence of semaphore operations would succeed |
| * all at once. Return 0 if yes, 1 if need to sleep, else return error code. |
| */ |
| |
| static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops, |
| int nsops, struct sem_undo *un, int pid) |
| { |
| int result, sem_op; |
| struct sembuf *sop; |
| struct sem * curr; |
| |
| for (sop = sops; sop < sops + nsops; sop++) { |
| curr = sma->sem_base + sop->sem_num; |
| sem_op = sop->sem_op; |
| result = curr->semval; |
| |
| if (!sem_op && result) |
| goto would_block; |
| |
| result += sem_op; |
| if (result < 0) |
| goto would_block; |
| if (result > SEMVMX) |
| goto out_of_range; |
| if (sop->sem_flg & SEM_UNDO) { |
| int undo = un->semadj[sop->sem_num] - sem_op; |
| /* |
| * Exceeding the undo range is an error. |
| */ |
| if (undo < (-SEMAEM - 1) || undo > SEMAEM) |
| goto out_of_range; |
| } |
| curr->semval = result; |
| } |
| |
| sop--; |
| while (sop >= sops) { |
| sma->sem_base[sop->sem_num].sempid = pid; |
| if (sop->sem_flg & SEM_UNDO) |
| un->semadj[sop->sem_num] -= sop->sem_op; |
| sop--; |
| } |
| |
| sma->sem_otime = get_seconds(); |
| return 0; |
| |
| out_of_range: |
| result = -ERANGE; |
| goto undo; |
| |
| would_block: |
| if (sop->sem_flg & IPC_NOWAIT) |
| result = -EAGAIN; |
| else |
| result = 1; |
| |
| undo: |
| sop--; |
| while (sop >= sops) { |
| sma->sem_base[sop->sem_num].semval -= sop->sem_op; |
| sop--; |
| } |
| |
| return result; |
| } |
| |
| /* Go through the pending queue for the indicated semaphore |
| * looking for tasks that can be completed. |
| */ |
| static void update_queue (struct sem_array * sma) |
| { |
| int error; |
| struct sem_queue * q; |
| |
| q = sma->sem_pending; |
| while(q) { |
| error = try_atomic_semop(sma, q->sops, q->nsops, |
| q->undo, q->pid); |
| |
| /* Does q->sleeper still need to sleep? */ |
| if (error <= 0) { |
| struct sem_queue *n; |
| remove_from_queue(sma,q); |
| q->status = IN_WAKEUP; |
| /* |
| * Continue scanning. The next operation |
| * that must be checked depends on the type of the |
| * completed operation: |
| * - if the operation modified the array, then |
| * restart from the head of the queue and |
| * check for threads that might be waiting |
| * for semaphore values to become 0. |
| * - if the operation didn't modify the array, |
| * then just continue. |
| */ |
| if (q->alter) |
| n = sma->sem_pending; |
| else |
| n = q->next; |
| wake_up_process(q->sleeper); |
| /* hands-off: q will disappear immediately after |
| * writing q->status. |
| */ |
| smp_wmb(); |
| q->status = error; |
| q = n; |
| } else { |
| q = q->next; |
| } |
| } |
| } |
| |
| /* The following counts are associated to each semaphore: |
| * semncnt number of tasks waiting on semval being nonzero |
| * semzcnt number of tasks waiting on semval being zero |
| * This model assumes that a task waits on exactly one semaphore. |
| * Since semaphore operations are to be performed atomically, tasks actually |
| * wait on a whole sequence of semaphores simultaneously. |
| * The counts we return here are a rough approximation, but still |
| * warrant that semncnt+semzcnt>0 if the task is on the pending queue. |
| */ |
| static int count_semncnt (struct sem_array * sma, ushort semnum) |
| { |
| int semncnt; |
| struct sem_queue * q; |
| |
| semncnt = 0; |
| for (q = sma->sem_pending; q; q = q->next) { |
| struct sembuf * sops = q->sops; |
| int nsops = q->nsops; |
| int i; |
| for (i = 0; i < nsops; i++) |
| if (sops[i].sem_num == semnum |
| && (sops[i].sem_op < 0) |
| && !(sops[i].sem_flg & IPC_NOWAIT)) |
| semncnt++; |
| } |
| return semncnt; |
| } |
| static int count_semzcnt (struct sem_array * sma, ushort semnum) |
| { |
| int semzcnt; |
| struct sem_queue * q; |
| |
| semzcnt = 0; |
| for (q = sma->sem_pending; q; q = q->next) { |
| struct sembuf * sops = q->sops; |
| int nsops = q->nsops; |
| int i; |
| for (i = 0; i < nsops; i++) |
| if (sops[i].sem_num == semnum |
| && (sops[i].sem_op == 0) |
| && !(sops[i].sem_flg & IPC_NOWAIT)) |
| semzcnt++; |
| } |
| return semzcnt; |
| } |
| |
| /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked |
| * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex |
| * remains locked on exit. |
| */ |
| static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) |
| { |
| struct sem_undo *un; |
| struct sem_queue *q; |
| struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); |
| |
| /* Invalidate the existing undo structures for this semaphore set. |
| * (They will be freed without any further action in exit_sem() |
| * or during the next semop.) |
| */ |
| for (un = sma->undo; un; un = un->id_next) |
| un->semid = -1; |
| |
| /* Wake up all pending processes and let them fail with EIDRM. */ |
| q = sma->sem_pending; |
| while(q) { |
| struct sem_queue *n; |
| /* lazy remove_from_queue: we are killing the whole queue */ |
| q->prev = NULL; |
| n = q->next; |
| q->status = IN_WAKEUP; |
| wake_up_process(q->sleeper); /* doesn't sleep */ |
| smp_wmb(); |
| q->status = -EIDRM; /* hands-off q */ |
| q = n; |
| } |
| |
| /* Remove the semaphore set from the IDR */ |
| sem_rmid(ns, sma); |
| sem_unlock(sma); |
| |
| ns->used_sems -= sma->sem_nsems; |
| security_sem_free(sma); |
| ipc_rcu_putref(sma); |
| } |
| |
| static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) |
| { |
| switch(version) { |
| case IPC_64: |
| return copy_to_user(buf, in, sizeof(*in)); |
| case IPC_OLD: |
| { |
| struct semid_ds out; |
| |
| ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); |
| |
| out.sem_otime = in->sem_otime; |
| out.sem_ctime = in->sem_ctime; |
| out.sem_nsems = in->sem_nsems; |
| |
| return copy_to_user(buf, &out, sizeof(out)); |
| } |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int semctl_nolock(struct ipc_namespace *ns, int semid, |
| int cmd, int version, union semun arg) |
| { |
| int err = -EINVAL; |
| struct sem_array *sma; |
| |
| switch(cmd) { |
| case IPC_INFO: |
| case SEM_INFO: |
| { |
| struct seminfo seminfo; |
| int max_id; |
| |
| err = security_sem_semctl(NULL, cmd); |
| if (err) |
| return err; |
| |
| memset(&seminfo,0,sizeof(seminfo)); |
| seminfo.semmni = ns->sc_semmni; |
| seminfo.semmns = ns->sc_semmns; |
| seminfo.semmsl = ns->sc_semmsl; |
| seminfo.semopm = ns->sc_semopm; |
| seminfo.semvmx = SEMVMX; |
| seminfo.semmnu = SEMMNU; |
| seminfo.semmap = SEMMAP; |
| seminfo.semume = SEMUME; |
| down_read(&sem_ids(ns).rw_mutex); |
| if (cmd == SEM_INFO) { |
| seminfo.semusz = sem_ids(ns).in_use; |
| seminfo.semaem = ns->used_sems; |
| } else { |
| seminfo.semusz = SEMUSZ; |
| seminfo.semaem = SEMAEM; |
| } |
| max_id = ipc_get_maxid(&sem_ids(ns)); |
| up_read(&sem_ids(ns).rw_mutex); |
| if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo))) |
| return -EFAULT; |
| return (max_id < 0) ? 0: max_id; |
| } |
| case IPC_STAT: |
| case SEM_STAT: |
| { |
| struct semid64_ds tbuf; |
| int id; |
| |
| if (cmd == SEM_STAT) { |
| sma = sem_lock(ns, semid); |
| if (IS_ERR(sma)) |
| return PTR_ERR(sma); |
| id = sma->sem_perm.id; |
| } else { |
| sma = sem_lock_check(ns, semid); |
| if (IS_ERR(sma)) |
| return PTR_ERR(sma); |
| id = 0; |
| } |
| |
| err = -EACCES; |
| if (ipcperms (&sma->sem_perm, S_IRUGO)) |
| goto out_unlock; |
| |
| err = security_sem_semctl(sma, cmd); |
| if (err) |
| goto out_unlock; |
| |
| memset(&tbuf, 0, sizeof(tbuf)); |
| |
| kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); |
| tbuf.sem_otime = sma->sem_otime; |
| tbuf.sem_ctime = sma->sem_ctime; |
| tbuf.sem_nsems = sma->sem_nsems; |
| sem_unlock(sma); |
| if (copy_semid_to_user (arg.buf, &tbuf, version)) |
| return -EFAULT; |
| return id; |
| } |
| default: |
| return -EINVAL; |
| } |
| return err; |
| out_unlock: |
| sem_unlock(sma); |
| return err; |
| } |
| |
| static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, |
| int cmd, int version, union semun arg) |
| { |
| struct sem_array *sma; |
| struct sem* curr; |
| int err; |
| ushort fast_sem_io[SEMMSL_FAST]; |
| ushort* sem_io = fast_sem_io; |
| int nsems; |
| |
| sma = sem_lock_check(ns, semid); |
| if (IS_ERR(sma)) |
| return PTR_ERR(sma); |
| |
| nsems = sma->sem_nsems; |
| |
| err = -EACCES; |
| if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO)) |
| goto out_unlock; |
| |
| err = security_sem_semctl(sma, cmd); |
| if (err) |
| goto out_unlock; |
| |
| err = -EACCES; |
| switch (cmd) { |
| case GETALL: |
| { |
| ushort __user *array = arg.array; |
| int i; |
| |
| if(nsems > SEMMSL_FAST) { |
| sem_getref_and_unlock(sma); |
| |
| sem_io = ipc_alloc(sizeof(ushort)*nsems); |
| if(sem_io == NULL) { |
| sem_putref(sma); |
| return -ENOMEM; |
| } |
| |
| sem_lock_and_putref(sma); |
| if (sma->sem_perm.deleted) { |
| sem_unlock(sma); |
| err = -EIDRM; |
| goto out_free; |
| } |
| } |
| |
| for (i = 0; i < sma->sem_nsems; i++) |
| sem_io[i] = sma->sem_base[i].semval; |
| sem_unlock(sma); |
| err = 0; |
| if(copy_to_user(array, sem_io, nsems*sizeof(ushort))) |
| err = -EFAULT; |
| goto out_free; |
| } |
| case SETALL: |
| { |
| int i; |
| struct sem_undo *un; |
| |
| sem_getref_and_unlock(sma); |
| |
| if(nsems > SEMMSL_FAST) { |
| sem_io = ipc_alloc(sizeof(ushort)*nsems); |
| if(sem_io == NULL) { |
| sem_putref(sma); |
| return -ENOMEM; |
| } |
| } |
| |
| if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) { |
| sem_putref(sma); |
| err = -EFAULT; |
| goto out_free; |
| } |
| |
| for (i = 0; i < nsems; i++) { |
| if (sem_io[i] > SEMVMX) { |
| sem_putref(sma); |
| err = -ERANGE; |
| goto out_free; |
| } |
| } |
| sem_lock_and_putref(sma); |
| if (sma->sem_perm.deleted) { |
| sem_unlock(sma); |
| err = -EIDRM; |
| goto out_free; |
| } |
| |
| for (i = 0; i < nsems; i++) |
| sma->sem_base[i].semval = sem_io[i]; |
| for (un = sma->undo; un; un = un->id_next) |
| for (i = 0; i < nsems; i++) |
| un->semadj[i] = 0; |
| sma->sem_ctime = get_seconds(); |
| /* maybe some queued-up processes were waiting for this */ |
| update_queue(sma); |
| err = 0; |
| goto out_unlock; |
| } |
| /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */ |
| } |
| err = -EINVAL; |
| if(semnum < 0 || semnum >= nsems) |
| goto out_unlock; |
| |
| curr = &sma->sem_base[semnum]; |
| |
| switch (cmd) { |
| case GETVAL: |
| err = curr->semval; |
| goto out_unlock; |
| case GETPID: |
| err = curr->sempid; |
| goto out_unlock; |
| case GETNCNT: |
| err = count_semncnt(sma,semnum); |
| goto out_unlock; |
| case GETZCNT: |
| err = count_semzcnt(sma,semnum); |
| goto out_unlock; |
| case SETVAL: |
| { |
| int val = arg.val; |
| struct sem_undo *un; |
| err = -ERANGE; |
| if (val > SEMVMX || val < 0) |
| goto out_unlock; |
| |
| for (un = sma->undo; un; un = un->id_next) |
| un->semadj[semnum] = 0; |
| curr->semval = val; |
| curr->sempid = task_tgid_vnr(current); |
| sma->sem_ctime = get_seconds(); |
| /* maybe some queued-up processes were waiting for this */ |
| update_queue(sma); |
| err = 0; |
| goto out_unlock; |
| } |
| } |
| out_unlock: |
| sem_unlock(sma); |
| out_free: |
| if(sem_io != fast_sem_io) |
| ipc_free(sem_io, sizeof(ushort)*nsems); |
| return err; |
| } |
| |
| struct sem_setbuf { |
| uid_t uid; |
| gid_t gid; |
| mode_t mode; |
| }; |
| |
| static inline unsigned long copy_semid_from_user(struct sem_setbuf *out, void __user *buf, int version) |
| { |
| switch(version) { |
| case IPC_64: |
| { |
| struct semid64_ds tbuf; |
| |
| if(copy_from_user(&tbuf, buf, sizeof(tbuf))) |
| return -EFAULT; |
| |
| out->uid = tbuf.sem_perm.uid; |
| out->gid = tbuf.sem_perm.gid; |
| out->mode = tbuf.sem_perm.mode; |
| |
| return 0; |
| } |
| case IPC_OLD: |
| { |
| struct semid_ds tbuf_old; |
| |
| if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) |
| return -EFAULT; |
| |
| out->uid = tbuf_old.sem_perm.uid; |
| out->gid = tbuf_old.sem_perm.gid; |
| out->mode = tbuf_old.sem_perm.mode; |
| |
| return 0; |
| } |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int semctl_down(struct ipc_namespace *ns, int semid, int semnum, |
| int cmd, int version, union semun arg) |
| { |
| struct sem_array *sma; |
| int err; |
| struct sem_setbuf uninitialized_var(setbuf); |
| struct kern_ipc_perm *ipcp; |
| |
| if(cmd == IPC_SET) { |
| if(copy_semid_from_user (&setbuf, arg.buf, version)) |
| return -EFAULT; |
| } |
| sma = sem_lock_check_down(ns, semid); |
| if (IS_ERR(sma)) |
| return PTR_ERR(sma); |
| |
| ipcp = &sma->sem_perm; |
| |
| err = audit_ipc_obj(ipcp); |
| if (err) |
| goto out_unlock; |
| |
| if (cmd == IPC_SET) { |
| err = audit_ipc_set_perm(0, setbuf.uid, setbuf.gid, setbuf.mode); |
| if (err) |
| goto out_unlock; |
| } |
| if (current->euid != ipcp->cuid && |
| current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN)) { |
| err=-EPERM; |
| goto out_unlock; |
| } |
| |
| err = security_sem_semctl(sma, cmd); |
| if (err) |
| goto out_unlock; |
| |
| switch(cmd){ |
| case IPC_RMID: |
| freeary(ns, ipcp); |
| err = 0; |
| break; |
| case IPC_SET: |
| ipcp->uid = setbuf.uid; |
| ipcp->gid = setbuf.gid; |
| ipcp->mode = (ipcp->mode & ~S_IRWXUGO) |
| | (setbuf.mode & S_IRWXUGO); |
| sma->sem_ctime = get_seconds(); |
| sem_unlock(sma); |
| err = 0; |
| break; |
| default: |
| sem_unlock(sma); |
| err = -EINVAL; |
| break; |
| } |
| return err; |
| |
| out_unlock: |
| sem_unlock(sma); |
| return err; |
| } |
| |
| asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg) |
| { |
| int err = -EINVAL; |
| int version; |
| struct ipc_namespace *ns; |
| |
| if (semid < 0) |
| return -EINVAL; |
| |
| version = ipc_parse_version(&cmd); |
| ns = current->nsproxy->ipc_ns; |
| |
| switch(cmd) { |
| case IPC_INFO: |
| case SEM_INFO: |
| case IPC_STAT: |
| case SEM_STAT: |
| err = semctl_nolock(ns, semid, cmd, version, arg); |
| return err; |
| case GETALL: |
| case GETVAL: |
| case GETPID: |
| case GETNCNT: |
| case GETZCNT: |
| case SETVAL: |
| case SETALL: |
| err = semctl_main(ns,semid,semnum,cmd,version,arg); |
| return err; |
| case IPC_RMID: |
| case IPC_SET: |
| down_write(&sem_ids(ns).rw_mutex); |
| err = semctl_down(ns,semid,semnum,cmd,version,arg); |
| up_write(&sem_ids(ns).rw_mutex); |
| return err; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| /* If the task doesn't already have a undo_list, then allocate one |
| * here. We guarantee there is only one thread using this undo list, |
| * and current is THE ONE |
| * |
| * If this allocation and assignment succeeds, but later |
| * portions of this code fail, there is no need to free the sem_undo_list. |
| * Just let it stay associated with the task, and it'll be freed later |
| * at exit time. |
| * |
| * This can block, so callers must hold no locks. |
| */ |
| static inline int get_undo_list(struct sem_undo_list **undo_listp) |
| { |
| struct sem_undo_list *undo_list; |
| |
| undo_list = current->sysvsem.undo_list; |
| if (!undo_list) { |
| undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); |
| if (undo_list == NULL) |
| return -ENOMEM; |
| spin_lock_init(&undo_list->lock); |
| atomic_set(&undo_list->refcnt, 1); |
| current->sysvsem.undo_list = undo_list; |
| } |
| *undo_listp = undo_list; |
| return 0; |
| } |
| |
| static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) |
| { |
| struct sem_undo **last, *un; |
| |
| last = &ulp->proc_list; |
| un = *last; |
| while(un != NULL) { |
| if(un->semid==semid) |
| break; |
| if(un->semid==-1) { |
| *last=un->proc_next; |
| kfree(un); |
| } else { |
| last=&un->proc_next; |
| } |
| un=*last; |
| } |
| return un; |
| } |
| |
| static struct sem_undo *find_undo(struct ipc_namespace *ns, int semid) |
| { |
| struct sem_array *sma; |
| struct sem_undo_list *ulp; |
| struct sem_undo *un, *new; |
| int nsems; |
| int error; |
| |
| error = get_undo_list(&ulp); |
| if (error) |
| return ERR_PTR(error); |
| |
| spin_lock(&ulp->lock); |
| un = lookup_undo(ulp, semid); |
| spin_unlock(&ulp->lock); |
| if (likely(un!=NULL)) |
| goto out; |
| |
| /* no undo structure around - allocate one. */ |
| sma = sem_lock_check(ns, semid); |
| if (IS_ERR(sma)) |
| return ERR_PTR(PTR_ERR(sma)); |
| |
| nsems = sma->sem_nsems; |
| sem_getref_and_unlock(sma); |
| |
| new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); |
| if (!new) { |
| sem_putref(sma); |
| return ERR_PTR(-ENOMEM); |
| } |
| new->semadj = (short *) &new[1]; |
| new->semid = semid; |
| |
| spin_lock(&ulp->lock); |
| un = lookup_undo(ulp, semid); |
| if (un) { |
| spin_unlock(&ulp->lock); |
| kfree(new); |
| sem_putref(sma); |
| goto out; |
| } |
| sem_lock_and_putref(sma); |
| if (sma->sem_perm.deleted) { |
| sem_unlock(sma); |
| spin_unlock(&ulp->lock); |
| kfree(new); |
| un = ERR_PTR(-EIDRM); |
| goto out; |
| } |
| new->proc_next = ulp->proc_list; |
| ulp->proc_list = new; |
| new->id_next = sma->undo; |
| sma->undo = new; |
| sem_unlock(sma); |
| un = new; |
| spin_unlock(&ulp->lock); |
| out: |
| return un; |
| } |
| |
| asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops, |
| unsigned nsops, const struct timespec __user *timeout) |
| { |
| int error = -EINVAL; |
| struct sem_array *sma; |
| struct sembuf fast_sops[SEMOPM_FAST]; |
| struct sembuf* sops = fast_sops, *sop; |
| struct sem_undo *un; |
| int undos = 0, alter = 0, max; |
| struct sem_queue queue; |
| unsigned long jiffies_left = 0; |
| struct ipc_namespace *ns; |
| |
| ns = current->nsproxy->ipc_ns; |
| |
| if (nsops < 1 || semid < 0) |
| return -EINVAL; |
| if (nsops > ns->sc_semopm) |
| return -E2BIG; |
| if(nsops > SEMOPM_FAST) { |
| sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL); |
| if(sops==NULL) |
| return -ENOMEM; |
| } |
| if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) { |
| error=-EFAULT; |
| goto out_free; |
| } |
| if (timeout) { |
| struct timespec _timeout; |
| if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { |
| error = -EFAULT; |
| goto out_free; |
| } |
| if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || |
| _timeout.tv_nsec >= 1000000000L) { |
| error = -EINVAL; |
| goto out_free; |
| } |
| jiffies_left = timespec_to_jiffies(&_timeout); |
| } |
| max = 0; |
| for (sop = sops; sop < sops + nsops; sop++) { |
| if (sop->sem_num >= max) |
| max = sop->sem_num; |
| if (sop->sem_flg & SEM_UNDO) |
| undos = 1; |
| if (sop->sem_op != 0) |
| alter = 1; |
| } |
| |
| retry_undos: |
| if (undos) { |
| un = find_undo(ns, semid); |
| if (IS_ERR(un)) { |
| error = PTR_ERR(un); |
| goto out_free; |
| } |
| } else |
| un = NULL; |
| |
| sma = sem_lock_check(ns, semid); |
| if (IS_ERR(sma)) { |
| error = PTR_ERR(sma); |
| goto out_free; |
| } |
| |
| /* |
| * semid identifiers are not unique - find_undo may have |
| * allocated an undo structure, it was invalidated by an RMID |
| * and now a new array with received the same id. Check and retry. |
| */ |
| if (un && un->semid == -1) { |
| sem_unlock(sma); |
| goto retry_undos; |
| } |
| error = -EFBIG; |
| if (max >= sma->sem_nsems) |
| goto out_unlock_free; |
| |
| error = -EACCES; |
| if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) |
| goto out_unlock_free; |
| |
| error = security_sem_semop(sma, sops, nsops, alter); |
| if (error) |
| goto out_unlock_free; |
| |
| error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current)); |
| if (error <= 0) { |
| if (alter && error == 0) |
| update_queue (sma); |
| goto out_unlock_free; |
| } |
| |
| /* We need to sleep on this operation, so we put the current |
| * task into the pending queue and go to sleep. |
| */ |
| |
| queue.sma = sma; |
| queue.sops = sops; |
| queue.nsops = nsops; |
| queue.undo = un; |
| queue.pid = task_tgid_vnr(current); |
| queue.id = semid; |
| queue.alter = alter; |
| if (alter) |
| append_to_queue(sma ,&queue); |
| else |
| prepend_to_queue(sma ,&queue); |
| |
| queue.status = -EINTR; |
| queue.sleeper = current; |
| current->state = TASK_INTERRUPTIBLE; |
| sem_unlock(sma); |
| |
| if (timeout) |
| jiffies_left = schedule_timeout(jiffies_left); |
| else |
| schedule(); |
| |
| error = queue.status; |
| while(unlikely(error == IN_WAKEUP)) { |
| cpu_relax(); |
| error = queue.status; |
| } |
| |
| if (error != -EINTR) { |
| /* fast path: update_queue already obtained all requested |
| * resources */ |
| goto out_free; |
| } |
| |
| sma = sem_lock(ns, semid); |
| if (IS_ERR(sma)) { |
| BUG_ON(queue.prev != NULL); |
| error = -EIDRM; |
| goto out_free; |
| } |
| |
| /* |
| * If queue.status != -EINTR we are woken up by another process |
| */ |
| error = queue.status; |
| if (error != -EINTR) { |
| goto out_unlock_free; |
| } |
| |
| /* |
| * If an interrupt occurred we have to clean up the queue |
| */ |
| if (timeout && jiffies_left == 0) |
| error = -EAGAIN; |
| remove_from_queue(sma,&queue); |
| goto out_unlock_free; |
| |
| out_unlock_free: |
| sem_unlock(sma); |
| out_free: |
| if(sops != fast_sops) |
| kfree(sops); |
| return error; |
| } |
| |
| asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops) |
| { |
| return sys_semtimedop(semid, tsops, nsops, NULL); |
| } |
| |
| /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between |
| * parent and child tasks. |
| */ |
| |
| int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) |
| { |
| struct sem_undo_list *undo_list; |
| int error; |
| |
| if (clone_flags & CLONE_SYSVSEM) { |
| error = get_undo_list(&undo_list); |
| if (error) |
| return error; |
| atomic_inc(&undo_list->refcnt); |
| tsk->sysvsem.undo_list = undo_list; |
| } else |
| tsk->sysvsem.undo_list = NULL; |
| |
| return 0; |
| } |
| |
| /* |
| * add semadj values to semaphores, free undo structures. |
| * undo structures are not freed when semaphore arrays are destroyed |
| * so some of them may be out of date. |
| * IMPLEMENTATION NOTE: There is some confusion over whether the |
| * set of adjustments that needs to be done should be done in an atomic |
| * manner or not. That is, if we are attempting to decrement the semval |
| * should we queue up and wait until we can do so legally? |
| * The original implementation attempted to do this (queue and wait). |
| * The current implementation does not do so. The POSIX standard |
| * and SVID should be consulted to determine what behavior is mandated. |
| */ |
| void exit_sem(struct task_struct *tsk) |
| { |
| struct sem_undo_list *undo_list; |
| struct sem_undo *u, **up; |
| struct ipc_namespace *ns; |
| |
| undo_list = tsk->sysvsem.undo_list; |
| if (!undo_list) |
| return; |
| |
| if (!atomic_dec_and_test(&undo_list->refcnt)) |
| return; |
| |
| ns = tsk->nsproxy->ipc_ns; |
| /* There's no need to hold the semundo list lock, as current |
| * is the last task exiting for this undo list. |
| */ |
| for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) { |
| struct sem_array *sma; |
| int nsems, i; |
| struct sem_undo *un, **unp; |
| int semid; |
| |
| semid = u->semid; |
| |
| if(semid == -1) |
| continue; |
| sma = sem_lock(ns, semid); |
| if (IS_ERR(sma)) |
| continue; |
| |
| if (u->semid == -1) |
| goto next_entry; |
| |
| BUG_ON(sem_checkid(sma, u->semid)); |
| |
| /* remove u from the sma->undo list */ |
| for (unp = &sma->undo; (un = *unp); unp = &un->id_next) { |
| if (u == un) |
| goto found; |
| } |
| printk ("exit_sem undo list error id=%d\n", u->semid); |
| goto next_entry; |
| found: |
| *unp = un->id_next; |
| /* perform adjustments registered in u */ |
| nsems = sma->sem_nsems; |
| for (i = 0; i < nsems; i++) { |
| struct sem * semaphore = &sma->sem_base[i]; |
| if (u->semadj[i]) { |
| semaphore->semval += u->semadj[i]; |
| /* |
| * Range checks of the new semaphore value, |
| * not defined by sus: |
| * - Some unices ignore the undo entirely |
| * (e.g. HP UX 11i 11.22, Tru64 V5.1) |
| * - some cap the value (e.g. FreeBSD caps |
| * at 0, but doesn't enforce SEMVMX) |
| * |
| * Linux caps the semaphore value, both at 0 |
| * and at SEMVMX. |
| * |
| * Manfred <manfred@colorfullife.com> |
| */ |
| if (semaphore->semval < 0) |
| semaphore->semval = 0; |
| if (semaphore->semval > SEMVMX) |
| semaphore->semval = SEMVMX; |
| semaphore->sempid = task_tgid_vnr(current); |
| } |
| } |
| sma->sem_otime = get_seconds(); |
| /* maybe some queued-up processes were waiting for this */ |
| update_queue(sma); |
| next_entry: |
| sem_unlock(sma); |
| } |
| kfree(undo_list); |
| } |
| |
| #ifdef CONFIG_PROC_FS |
| static int sysvipc_sem_proc_show(struct seq_file *s, void *it) |
| { |
| struct sem_array *sma = it; |
| |
| return seq_printf(s, |
| "%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n", |
| sma->sem_perm.key, |
| sma->sem_perm.id, |
| sma->sem_perm.mode, |
| sma->sem_nsems, |
| sma->sem_perm.uid, |
| sma->sem_perm.gid, |
| sma->sem_perm.cuid, |
| sma->sem_perm.cgid, |
| sma->sem_otime, |
| sma->sem_ctime); |
| } |
| #endif |