blob: 4a189ea18b48a19bc61ff60f45d1bb20798e6aa8 [file] [log] [blame]
/*
* Read-Copy Update mechanism for mutual exclusion
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright IBM Corporation, 2001
*
* Authors: Dipankar Sarma <dipankar@in.ibm.com>
* Manfred Spraul <manfred@colorfullife.com>
*
* Based on the original work by Paul McKenney <paulmck@us.ibm.com>
* and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
* Papers:
* http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
* http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
*
* For detailed explanation of Read-Copy Update mechanism see -
* http://lse.sourceforge.net/locking/rcupdate.html
*
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <asm/atomic.h>
#include <linux/bitops.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/module.h>
#include <linux/kernel_stat.h>
#ifdef CONFIG_DEBUG_LOCK_ALLOC
static struct lock_class_key rcu_lock_key;
struct lockdep_map rcu_lock_map =
STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
EXPORT_SYMBOL_GPL(rcu_lock_map);
#endif
enum rcu_barrier {
RCU_BARRIER_STD,
RCU_BARRIER_BH,
RCU_BARRIER_SCHED,
};
static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
static atomic_t rcu_barrier_cpu_count;
static DEFINE_MUTEX(rcu_barrier_mutex);
static struct completion rcu_barrier_completion;
int rcu_scheduler_active __read_mostly;
static atomic_t rcu_migrate_type_count = ATOMIC_INIT(0);
static struct rcu_head rcu_migrate_head[3];
static DECLARE_WAIT_QUEUE_HEAD(rcu_migrate_wq);
/*
* Awaken the corresponding synchronize_rcu() instance now that a
* grace period has elapsed.
*/
void wakeme_after_rcu(struct rcu_head *head)
{
struct rcu_synchronize *rcu;
rcu = container_of(head, struct rcu_synchronize, head);
complete(&rcu->completion);
}
#ifdef CONFIG_TREE_PREEMPT_RCU
/**
* synchronize_rcu - wait until a grace period has elapsed.
*
* Control will return to the caller some time after a full grace
* period has elapsed, in other words after all currently executing RCU
* read-side critical sections have completed. RCU read-side critical
* sections are delimited by rcu_read_lock() and rcu_read_unlock(),
* and may be nested.
*/
void synchronize_rcu(void)
{
struct rcu_synchronize rcu;
if (!rcu_scheduler_active)
return;
init_completion(&rcu.completion);
/* Will wake me after RCU finished. */
call_rcu(&rcu.head, wakeme_after_rcu);
/* Wait for it. */
wait_for_completion(&rcu.completion);
}
EXPORT_SYMBOL_GPL(synchronize_rcu);
#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
/**
* synchronize_sched - wait until an rcu-sched grace period has elapsed.
*
* Control will return to the caller some time after a full rcu-sched
* grace period has elapsed, in other words after all currently executing
* rcu-sched read-side critical sections have completed. These read-side
* critical sections are delimited by rcu_read_lock_sched() and
* rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
* local_irq_disable(), and so on may be used in place of
* rcu_read_lock_sched().
*
* This means that all preempt_disable code sequences, including NMI and
* hardware-interrupt handlers, in progress on entry will have completed
* before this primitive returns. However, this does not guarantee that
* softirq handlers will have completed, since in some kernels, these
* handlers can run in process context, and can block.
*
* This primitive provides the guarantees made by the (now removed)
* synchronize_kernel() API. In contrast, synchronize_rcu() only
* guarantees that rcu_read_lock() sections will have completed.
* In "classic RCU", these two guarantees happen to be one and
* the same, but can differ in realtime RCU implementations.
*/
void synchronize_sched(void)
{
struct rcu_synchronize rcu;
if (rcu_blocking_is_gp())
return;
init_completion(&rcu.completion);
/* Will wake me after RCU finished. */
call_rcu_sched(&rcu.head, wakeme_after_rcu);
/* Wait for it. */
wait_for_completion(&rcu.completion);
}
EXPORT_SYMBOL_GPL(synchronize_sched);
/**
* synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
*
* Control will return to the caller some time after a full rcu_bh grace
* period has elapsed, in other words after all currently executing rcu_bh
* read-side critical sections have completed. RCU read-side critical
* sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
* and may be nested.
*/
void synchronize_rcu_bh(void)
{
struct rcu_synchronize rcu;
if (rcu_blocking_is_gp())
return;
init_completion(&rcu.completion);
/* Will wake me after RCU finished. */
call_rcu_bh(&rcu.head, wakeme_after_rcu);
/* Wait for it. */
wait_for_completion(&rcu.completion);
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
static void rcu_barrier_callback(struct rcu_head *notused)
{
if (atomic_dec_and_test(&rcu_barrier_cpu_count))
complete(&rcu_barrier_completion);
}
/*
* Called with preemption disabled, and from cross-cpu IRQ context.
*/
static void rcu_barrier_func(void *type)
{
int cpu = smp_processor_id();
struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
atomic_inc(&rcu_barrier_cpu_count);
switch ((enum rcu_barrier)type) {
case RCU_BARRIER_STD:
call_rcu(head, rcu_barrier_callback);
break;
case RCU_BARRIER_BH:
call_rcu_bh(head, rcu_barrier_callback);
break;
case RCU_BARRIER_SCHED:
call_rcu_sched(head, rcu_barrier_callback);
break;
}
}
static inline void wait_migrated_callbacks(void)
{
wait_event(rcu_migrate_wq, !atomic_read(&rcu_migrate_type_count));
smp_mb(); /* In case we didn't sleep. */
}
/*
* Orchestrate the specified type of RCU barrier, waiting for all
* RCU callbacks of the specified type to complete.
*/
static void _rcu_barrier(enum rcu_barrier type)
{
BUG_ON(in_interrupt());
/* Take cpucontrol mutex to protect against CPU hotplug */
mutex_lock(&rcu_barrier_mutex);
init_completion(&rcu_barrier_completion);
/*
* Initialize rcu_barrier_cpu_count to 1, then invoke
* rcu_barrier_func() on each CPU, so that each CPU also has
* incremented rcu_barrier_cpu_count. Only then is it safe to
* decrement rcu_barrier_cpu_count -- otherwise the first CPU
* might complete its grace period before all of the other CPUs
* did their increment, causing this function to return too
* early.
*/
atomic_set(&rcu_barrier_cpu_count, 1);
on_each_cpu(rcu_barrier_func, (void *)type, 1);
if (atomic_dec_and_test(&rcu_barrier_cpu_count))
complete(&rcu_barrier_completion);
wait_for_completion(&rcu_barrier_completion);
mutex_unlock(&rcu_barrier_mutex);
wait_migrated_callbacks();
}
/**
* rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
*/
void rcu_barrier(void)
{
_rcu_barrier(RCU_BARRIER_STD);
}
EXPORT_SYMBOL_GPL(rcu_barrier);
/**
* rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
*/
void rcu_barrier_bh(void)
{
_rcu_barrier(RCU_BARRIER_BH);
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);
/**
* rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
*/
void rcu_barrier_sched(void)
{
_rcu_barrier(RCU_BARRIER_SCHED);
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);
static void rcu_migrate_callback(struct rcu_head *notused)
{
if (atomic_dec_and_test(&rcu_migrate_type_count))
wake_up(&rcu_migrate_wq);
}
static int __cpuinit rcu_barrier_cpu_hotplug(struct notifier_block *self,
unsigned long action, void *hcpu)
{
rcu_cpu_notify(self, action, hcpu);
if (action == CPU_DYING) {
/*
* preempt_disable() in on_each_cpu() prevents stop_machine(),
* so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
* returns, all online cpus have queued rcu_barrier_func(),
* and the dead cpu(if it exist) queues rcu_migrate_callback()s.
*
* These callbacks ensure _rcu_barrier() waits for all
* RCU callbacks of the specified type to complete.
*/
atomic_set(&rcu_migrate_type_count, 3);
call_rcu_bh(rcu_migrate_head, rcu_migrate_callback);
call_rcu_sched(rcu_migrate_head + 1, rcu_migrate_callback);
call_rcu(rcu_migrate_head + 2, rcu_migrate_callback);
} else if (action == CPU_DOWN_PREPARE) {
/* Don't need to wait until next removal operation. */
/* rcu_migrate_head is protected by cpu_add_remove_lock */
wait_migrated_callbacks();
}
return NOTIFY_OK;
}
void __init rcu_init(void)
{
int i;
__rcu_init();
cpu_notifier(rcu_barrier_cpu_hotplug, 0);
/*
* We don't need protection against CPU-hotplug here because
* this is called early in boot, before either interrupts
* or the scheduler are operational.
*/
for_each_online_cpu(i)
rcu_barrier_cpu_hotplug(NULL, CPU_UP_PREPARE, (void *)(long)i);
}
void rcu_scheduler_starting(void)
{
WARN_ON(num_online_cpus() != 1);
WARN_ON(nr_context_switches() > 0);
rcu_scheduler_active = 1;
}