| /* |
| * Machine check handler. |
| * |
| * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. |
| * Rest from unknown author(s). |
| * 2004 Andi Kleen. Rewrote most of it. |
| * Copyright 2008 Intel Corporation |
| * Author: Andi Kleen |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/thread_info.h> |
| #include <linux/capability.h> |
| #include <linux/miscdevice.h> |
| #include <linux/ratelimit.h> |
| #include <linux/kallsyms.h> |
| #include <linux/rcupdate.h> |
| #include <linux/kobject.h> |
| #include <linux/uaccess.h> |
| #include <linux/kdebug.h> |
| #include <linux/kernel.h> |
| #include <linux/percpu.h> |
| #include <linux/string.h> |
| #include <linux/device.h> |
| #include <linux/syscore_ops.h> |
| #include <linux/delay.h> |
| #include <linux/ctype.h> |
| #include <linux/sched.h> |
| #include <linux/sysfs.h> |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/kmod.h> |
| #include <linux/poll.h> |
| #include <linux/nmi.h> |
| #include <linux/cpu.h> |
| #include <linux/smp.h> |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| #include <linux/debugfs.h> |
| #include <linux/irq_work.h> |
| #include <linux/export.h> |
| |
| #include <asm/processor.h> |
| #include <asm/mce.h> |
| #include <asm/msr.h> |
| |
| #include "mce-internal.h" |
| |
| static DEFINE_MUTEX(mce_chrdev_read_mutex); |
| |
| #define rcu_dereference_check_mce(p) \ |
| rcu_dereference_index_check((p), \ |
| rcu_read_lock_sched_held() || \ |
| lockdep_is_held(&mce_chrdev_read_mutex)) |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/mce.h> |
| |
| #define SPINUNIT 100 /* 100ns */ |
| |
| atomic_t mce_entry; |
| |
| DEFINE_PER_CPU(unsigned, mce_exception_count); |
| |
| struct mce_bank *mce_banks __read_mostly; |
| |
| struct mca_config mca_cfg __read_mostly = { |
| .bootlog = -1, |
| /* |
| * Tolerant levels: |
| * 0: always panic on uncorrected errors, log corrected errors |
| * 1: panic or SIGBUS on uncorrected errors, log corrected errors |
| * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors |
| * 3: never panic or SIGBUS, log all errors (for testing only) |
| */ |
| .tolerant = 1, |
| .monarch_timeout = -1 |
| }; |
| |
| /* User mode helper program triggered by machine check event */ |
| static unsigned long mce_need_notify; |
| static char mce_helper[128]; |
| static char *mce_helper_argv[2] = { mce_helper, NULL }; |
| |
| static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait); |
| |
| static DEFINE_PER_CPU(struct mce, mces_seen); |
| static int cpu_missing; |
| |
| /* MCA banks polled by the period polling timer for corrected events */ |
| DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = { |
| [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL |
| }; |
| |
| static DEFINE_PER_CPU(struct work_struct, mce_work); |
| |
| static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs); |
| |
| /* |
| * CPU/chipset specific EDAC code can register a notifier call here to print |
| * MCE errors in a human-readable form. |
| */ |
| ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain); |
| |
| /* Do initial initialization of a struct mce */ |
| void mce_setup(struct mce *m) |
| { |
| memset(m, 0, sizeof(struct mce)); |
| m->cpu = m->extcpu = smp_processor_id(); |
| rdtscll(m->tsc); |
| /* We hope get_seconds stays lockless */ |
| m->time = get_seconds(); |
| m->cpuvendor = boot_cpu_data.x86_vendor; |
| m->cpuid = cpuid_eax(1); |
| m->socketid = cpu_data(m->extcpu).phys_proc_id; |
| m->apicid = cpu_data(m->extcpu).initial_apicid; |
| rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap); |
| } |
| |
| DEFINE_PER_CPU(struct mce, injectm); |
| EXPORT_PER_CPU_SYMBOL_GPL(injectm); |
| |
| /* |
| * Lockless MCE logging infrastructure. |
| * This avoids deadlocks on printk locks without having to break locks. Also |
| * separate MCEs from kernel messages to avoid bogus bug reports. |
| */ |
| |
| static struct mce_log mcelog = { |
| .signature = MCE_LOG_SIGNATURE, |
| .len = MCE_LOG_LEN, |
| .recordlen = sizeof(struct mce), |
| }; |
| |
| void mce_log(struct mce *mce) |
| { |
| unsigned next, entry; |
| int ret = 0; |
| |
| /* Emit the trace record: */ |
| trace_mce_record(mce); |
| |
| ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce); |
| if (ret == NOTIFY_STOP) |
| return; |
| |
| mce->finished = 0; |
| wmb(); |
| for (;;) { |
| entry = rcu_dereference_check_mce(mcelog.next); |
| for (;;) { |
| |
| /* |
| * When the buffer fills up discard new entries. |
| * Assume that the earlier errors are the more |
| * interesting ones: |
| */ |
| if (entry >= MCE_LOG_LEN) { |
| set_bit(MCE_OVERFLOW, |
| (unsigned long *)&mcelog.flags); |
| return; |
| } |
| /* Old left over entry. Skip: */ |
| if (mcelog.entry[entry].finished) { |
| entry++; |
| continue; |
| } |
| break; |
| } |
| smp_rmb(); |
| next = entry + 1; |
| if (cmpxchg(&mcelog.next, entry, next) == entry) |
| break; |
| } |
| memcpy(mcelog.entry + entry, mce, sizeof(struct mce)); |
| wmb(); |
| mcelog.entry[entry].finished = 1; |
| wmb(); |
| |
| mce->finished = 1; |
| set_bit(0, &mce_need_notify); |
| } |
| |
| static void drain_mcelog_buffer(void) |
| { |
| unsigned int next, i, prev = 0; |
| |
| next = ACCESS_ONCE(mcelog.next); |
| |
| do { |
| struct mce *m; |
| |
| /* drain what was logged during boot */ |
| for (i = prev; i < next; i++) { |
| unsigned long start = jiffies; |
| unsigned retries = 1; |
| |
| m = &mcelog.entry[i]; |
| |
| while (!m->finished) { |
| if (time_after_eq(jiffies, start + 2*retries)) |
| retries++; |
| |
| cpu_relax(); |
| |
| if (!m->finished && retries >= 4) { |
| pr_err("skipping error being logged currently!\n"); |
| break; |
| } |
| } |
| smp_rmb(); |
| atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m); |
| } |
| |
| memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m)); |
| prev = next; |
| next = cmpxchg(&mcelog.next, prev, 0); |
| } while (next != prev); |
| } |
| |
| |
| void mce_register_decode_chain(struct notifier_block *nb) |
| { |
| atomic_notifier_chain_register(&x86_mce_decoder_chain, nb); |
| drain_mcelog_buffer(); |
| } |
| EXPORT_SYMBOL_GPL(mce_register_decode_chain); |
| |
| void mce_unregister_decode_chain(struct notifier_block *nb) |
| { |
| atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb); |
| } |
| EXPORT_SYMBOL_GPL(mce_unregister_decode_chain); |
| |
| static void print_mce(struct mce *m) |
| { |
| int ret = 0; |
| |
| pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n", |
| m->extcpu, m->mcgstatus, m->bank, m->status); |
| |
| if (m->ip) { |
| pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ", |
| !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", |
| m->cs, m->ip); |
| |
| if (m->cs == __KERNEL_CS) |
| print_symbol("{%s}", m->ip); |
| pr_cont("\n"); |
| } |
| |
| pr_emerg(HW_ERR "TSC %llx ", m->tsc); |
| if (m->addr) |
| pr_cont("ADDR %llx ", m->addr); |
| if (m->misc) |
| pr_cont("MISC %llx ", m->misc); |
| |
| pr_cont("\n"); |
| /* |
| * Note this output is parsed by external tools and old fields |
| * should not be changed. |
| */ |
| pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n", |
| m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid, |
| cpu_data(m->extcpu).microcode); |
| |
| /* |
| * Print out human-readable details about the MCE error, |
| * (if the CPU has an implementation for that) |
| */ |
| ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m); |
| if (ret == NOTIFY_STOP) |
| return; |
| |
| pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n"); |
| } |
| |
| #define PANIC_TIMEOUT 5 /* 5 seconds */ |
| |
| static atomic_t mce_paniced; |
| |
| static int fake_panic; |
| static atomic_t mce_fake_paniced; |
| |
| /* Panic in progress. Enable interrupts and wait for final IPI */ |
| static void wait_for_panic(void) |
| { |
| long timeout = PANIC_TIMEOUT*USEC_PER_SEC; |
| |
| preempt_disable(); |
| local_irq_enable(); |
| while (timeout-- > 0) |
| udelay(1); |
| if (panic_timeout == 0) |
| panic_timeout = mca_cfg.panic_timeout; |
| panic("Panicing machine check CPU died"); |
| } |
| |
| static void mce_panic(char *msg, struct mce *final, char *exp) |
| { |
| int i, apei_err = 0; |
| |
| if (!fake_panic) { |
| /* |
| * Make sure only one CPU runs in machine check panic |
| */ |
| if (atomic_inc_return(&mce_paniced) > 1) |
| wait_for_panic(); |
| barrier(); |
| |
| bust_spinlocks(1); |
| console_verbose(); |
| } else { |
| /* Don't log too much for fake panic */ |
| if (atomic_inc_return(&mce_fake_paniced) > 1) |
| return; |
| } |
| /* First print corrected ones that are still unlogged */ |
| for (i = 0; i < MCE_LOG_LEN; i++) { |
| struct mce *m = &mcelog.entry[i]; |
| if (!(m->status & MCI_STATUS_VAL)) |
| continue; |
| if (!(m->status & MCI_STATUS_UC)) { |
| print_mce(m); |
| if (!apei_err) |
| apei_err = apei_write_mce(m); |
| } |
| } |
| /* Now print uncorrected but with the final one last */ |
| for (i = 0; i < MCE_LOG_LEN; i++) { |
| struct mce *m = &mcelog.entry[i]; |
| if (!(m->status & MCI_STATUS_VAL)) |
| continue; |
| if (!(m->status & MCI_STATUS_UC)) |
| continue; |
| if (!final || memcmp(m, final, sizeof(struct mce))) { |
| print_mce(m); |
| if (!apei_err) |
| apei_err = apei_write_mce(m); |
| } |
| } |
| if (final) { |
| print_mce(final); |
| if (!apei_err) |
| apei_err = apei_write_mce(final); |
| } |
| if (cpu_missing) |
| pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n"); |
| if (exp) |
| pr_emerg(HW_ERR "Machine check: %s\n", exp); |
| if (!fake_panic) { |
| if (panic_timeout == 0) |
| panic_timeout = mca_cfg.panic_timeout; |
| panic(msg); |
| } else |
| pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg); |
| } |
| |
| /* Support code for software error injection */ |
| |
| static int msr_to_offset(u32 msr) |
| { |
| unsigned bank = __this_cpu_read(injectm.bank); |
| |
| if (msr == mca_cfg.rip_msr) |
| return offsetof(struct mce, ip); |
| if (msr == MSR_IA32_MCx_STATUS(bank)) |
| return offsetof(struct mce, status); |
| if (msr == MSR_IA32_MCx_ADDR(bank)) |
| return offsetof(struct mce, addr); |
| if (msr == MSR_IA32_MCx_MISC(bank)) |
| return offsetof(struct mce, misc); |
| if (msr == MSR_IA32_MCG_STATUS) |
| return offsetof(struct mce, mcgstatus); |
| return -1; |
| } |
| |
| /* MSR access wrappers used for error injection */ |
| static u64 mce_rdmsrl(u32 msr) |
| { |
| u64 v; |
| |
| if (__this_cpu_read(injectm.finished)) { |
| int offset = msr_to_offset(msr); |
| |
| if (offset < 0) |
| return 0; |
| return *(u64 *)((char *)&__get_cpu_var(injectm) + offset); |
| } |
| |
| if (rdmsrl_safe(msr, &v)) { |
| WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr); |
| /* |
| * Return zero in case the access faulted. This should |
| * not happen normally but can happen if the CPU does |
| * something weird, or if the code is buggy. |
| */ |
| v = 0; |
| } |
| |
| return v; |
| } |
| |
| static void mce_wrmsrl(u32 msr, u64 v) |
| { |
| if (__this_cpu_read(injectm.finished)) { |
| int offset = msr_to_offset(msr); |
| |
| if (offset >= 0) |
| *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v; |
| return; |
| } |
| wrmsrl(msr, v); |
| } |
| |
| /* |
| * Collect all global (w.r.t. this processor) status about this machine |
| * check into our "mce" struct so that we can use it later to assess |
| * the severity of the problem as we read per-bank specific details. |
| */ |
| static inline void mce_gather_info(struct mce *m, struct pt_regs *regs) |
| { |
| mce_setup(m); |
| |
| m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); |
| if (regs) { |
| /* |
| * Get the address of the instruction at the time of |
| * the machine check error. |
| */ |
| if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) { |
| m->ip = regs->ip; |
| m->cs = regs->cs; |
| |
| /* |
| * When in VM86 mode make the cs look like ring 3 |
| * always. This is a lie, but it's better than passing |
| * the additional vm86 bit around everywhere. |
| */ |
| if (v8086_mode(regs)) |
| m->cs |= 3; |
| } |
| /* Use accurate RIP reporting if available. */ |
| if (mca_cfg.rip_msr) |
| m->ip = mce_rdmsrl(mca_cfg.rip_msr); |
| } |
| } |
| |
| /* |
| * Simple lockless ring to communicate PFNs from the exception handler with the |
| * process context work function. This is vastly simplified because there's |
| * only a single reader and a single writer. |
| */ |
| #define MCE_RING_SIZE 16 /* we use one entry less */ |
| |
| struct mce_ring { |
| unsigned short start; |
| unsigned short end; |
| unsigned long ring[MCE_RING_SIZE]; |
| }; |
| static DEFINE_PER_CPU(struct mce_ring, mce_ring); |
| |
| /* Runs with CPU affinity in workqueue */ |
| static int mce_ring_empty(void) |
| { |
| struct mce_ring *r = &__get_cpu_var(mce_ring); |
| |
| return r->start == r->end; |
| } |
| |
| static int mce_ring_get(unsigned long *pfn) |
| { |
| struct mce_ring *r; |
| int ret = 0; |
| |
| *pfn = 0; |
| get_cpu(); |
| r = &__get_cpu_var(mce_ring); |
| if (r->start == r->end) |
| goto out; |
| *pfn = r->ring[r->start]; |
| r->start = (r->start + 1) % MCE_RING_SIZE; |
| ret = 1; |
| out: |
| put_cpu(); |
| return ret; |
| } |
| |
| /* Always runs in MCE context with preempt off */ |
| static int mce_ring_add(unsigned long pfn) |
| { |
| struct mce_ring *r = &__get_cpu_var(mce_ring); |
| unsigned next; |
| |
| next = (r->end + 1) % MCE_RING_SIZE; |
| if (next == r->start) |
| return -1; |
| r->ring[r->end] = pfn; |
| wmb(); |
| r->end = next; |
| return 0; |
| } |
| |
| int mce_available(struct cpuinfo_x86 *c) |
| { |
| if (mca_cfg.disabled) |
| return 0; |
| return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); |
| } |
| |
| static void mce_schedule_work(void) |
| { |
| if (!mce_ring_empty()) |
| schedule_work(&__get_cpu_var(mce_work)); |
| } |
| |
| DEFINE_PER_CPU(struct irq_work, mce_irq_work); |
| |
| static void mce_irq_work_cb(struct irq_work *entry) |
| { |
| mce_notify_irq(); |
| mce_schedule_work(); |
| } |
| |
| static void mce_report_event(struct pt_regs *regs) |
| { |
| if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) { |
| mce_notify_irq(); |
| /* |
| * Triggering the work queue here is just an insurance |
| * policy in case the syscall exit notify handler |
| * doesn't run soon enough or ends up running on the |
| * wrong CPU (can happen when audit sleeps) |
| */ |
| mce_schedule_work(); |
| return; |
| } |
| |
| irq_work_queue(&__get_cpu_var(mce_irq_work)); |
| } |
| |
| /* |
| * Read ADDR and MISC registers. |
| */ |
| static void mce_read_aux(struct mce *m, int i) |
| { |
| if (m->status & MCI_STATUS_MISCV) |
| m->misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i)); |
| if (m->status & MCI_STATUS_ADDRV) { |
| m->addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i)); |
| |
| /* |
| * Mask the reported address by the reported granularity. |
| */ |
| if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) { |
| u8 shift = MCI_MISC_ADDR_LSB(m->misc); |
| m->addr >>= shift; |
| m->addr <<= shift; |
| } |
| } |
| } |
| |
| DEFINE_PER_CPU(unsigned, mce_poll_count); |
| |
| /* |
| * Poll for corrected events or events that happened before reset. |
| * Those are just logged through /dev/mcelog. |
| * |
| * This is executed in standard interrupt context. |
| * |
| * Note: spec recommends to panic for fatal unsignalled |
| * errors here. However this would be quite problematic -- |
| * we would need to reimplement the Monarch handling and |
| * it would mess up the exclusion between exception handler |
| * and poll hander -- * so we skip this for now. |
| * These cases should not happen anyways, or only when the CPU |
| * is already totally * confused. In this case it's likely it will |
| * not fully execute the machine check handler either. |
| */ |
| void machine_check_poll(enum mcp_flags flags, mce_banks_t *b) |
| { |
| struct mce m; |
| int i; |
| |
| this_cpu_inc(mce_poll_count); |
| |
| mce_gather_info(&m, NULL); |
| |
| for (i = 0; i < mca_cfg.banks; i++) { |
| if (!mce_banks[i].ctl || !test_bit(i, *b)) |
| continue; |
| |
| m.misc = 0; |
| m.addr = 0; |
| m.bank = i; |
| m.tsc = 0; |
| |
| barrier(); |
| m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i)); |
| if (!(m.status & MCI_STATUS_VAL)) |
| continue; |
| |
| /* |
| * Uncorrected or signalled events are handled by the exception |
| * handler when it is enabled, so don't process those here. |
| * |
| * TBD do the same check for MCI_STATUS_EN here? |
| */ |
| if (!(flags & MCP_UC) && |
| (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC))) |
| continue; |
| |
| mce_read_aux(&m, i); |
| |
| if (!(flags & MCP_TIMESTAMP)) |
| m.tsc = 0; |
| /* |
| * Don't get the IP here because it's unlikely to |
| * have anything to do with the actual error location. |
| */ |
| if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce) |
| mce_log(&m); |
| |
| /* |
| * Clear state for this bank. |
| */ |
| mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0); |
| } |
| |
| /* |
| * Don't clear MCG_STATUS here because it's only defined for |
| * exceptions. |
| */ |
| |
| sync_core(); |
| } |
| EXPORT_SYMBOL_GPL(machine_check_poll); |
| |
| /* |
| * Do a quick check if any of the events requires a panic. |
| * This decides if we keep the events around or clear them. |
| */ |
| static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp, |
| struct pt_regs *regs) |
| { |
| int i, ret = 0; |
| |
| for (i = 0; i < mca_cfg.banks; i++) { |
| m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i)); |
| if (m->status & MCI_STATUS_VAL) { |
| __set_bit(i, validp); |
| if (quirk_no_way_out) |
| quirk_no_way_out(i, m, regs); |
| } |
| if (mce_severity(m, mca_cfg.tolerant, msg) >= MCE_PANIC_SEVERITY) |
| ret = 1; |
| } |
| return ret; |
| } |
| |
| /* |
| * Variable to establish order between CPUs while scanning. |
| * Each CPU spins initially until executing is equal its number. |
| */ |
| static atomic_t mce_executing; |
| |
| /* |
| * Defines order of CPUs on entry. First CPU becomes Monarch. |
| */ |
| static atomic_t mce_callin; |
| |
| /* |
| * Check if a timeout waiting for other CPUs happened. |
| */ |
| static int mce_timed_out(u64 *t) |
| { |
| /* |
| * The others already did panic for some reason. |
| * Bail out like in a timeout. |
| * rmb() to tell the compiler that system_state |
| * might have been modified by someone else. |
| */ |
| rmb(); |
| if (atomic_read(&mce_paniced)) |
| wait_for_panic(); |
| if (!mca_cfg.monarch_timeout) |
| goto out; |
| if ((s64)*t < SPINUNIT) { |
| /* CHECKME: Make panic default for 1 too? */ |
| if (mca_cfg.tolerant < 1) |
| mce_panic("Timeout synchronizing machine check over CPUs", |
| NULL, NULL); |
| cpu_missing = 1; |
| return 1; |
| } |
| *t -= SPINUNIT; |
| out: |
| touch_nmi_watchdog(); |
| return 0; |
| } |
| |
| /* |
| * The Monarch's reign. The Monarch is the CPU who entered |
| * the machine check handler first. It waits for the others to |
| * raise the exception too and then grades them. When any |
| * error is fatal panic. Only then let the others continue. |
| * |
| * The other CPUs entering the MCE handler will be controlled by the |
| * Monarch. They are called Subjects. |
| * |
| * This way we prevent any potential data corruption in a unrecoverable case |
| * and also makes sure always all CPU's errors are examined. |
| * |
| * Also this detects the case of a machine check event coming from outer |
| * space (not detected by any CPUs) In this case some external agent wants |
| * us to shut down, so panic too. |
| * |
| * The other CPUs might still decide to panic if the handler happens |
| * in a unrecoverable place, but in this case the system is in a semi-stable |
| * state and won't corrupt anything by itself. It's ok to let the others |
| * continue for a bit first. |
| * |
| * All the spin loops have timeouts; when a timeout happens a CPU |
| * typically elects itself to be Monarch. |
| */ |
| static void mce_reign(void) |
| { |
| int cpu; |
| struct mce *m = NULL; |
| int global_worst = 0; |
| char *msg = NULL; |
| char *nmsg = NULL; |
| |
| /* |
| * This CPU is the Monarch and the other CPUs have run |
| * through their handlers. |
| * Grade the severity of the errors of all the CPUs. |
| */ |
| for_each_possible_cpu(cpu) { |
| int severity = mce_severity(&per_cpu(mces_seen, cpu), |
| mca_cfg.tolerant, |
| &nmsg); |
| if (severity > global_worst) { |
| msg = nmsg; |
| global_worst = severity; |
| m = &per_cpu(mces_seen, cpu); |
| } |
| } |
| |
| /* |
| * Cannot recover? Panic here then. |
| * This dumps all the mces in the log buffer and stops the |
| * other CPUs. |
| */ |
| if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) |
| mce_panic("Fatal Machine check", m, msg); |
| |
| /* |
| * For UC somewhere we let the CPU who detects it handle it. |
| * Also must let continue the others, otherwise the handling |
| * CPU could deadlock on a lock. |
| */ |
| |
| /* |
| * No machine check event found. Must be some external |
| * source or one CPU is hung. Panic. |
| */ |
| if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3) |
| mce_panic("Machine check from unknown source", NULL, NULL); |
| |
| /* |
| * Now clear all the mces_seen so that they don't reappear on |
| * the next mce. |
| */ |
| for_each_possible_cpu(cpu) |
| memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce)); |
| } |
| |
| static atomic_t global_nwo; |
| |
| /* |
| * Start of Monarch synchronization. This waits until all CPUs have |
| * entered the exception handler and then determines if any of them |
| * saw a fatal event that requires panic. Then it executes them |
| * in the entry order. |
| * TBD double check parallel CPU hotunplug |
| */ |
| static int mce_start(int *no_way_out) |
| { |
| int order; |
| int cpus = num_online_cpus(); |
| u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; |
| |
| if (!timeout) |
| return -1; |
| |
| atomic_add(*no_way_out, &global_nwo); |
| /* |
| * global_nwo should be updated before mce_callin |
| */ |
| smp_wmb(); |
| order = atomic_inc_return(&mce_callin); |
| |
| /* |
| * Wait for everyone. |
| */ |
| while (atomic_read(&mce_callin) != cpus) { |
| if (mce_timed_out(&timeout)) { |
| atomic_set(&global_nwo, 0); |
| return -1; |
| } |
| ndelay(SPINUNIT); |
| } |
| |
| /* |
| * mce_callin should be read before global_nwo |
| */ |
| smp_rmb(); |
| |
| if (order == 1) { |
| /* |
| * Monarch: Starts executing now, the others wait. |
| */ |
| atomic_set(&mce_executing, 1); |
| } else { |
| /* |
| * Subject: Now start the scanning loop one by one in |
| * the original callin order. |
| * This way when there are any shared banks it will be |
| * only seen by one CPU before cleared, avoiding duplicates. |
| */ |
| while (atomic_read(&mce_executing) < order) { |
| if (mce_timed_out(&timeout)) { |
| atomic_set(&global_nwo, 0); |
| return -1; |
| } |
| ndelay(SPINUNIT); |
| } |
| } |
| |
| /* |
| * Cache the global no_way_out state. |
| */ |
| *no_way_out = atomic_read(&global_nwo); |
| |
| return order; |
| } |
| |
| /* |
| * Synchronize between CPUs after main scanning loop. |
| * This invokes the bulk of the Monarch processing. |
| */ |
| static int mce_end(int order) |
| { |
| int ret = -1; |
| u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; |
| |
| if (!timeout) |
| goto reset; |
| if (order < 0) |
| goto reset; |
| |
| /* |
| * Allow others to run. |
| */ |
| atomic_inc(&mce_executing); |
| |
| if (order == 1) { |
| /* CHECKME: Can this race with a parallel hotplug? */ |
| int cpus = num_online_cpus(); |
| |
| /* |
| * Monarch: Wait for everyone to go through their scanning |
| * loops. |
| */ |
| while (atomic_read(&mce_executing) <= cpus) { |
| if (mce_timed_out(&timeout)) |
| goto reset; |
| ndelay(SPINUNIT); |
| } |
| |
| mce_reign(); |
| barrier(); |
| ret = 0; |
| } else { |
| /* |
| * Subject: Wait for Monarch to finish. |
| */ |
| while (atomic_read(&mce_executing) != 0) { |
| if (mce_timed_out(&timeout)) |
| goto reset; |
| ndelay(SPINUNIT); |
| } |
| |
| /* |
| * Don't reset anything. That's done by the Monarch. |
| */ |
| return 0; |
| } |
| |
| /* |
| * Reset all global state. |
| */ |
| reset: |
| atomic_set(&global_nwo, 0); |
| atomic_set(&mce_callin, 0); |
| barrier(); |
| |
| /* |
| * Let others run again. |
| */ |
| atomic_set(&mce_executing, 0); |
| return ret; |
| } |
| |
| /* |
| * Check if the address reported by the CPU is in a format we can parse. |
| * It would be possible to add code for most other cases, but all would |
| * be somewhat complicated (e.g. segment offset would require an instruction |
| * parser). So only support physical addresses up to page granuality for now. |
| */ |
| static int mce_usable_address(struct mce *m) |
| { |
| if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV)) |
| return 0; |
| if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT) |
| return 0; |
| if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS) |
| return 0; |
| return 1; |
| } |
| |
| static void mce_clear_state(unsigned long *toclear) |
| { |
| int i; |
| |
| for (i = 0; i < mca_cfg.banks; i++) { |
| if (test_bit(i, toclear)) |
| mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0); |
| } |
| } |
| |
| /* |
| * Need to save faulting physical address associated with a process |
| * in the machine check handler some place where we can grab it back |
| * later in mce_notify_process() |
| */ |
| #define MCE_INFO_MAX 16 |
| |
| struct mce_info { |
| atomic_t inuse; |
| struct task_struct *t; |
| __u64 paddr; |
| int restartable; |
| } mce_info[MCE_INFO_MAX]; |
| |
| static void mce_save_info(__u64 addr, int c) |
| { |
| struct mce_info *mi; |
| |
| for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++) { |
| if (atomic_cmpxchg(&mi->inuse, 0, 1) == 0) { |
| mi->t = current; |
| mi->paddr = addr; |
| mi->restartable = c; |
| return; |
| } |
| } |
| |
| mce_panic("Too many concurrent recoverable errors", NULL, NULL); |
| } |
| |
| static struct mce_info *mce_find_info(void) |
| { |
| struct mce_info *mi; |
| |
| for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++) |
| if (atomic_read(&mi->inuse) && mi->t == current) |
| return mi; |
| return NULL; |
| } |
| |
| static void mce_clear_info(struct mce_info *mi) |
| { |
| atomic_set(&mi->inuse, 0); |
| } |
| |
| /* |
| * The actual machine check handler. This only handles real |
| * exceptions when something got corrupted coming in through int 18. |
| * |
| * This is executed in NMI context not subject to normal locking rules. This |
| * implies that most kernel services cannot be safely used. Don't even |
| * think about putting a printk in there! |
| * |
| * On Intel systems this is entered on all CPUs in parallel through |
| * MCE broadcast. However some CPUs might be broken beyond repair, |
| * so be always careful when synchronizing with others. |
| */ |
| void do_machine_check(struct pt_regs *regs, long error_code) |
| { |
| struct mca_config *cfg = &mca_cfg; |
| struct mce m, *final; |
| int i; |
| int worst = 0; |
| int severity; |
| /* |
| * Establish sequential order between the CPUs entering the machine |
| * check handler. |
| */ |
| int order; |
| /* |
| * If no_way_out gets set, there is no safe way to recover from this |
| * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway. |
| */ |
| int no_way_out = 0; |
| /* |
| * If kill_it gets set, there might be a way to recover from this |
| * error. |
| */ |
| int kill_it = 0; |
| DECLARE_BITMAP(toclear, MAX_NR_BANKS); |
| DECLARE_BITMAP(valid_banks, MAX_NR_BANKS); |
| char *msg = "Unknown"; |
| |
| atomic_inc(&mce_entry); |
| |
| this_cpu_inc(mce_exception_count); |
| |
| if (!cfg->banks) |
| goto out; |
| |
| mce_gather_info(&m, regs); |
| |
| final = &__get_cpu_var(mces_seen); |
| *final = m; |
| |
| memset(valid_banks, 0, sizeof(valid_banks)); |
| no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs); |
| |
| barrier(); |
| |
| /* |
| * When no restart IP might need to kill or panic. |
| * Assume the worst for now, but if we find the |
| * severity is MCE_AR_SEVERITY we have other options. |
| */ |
| if (!(m.mcgstatus & MCG_STATUS_RIPV)) |
| kill_it = 1; |
| |
| /* |
| * Go through all the banks in exclusion of the other CPUs. |
| * This way we don't report duplicated events on shared banks |
| * because the first one to see it will clear it. |
| */ |
| order = mce_start(&no_way_out); |
| for (i = 0; i < cfg->banks; i++) { |
| __clear_bit(i, toclear); |
| if (!test_bit(i, valid_banks)) |
| continue; |
| if (!mce_banks[i].ctl) |
| continue; |
| |
| m.misc = 0; |
| m.addr = 0; |
| m.bank = i; |
| |
| m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i)); |
| if ((m.status & MCI_STATUS_VAL) == 0) |
| continue; |
| |
| /* |
| * Non uncorrected or non signaled errors are handled by |
| * machine_check_poll. Leave them alone, unless this panics. |
| */ |
| if (!(m.status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) && |
| !no_way_out) |
| continue; |
| |
| /* |
| * Set taint even when machine check was not enabled. |
| */ |
| add_taint(TAINT_MACHINE_CHECK); |
| |
| severity = mce_severity(&m, cfg->tolerant, NULL); |
| |
| /* |
| * When machine check was for corrected handler don't touch, |
| * unless we're panicing. |
| */ |
| if (severity == MCE_KEEP_SEVERITY && !no_way_out) |
| continue; |
| __set_bit(i, toclear); |
| if (severity == MCE_NO_SEVERITY) { |
| /* |
| * Machine check event was not enabled. Clear, but |
| * ignore. |
| */ |
| continue; |
| } |
| |
| mce_read_aux(&m, i); |
| |
| /* |
| * Action optional error. Queue address for later processing. |
| * When the ring overflows we just ignore the AO error. |
| * RED-PEN add some logging mechanism when |
| * usable_address or mce_add_ring fails. |
| * RED-PEN don't ignore overflow for mca_cfg.tolerant == 0 |
| */ |
| if (severity == MCE_AO_SEVERITY && mce_usable_address(&m)) |
| mce_ring_add(m.addr >> PAGE_SHIFT); |
| |
| mce_log(&m); |
| |
| if (severity > worst) { |
| *final = m; |
| worst = severity; |
| } |
| } |
| |
| /* mce_clear_state will clear *final, save locally for use later */ |
| m = *final; |
| |
| if (!no_way_out) |
| mce_clear_state(toclear); |
| |
| /* |
| * Do most of the synchronization with other CPUs. |
| * When there's any problem use only local no_way_out state. |
| */ |
| if (mce_end(order) < 0) |
| no_way_out = worst >= MCE_PANIC_SEVERITY; |
| |
| /* |
| * At insane "tolerant" levels we take no action. Otherwise |
| * we only die if we have no other choice. For less serious |
| * issues we try to recover, or limit damage to the current |
| * process. |
| */ |
| if (cfg->tolerant < 3) { |
| if (no_way_out) |
| mce_panic("Fatal machine check on current CPU", &m, msg); |
| if (worst == MCE_AR_SEVERITY) { |
| /* schedule action before return to userland */ |
| mce_save_info(m.addr, m.mcgstatus & MCG_STATUS_RIPV); |
| set_thread_flag(TIF_MCE_NOTIFY); |
| } else if (kill_it) { |
| force_sig(SIGBUS, current); |
| } |
| } |
| |
| if (worst > 0) |
| mce_report_event(regs); |
| mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); |
| out: |
| atomic_dec(&mce_entry); |
| sync_core(); |
| } |
| EXPORT_SYMBOL_GPL(do_machine_check); |
| |
| #ifndef CONFIG_MEMORY_FAILURE |
| int memory_failure(unsigned long pfn, int vector, int flags) |
| { |
| /* mce_severity() should not hand us an ACTION_REQUIRED error */ |
| BUG_ON(flags & MF_ACTION_REQUIRED); |
| pr_err("Uncorrected memory error in page 0x%lx ignored\n" |
| "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", |
| pfn); |
| |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Called in process context that interrupted by MCE and marked with |
| * TIF_MCE_NOTIFY, just before returning to erroneous userland. |
| * This code is allowed to sleep. |
| * Attempt possible recovery such as calling the high level VM handler to |
| * process any corrupted pages, and kill/signal current process if required. |
| * Action required errors are handled here. |
| */ |
| void mce_notify_process(void) |
| { |
| unsigned long pfn; |
| struct mce_info *mi = mce_find_info(); |
| int flags = MF_ACTION_REQUIRED; |
| |
| if (!mi) |
| mce_panic("Lost physical address for unconsumed uncorrectable error", NULL, NULL); |
| pfn = mi->paddr >> PAGE_SHIFT; |
| |
| clear_thread_flag(TIF_MCE_NOTIFY); |
| |
| pr_err("Uncorrected hardware memory error in user-access at %llx", |
| mi->paddr); |
| /* |
| * We must call memory_failure() here even if the current process is |
| * doomed. We still need to mark the page as poisoned and alert any |
| * other users of the page. |
| */ |
| if (!mi->restartable) |
| flags |= MF_MUST_KILL; |
| if (memory_failure(pfn, MCE_VECTOR, flags) < 0) { |
| pr_err("Memory error not recovered"); |
| force_sig(SIGBUS, current); |
| } |
| mce_clear_info(mi); |
| } |
| |
| /* |
| * Action optional processing happens here (picking up |
| * from the list of faulting pages that do_machine_check() |
| * placed into the "ring"). |
| */ |
| static void mce_process_work(struct work_struct *dummy) |
| { |
| unsigned long pfn; |
| |
| while (mce_ring_get(&pfn)) |
| memory_failure(pfn, MCE_VECTOR, 0); |
| } |
| |
| #ifdef CONFIG_X86_MCE_INTEL |
| /*** |
| * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog |
| * @cpu: The CPU on which the event occurred. |
| * @status: Event status information |
| * |
| * This function should be called by the thermal interrupt after the |
| * event has been processed and the decision was made to log the event |
| * further. |
| * |
| * The status parameter will be saved to the 'status' field of 'struct mce' |
| * and historically has been the register value of the |
| * MSR_IA32_THERMAL_STATUS (Intel) msr. |
| */ |
| void mce_log_therm_throt_event(__u64 status) |
| { |
| struct mce m; |
| |
| mce_setup(&m); |
| m.bank = MCE_THERMAL_BANK; |
| m.status = status; |
| mce_log(&m); |
| } |
| #endif /* CONFIG_X86_MCE_INTEL */ |
| |
| /* |
| * Periodic polling timer for "silent" machine check errors. If the |
| * poller finds an MCE, poll 2x faster. When the poller finds no more |
| * errors, poll 2x slower (up to check_interval seconds). |
| */ |
| static unsigned long check_interval = 5 * 60; /* 5 minutes */ |
| |
| static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */ |
| static DEFINE_PER_CPU(struct timer_list, mce_timer); |
| |
| static unsigned long mce_adjust_timer_default(unsigned long interval) |
| { |
| return interval; |
| } |
| |
| static unsigned long (*mce_adjust_timer)(unsigned long interval) = |
| mce_adjust_timer_default; |
| |
| static void mce_timer_fn(unsigned long data) |
| { |
| struct timer_list *t = &__get_cpu_var(mce_timer); |
| unsigned long iv; |
| |
| WARN_ON(smp_processor_id() != data); |
| |
| if (mce_available(__this_cpu_ptr(&cpu_info))) { |
| machine_check_poll(MCP_TIMESTAMP, |
| &__get_cpu_var(mce_poll_banks)); |
| mce_intel_cmci_poll(); |
| } |
| |
| /* |
| * Alert userspace if needed. If we logged an MCE, reduce the |
| * polling interval, otherwise increase the polling interval. |
| */ |
| iv = __this_cpu_read(mce_next_interval); |
| if (mce_notify_irq()) { |
| iv = max(iv / 2, (unsigned long) HZ/100); |
| } else { |
| iv = min(iv * 2, round_jiffies_relative(check_interval * HZ)); |
| iv = mce_adjust_timer(iv); |
| } |
| __this_cpu_write(mce_next_interval, iv); |
| /* Might have become 0 after CMCI storm subsided */ |
| if (iv) { |
| t->expires = jiffies + iv; |
| add_timer_on(t, smp_processor_id()); |
| } |
| } |
| |
| /* |
| * Ensure that the timer is firing in @interval from now. |
| */ |
| void mce_timer_kick(unsigned long interval) |
| { |
| struct timer_list *t = &__get_cpu_var(mce_timer); |
| unsigned long when = jiffies + interval; |
| unsigned long iv = __this_cpu_read(mce_next_interval); |
| |
| if (timer_pending(t)) { |
| if (time_before(when, t->expires)) |
| mod_timer_pinned(t, when); |
| } else { |
| t->expires = round_jiffies(when); |
| add_timer_on(t, smp_processor_id()); |
| } |
| if (interval < iv) |
| __this_cpu_write(mce_next_interval, interval); |
| } |
| |
| /* Must not be called in IRQ context where del_timer_sync() can deadlock */ |
| static void mce_timer_delete_all(void) |
| { |
| int cpu; |
| |
| for_each_online_cpu(cpu) |
| del_timer_sync(&per_cpu(mce_timer, cpu)); |
| } |
| |
| static void mce_do_trigger(struct work_struct *work) |
| { |
| call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT); |
| } |
| |
| static DECLARE_WORK(mce_trigger_work, mce_do_trigger); |
| |
| /* |
| * Notify the user(s) about new machine check events. |
| * Can be called from interrupt context, but not from machine check/NMI |
| * context. |
| */ |
| int mce_notify_irq(void) |
| { |
| /* Not more than two messages every minute */ |
| static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); |
| |
| if (test_and_clear_bit(0, &mce_need_notify)) { |
| /* wake processes polling /dev/mcelog */ |
| wake_up_interruptible(&mce_chrdev_wait); |
| |
| if (mce_helper[0]) |
| schedule_work(&mce_trigger_work); |
| |
| if (__ratelimit(&ratelimit)) |
| pr_info(HW_ERR "Machine check events logged\n"); |
| |
| return 1; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(mce_notify_irq); |
| |
| static int __cpuinit __mcheck_cpu_mce_banks_init(void) |
| { |
| int i; |
| u8 num_banks = mca_cfg.banks; |
| |
| mce_banks = kzalloc(num_banks * sizeof(struct mce_bank), GFP_KERNEL); |
| if (!mce_banks) |
| return -ENOMEM; |
| |
| for (i = 0; i < num_banks; i++) { |
| struct mce_bank *b = &mce_banks[i]; |
| |
| b->ctl = -1ULL; |
| b->init = 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Initialize Machine Checks for a CPU. |
| */ |
| static int __cpuinit __mcheck_cpu_cap_init(void) |
| { |
| unsigned b; |
| u64 cap; |
| |
| rdmsrl(MSR_IA32_MCG_CAP, cap); |
| |
| b = cap & MCG_BANKCNT_MASK; |
| if (!mca_cfg.banks) |
| pr_info("CPU supports %d MCE banks\n", b); |
| |
| if (b > MAX_NR_BANKS) { |
| pr_warn("Using only %u machine check banks out of %u\n", |
| MAX_NR_BANKS, b); |
| b = MAX_NR_BANKS; |
| } |
| |
| /* Don't support asymmetric configurations today */ |
| WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks); |
| mca_cfg.banks = b; |
| |
| if (!mce_banks) { |
| int err = __mcheck_cpu_mce_banks_init(); |
| |
| if (err) |
| return err; |
| } |
| |
| /* Use accurate RIP reporting if available. */ |
| if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9) |
| mca_cfg.rip_msr = MSR_IA32_MCG_EIP; |
| |
| if (cap & MCG_SER_P) |
| mca_cfg.ser = true; |
| |
| return 0; |
| } |
| |
| static void __mcheck_cpu_init_generic(void) |
| { |
| enum mcp_flags m_fl = 0; |
| mce_banks_t all_banks; |
| u64 cap; |
| int i; |
| |
| if (!mca_cfg.bootlog) |
| m_fl = MCP_DONTLOG; |
| |
| /* |
| * Log the machine checks left over from the previous reset. |
| */ |
| bitmap_fill(all_banks, MAX_NR_BANKS); |
| machine_check_poll(MCP_UC | m_fl, &all_banks); |
| |
| set_in_cr4(X86_CR4_MCE); |
| |
| rdmsrl(MSR_IA32_MCG_CAP, cap); |
| if (cap & MCG_CTL_P) |
| wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); |
| |
| for (i = 0; i < mca_cfg.banks; i++) { |
| struct mce_bank *b = &mce_banks[i]; |
| |
| if (!b->init) |
| continue; |
| wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl); |
| wrmsrl(MSR_IA32_MCx_STATUS(i), 0); |
| } |
| } |
| |
| /* |
| * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and |
| * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM |
| * Vol 3B Table 15-20). But this confuses both the code that determines |
| * whether the machine check occurred in kernel or user mode, and also |
| * the severity assessment code. Pretend that EIPV was set, and take the |
| * ip/cs values from the pt_regs that mce_gather_info() ignored earlier. |
| */ |
| static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs) |
| { |
| if (bank != 0) |
| return; |
| if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0) |
| return; |
| if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC| |
| MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV| |
| MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR| |
| MCACOD)) != |
| (MCI_STATUS_UC|MCI_STATUS_EN| |
| MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S| |
| MCI_STATUS_AR|MCACOD_INSTR)) |
| return; |
| |
| m->mcgstatus |= MCG_STATUS_EIPV; |
| m->ip = regs->ip; |
| m->cs = regs->cs; |
| } |
| |
| /* Add per CPU specific workarounds here */ |
| static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c) |
| { |
| struct mca_config *cfg = &mca_cfg; |
| |
| if (c->x86_vendor == X86_VENDOR_UNKNOWN) { |
| pr_info("unknown CPU type - not enabling MCE support\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| /* This should be disabled by the BIOS, but isn't always */ |
| if (c->x86_vendor == X86_VENDOR_AMD) { |
| if (c->x86 == 15 && cfg->banks > 4) { |
| /* |
| * disable GART TBL walk error reporting, which |
| * trips off incorrectly with the IOMMU & 3ware |
| * & Cerberus: |
| */ |
| clear_bit(10, (unsigned long *)&mce_banks[4].ctl); |
| } |
| if (c->x86 <= 17 && cfg->bootlog < 0) { |
| /* |
| * Lots of broken BIOS around that don't clear them |
| * by default and leave crap in there. Don't log: |
| */ |
| cfg->bootlog = 0; |
| } |
| /* |
| * Various K7s with broken bank 0 around. Always disable |
| * by default. |
| */ |
| if (c->x86 == 6 && cfg->banks > 0) |
| mce_banks[0].ctl = 0; |
| |
| /* |
| * Turn off MC4_MISC thresholding banks on those models since |
| * they're not supported there. |
| */ |
| if (c->x86 == 0x15 && |
| (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) { |
| int i; |
| u64 val, hwcr; |
| bool need_toggle; |
| u32 msrs[] = { |
| 0x00000413, /* MC4_MISC0 */ |
| 0xc0000408, /* MC4_MISC1 */ |
| }; |
| |
| rdmsrl(MSR_K7_HWCR, hwcr); |
| |
| /* McStatusWrEn has to be set */ |
| need_toggle = !(hwcr & BIT(18)); |
| |
| if (need_toggle) |
| wrmsrl(MSR_K7_HWCR, hwcr | BIT(18)); |
| |
| for (i = 0; i < ARRAY_SIZE(msrs); i++) { |
| rdmsrl(msrs[i], val); |
| |
| /* CntP bit set? */ |
| if (val & BIT_64(62)) { |
| val &= ~BIT_64(62); |
| wrmsrl(msrs[i], val); |
| } |
| } |
| |
| /* restore old settings */ |
| if (need_toggle) |
| wrmsrl(MSR_K7_HWCR, hwcr); |
| } |
| } |
| |
| if (c->x86_vendor == X86_VENDOR_INTEL) { |
| /* |
| * SDM documents that on family 6 bank 0 should not be written |
| * because it aliases to another special BIOS controlled |
| * register. |
| * But it's not aliased anymore on model 0x1a+ |
| * Don't ignore bank 0 completely because there could be a |
| * valid event later, merely don't write CTL0. |
| */ |
| |
| if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0) |
| mce_banks[0].init = 0; |
| |
| /* |
| * All newer Intel systems support MCE broadcasting. Enable |
| * synchronization with a one second timeout. |
| */ |
| if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) && |
| cfg->monarch_timeout < 0) |
| cfg->monarch_timeout = USEC_PER_SEC; |
| |
| /* |
| * There are also broken BIOSes on some Pentium M and |
| * earlier systems: |
| */ |
| if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0) |
| cfg->bootlog = 0; |
| |
| if (c->x86 == 6 && c->x86_model == 45) |
| quirk_no_way_out = quirk_sandybridge_ifu; |
| } |
| if (cfg->monarch_timeout < 0) |
| cfg->monarch_timeout = 0; |
| if (cfg->bootlog != 0) |
| cfg->panic_timeout = 30; |
| |
| return 0; |
| } |
| |
| static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c) |
| { |
| if (c->x86 != 5) |
| return 0; |
| |
| switch (c->x86_vendor) { |
| case X86_VENDOR_INTEL: |
| intel_p5_mcheck_init(c); |
| return 1; |
| break; |
| case X86_VENDOR_CENTAUR: |
| winchip_mcheck_init(c); |
| return 1; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c) |
| { |
| switch (c->x86_vendor) { |
| case X86_VENDOR_INTEL: |
| mce_intel_feature_init(c); |
| mce_adjust_timer = mce_intel_adjust_timer; |
| break; |
| case X86_VENDOR_AMD: |
| mce_amd_feature_init(c); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void mce_start_timer(unsigned int cpu, struct timer_list *t) |
| { |
| unsigned long iv = mce_adjust_timer(check_interval * HZ); |
| |
| __this_cpu_write(mce_next_interval, iv); |
| |
| if (mca_cfg.ignore_ce || !iv) |
| return; |
| |
| t->expires = round_jiffies(jiffies + iv); |
| add_timer_on(t, smp_processor_id()); |
| } |
| |
| static void __mcheck_cpu_init_timer(void) |
| { |
| struct timer_list *t = &__get_cpu_var(mce_timer); |
| unsigned int cpu = smp_processor_id(); |
| |
| setup_timer(t, mce_timer_fn, cpu); |
| mce_start_timer(cpu, t); |
| } |
| |
| /* Handle unconfigured int18 (should never happen) */ |
| static void unexpected_machine_check(struct pt_regs *regs, long error_code) |
| { |
| pr_err("CPU#%d: Unexpected int18 (Machine Check)\n", |
| smp_processor_id()); |
| } |
| |
| /* Call the installed machine check handler for this CPU setup. */ |
| void (*machine_check_vector)(struct pt_regs *, long error_code) = |
| unexpected_machine_check; |
| |
| /* |
| * Called for each booted CPU to set up machine checks. |
| * Must be called with preempt off: |
| */ |
| void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c) |
| { |
| if (mca_cfg.disabled) |
| return; |
| |
| if (__mcheck_cpu_ancient_init(c)) |
| return; |
| |
| if (!mce_available(c)) |
| return; |
| |
| if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) { |
| mca_cfg.disabled = true; |
| return; |
| } |
| |
| machine_check_vector = do_machine_check; |
| |
| __mcheck_cpu_init_generic(); |
| __mcheck_cpu_init_vendor(c); |
| __mcheck_cpu_init_timer(); |
| INIT_WORK(&__get_cpu_var(mce_work), mce_process_work); |
| init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb); |
| } |
| |
| /* |
| * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log. |
| */ |
| |
| static DEFINE_SPINLOCK(mce_chrdev_state_lock); |
| static int mce_chrdev_open_count; /* #times opened */ |
| static int mce_chrdev_open_exclu; /* already open exclusive? */ |
| |
| static int mce_chrdev_open(struct inode *inode, struct file *file) |
| { |
| spin_lock(&mce_chrdev_state_lock); |
| |
| if (mce_chrdev_open_exclu || |
| (mce_chrdev_open_count && (file->f_flags & O_EXCL))) { |
| spin_unlock(&mce_chrdev_state_lock); |
| |
| return -EBUSY; |
| } |
| |
| if (file->f_flags & O_EXCL) |
| mce_chrdev_open_exclu = 1; |
| mce_chrdev_open_count++; |
| |
| spin_unlock(&mce_chrdev_state_lock); |
| |
| return nonseekable_open(inode, file); |
| } |
| |
| static int mce_chrdev_release(struct inode *inode, struct file *file) |
| { |
| spin_lock(&mce_chrdev_state_lock); |
| |
| mce_chrdev_open_count--; |
| mce_chrdev_open_exclu = 0; |
| |
| spin_unlock(&mce_chrdev_state_lock); |
| |
| return 0; |
| } |
| |
| static void collect_tscs(void *data) |
| { |
| unsigned long *cpu_tsc = (unsigned long *)data; |
| |
| rdtscll(cpu_tsc[smp_processor_id()]); |
| } |
| |
| static int mce_apei_read_done; |
| |
| /* Collect MCE record of previous boot in persistent storage via APEI ERST. */ |
| static int __mce_read_apei(char __user **ubuf, size_t usize) |
| { |
| int rc; |
| u64 record_id; |
| struct mce m; |
| |
| if (usize < sizeof(struct mce)) |
| return -EINVAL; |
| |
| rc = apei_read_mce(&m, &record_id); |
| /* Error or no more MCE record */ |
| if (rc <= 0) { |
| mce_apei_read_done = 1; |
| /* |
| * When ERST is disabled, mce_chrdev_read() should return |
| * "no record" instead of "no device." |
| */ |
| if (rc == -ENODEV) |
| return 0; |
| return rc; |
| } |
| rc = -EFAULT; |
| if (copy_to_user(*ubuf, &m, sizeof(struct mce))) |
| return rc; |
| /* |
| * In fact, we should have cleared the record after that has |
| * been flushed to the disk or sent to network in |
| * /sbin/mcelog, but we have no interface to support that now, |
| * so just clear it to avoid duplication. |
| */ |
| rc = apei_clear_mce(record_id); |
| if (rc) { |
| mce_apei_read_done = 1; |
| return rc; |
| } |
| *ubuf += sizeof(struct mce); |
| |
| return 0; |
| } |
| |
| static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf, |
| size_t usize, loff_t *off) |
| { |
| char __user *buf = ubuf; |
| unsigned long *cpu_tsc; |
| unsigned prev, next; |
| int i, err; |
| |
| cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL); |
| if (!cpu_tsc) |
| return -ENOMEM; |
| |
| mutex_lock(&mce_chrdev_read_mutex); |
| |
| if (!mce_apei_read_done) { |
| err = __mce_read_apei(&buf, usize); |
| if (err || buf != ubuf) |
| goto out; |
| } |
| |
| next = rcu_dereference_check_mce(mcelog.next); |
| |
| /* Only supports full reads right now */ |
| err = -EINVAL; |
| if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce)) |
| goto out; |
| |
| err = 0; |
| prev = 0; |
| do { |
| for (i = prev; i < next; i++) { |
| unsigned long start = jiffies; |
| struct mce *m = &mcelog.entry[i]; |
| |
| while (!m->finished) { |
| if (time_after_eq(jiffies, start + 2)) { |
| memset(m, 0, sizeof(*m)); |
| goto timeout; |
| } |
| cpu_relax(); |
| } |
| smp_rmb(); |
| err |= copy_to_user(buf, m, sizeof(*m)); |
| buf += sizeof(*m); |
| timeout: |
| ; |
| } |
| |
| memset(mcelog.entry + prev, 0, |
| (next - prev) * sizeof(struct mce)); |
| prev = next; |
| next = cmpxchg(&mcelog.next, prev, 0); |
| } while (next != prev); |
| |
| synchronize_sched(); |
| |
| /* |
| * Collect entries that were still getting written before the |
| * synchronize. |
| */ |
| on_each_cpu(collect_tscs, cpu_tsc, 1); |
| |
| for (i = next; i < MCE_LOG_LEN; i++) { |
| struct mce *m = &mcelog.entry[i]; |
| |
| if (m->finished && m->tsc < cpu_tsc[m->cpu]) { |
| err |= copy_to_user(buf, m, sizeof(*m)); |
| smp_rmb(); |
| buf += sizeof(*m); |
| memset(m, 0, sizeof(*m)); |
| } |
| } |
| |
| if (err) |
| err = -EFAULT; |
| |
| out: |
| mutex_unlock(&mce_chrdev_read_mutex); |
| kfree(cpu_tsc); |
| |
| return err ? err : buf - ubuf; |
| } |
| |
| static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait) |
| { |
| poll_wait(file, &mce_chrdev_wait, wait); |
| if (rcu_access_index(mcelog.next)) |
| return POLLIN | POLLRDNORM; |
| if (!mce_apei_read_done && apei_check_mce()) |
| return POLLIN | POLLRDNORM; |
| return 0; |
| } |
| |
| static long mce_chrdev_ioctl(struct file *f, unsigned int cmd, |
| unsigned long arg) |
| { |
| int __user *p = (int __user *)arg; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| switch (cmd) { |
| case MCE_GET_RECORD_LEN: |
| return put_user(sizeof(struct mce), p); |
| case MCE_GET_LOG_LEN: |
| return put_user(MCE_LOG_LEN, p); |
| case MCE_GETCLEAR_FLAGS: { |
| unsigned flags; |
| |
| do { |
| flags = mcelog.flags; |
| } while (cmpxchg(&mcelog.flags, flags, 0) != flags); |
| |
| return put_user(flags, p); |
| } |
| default: |
| return -ENOTTY; |
| } |
| } |
| |
| static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf, |
| size_t usize, loff_t *off); |
| |
| void register_mce_write_callback(ssize_t (*fn)(struct file *filp, |
| const char __user *ubuf, |
| size_t usize, loff_t *off)) |
| { |
| mce_write = fn; |
| } |
| EXPORT_SYMBOL_GPL(register_mce_write_callback); |
| |
| ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf, |
| size_t usize, loff_t *off) |
| { |
| if (mce_write) |
| return mce_write(filp, ubuf, usize, off); |
| else |
| return -EINVAL; |
| } |
| |
| static const struct file_operations mce_chrdev_ops = { |
| .open = mce_chrdev_open, |
| .release = mce_chrdev_release, |
| .read = mce_chrdev_read, |
| .write = mce_chrdev_write, |
| .poll = mce_chrdev_poll, |
| .unlocked_ioctl = mce_chrdev_ioctl, |
| .llseek = no_llseek, |
| }; |
| |
| static struct miscdevice mce_chrdev_device = { |
| MISC_MCELOG_MINOR, |
| "mcelog", |
| &mce_chrdev_ops, |
| }; |
| |
| /* |
| * mce=off Disables machine check |
| * mce=no_cmci Disables CMCI |
| * mce=dont_log_ce Clears corrected events silently, no log created for CEs. |
| * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared. |
| * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above) |
| * monarchtimeout is how long to wait for other CPUs on machine |
| * check, or 0 to not wait |
| * mce=bootlog Log MCEs from before booting. Disabled by default on AMD. |
| * mce=nobootlog Don't log MCEs from before booting. |
| * mce=bios_cmci_threshold Don't program the CMCI threshold |
| */ |
| static int __init mcheck_enable(char *str) |
| { |
| struct mca_config *cfg = &mca_cfg; |
| |
| if (*str == 0) { |
| enable_p5_mce(); |
| return 1; |
| } |
| if (*str == '=') |
| str++; |
| if (!strcmp(str, "off")) |
| cfg->disabled = true; |
| else if (!strcmp(str, "no_cmci")) |
| cfg->cmci_disabled = true; |
| else if (!strcmp(str, "dont_log_ce")) |
| cfg->dont_log_ce = true; |
| else if (!strcmp(str, "ignore_ce")) |
| cfg->ignore_ce = true; |
| else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog")) |
| cfg->bootlog = (str[0] == 'b'); |
| else if (!strcmp(str, "bios_cmci_threshold")) |
| cfg->bios_cmci_threshold = true; |
| else if (isdigit(str[0])) { |
| get_option(&str, &(cfg->tolerant)); |
| if (*str == ',') { |
| ++str; |
| get_option(&str, &(cfg->monarch_timeout)); |
| } |
| } else { |
| pr_info("mce argument %s ignored. Please use /sys\n", str); |
| return 0; |
| } |
| return 1; |
| } |
| __setup("mce", mcheck_enable); |
| |
| int __init mcheck_init(void) |
| { |
| mcheck_intel_therm_init(); |
| |
| return 0; |
| } |
| |
| /* |
| * mce_syscore: PM support |
| */ |
| |
| /* |
| * Disable machine checks on suspend and shutdown. We can't really handle |
| * them later. |
| */ |
| static int mce_disable_error_reporting(void) |
| { |
| int i; |
| |
| for (i = 0; i < mca_cfg.banks; i++) { |
| struct mce_bank *b = &mce_banks[i]; |
| |
| if (b->init) |
| wrmsrl(MSR_IA32_MCx_CTL(i), 0); |
| } |
| return 0; |
| } |
| |
| static int mce_syscore_suspend(void) |
| { |
| return mce_disable_error_reporting(); |
| } |
| |
| static void mce_syscore_shutdown(void) |
| { |
| mce_disable_error_reporting(); |
| } |
| |
| /* |
| * On resume clear all MCE state. Don't want to see leftovers from the BIOS. |
| * Only one CPU is active at this time, the others get re-added later using |
| * CPU hotplug: |
| */ |
| static void mce_syscore_resume(void) |
| { |
| __mcheck_cpu_init_generic(); |
| __mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info)); |
| } |
| |
| static struct syscore_ops mce_syscore_ops = { |
| .suspend = mce_syscore_suspend, |
| .shutdown = mce_syscore_shutdown, |
| .resume = mce_syscore_resume, |
| }; |
| |
| /* |
| * mce_device: Sysfs support |
| */ |
| |
| static void mce_cpu_restart(void *data) |
| { |
| if (!mce_available(__this_cpu_ptr(&cpu_info))) |
| return; |
| __mcheck_cpu_init_generic(); |
| __mcheck_cpu_init_timer(); |
| } |
| |
| /* Reinit MCEs after user configuration changes */ |
| static void mce_restart(void) |
| { |
| mce_timer_delete_all(); |
| on_each_cpu(mce_cpu_restart, NULL, 1); |
| } |
| |
| /* Toggle features for corrected errors */ |
| static void mce_disable_cmci(void *data) |
| { |
| if (!mce_available(__this_cpu_ptr(&cpu_info))) |
| return; |
| cmci_clear(); |
| } |
| |
| static void mce_enable_ce(void *all) |
| { |
| if (!mce_available(__this_cpu_ptr(&cpu_info))) |
| return; |
| cmci_reenable(); |
| cmci_recheck(); |
| if (all) |
| __mcheck_cpu_init_timer(); |
| } |
| |
| static struct bus_type mce_subsys = { |
| .name = "machinecheck", |
| .dev_name = "machinecheck", |
| }; |
| |
| DEFINE_PER_CPU(struct device *, mce_device); |
| |
| __cpuinitdata |
| void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu); |
| |
| static inline struct mce_bank *attr_to_bank(struct device_attribute *attr) |
| { |
| return container_of(attr, struct mce_bank, attr); |
| } |
| |
| static ssize_t show_bank(struct device *s, struct device_attribute *attr, |
| char *buf) |
| { |
| return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl); |
| } |
| |
| static ssize_t set_bank(struct device *s, struct device_attribute *attr, |
| const char *buf, size_t size) |
| { |
| u64 new; |
| |
| if (strict_strtoull(buf, 0, &new) < 0) |
| return -EINVAL; |
| |
| attr_to_bank(attr)->ctl = new; |
| mce_restart(); |
| |
| return size; |
| } |
| |
| static ssize_t |
| show_trigger(struct device *s, struct device_attribute *attr, char *buf) |
| { |
| strcpy(buf, mce_helper); |
| strcat(buf, "\n"); |
| return strlen(mce_helper) + 1; |
| } |
| |
| static ssize_t set_trigger(struct device *s, struct device_attribute *attr, |
| const char *buf, size_t siz) |
| { |
| char *p; |
| |
| strncpy(mce_helper, buf, sizeof(mce_helper)); |
| mce_helper[sizeof(mce_helper)-1] = 0; |
| p = strchr(mce_helper, '\n'); |
| |
| if (p) |
| *p = 0; |
| |
| return strlen(mce_helper) + !!p; |
| } |
| |
| static ssize_t set_ignore_ce(struct device *s, |
| struct device_attribute *attr, |
| const char *buf, size_t size) |
| { |
| u64 new; |
| |
| if (strict_strtoull(buf, 0, &new) < 0) |
| return -EINVAL; |
| |
| if (mca_cfg.ignore_ce ^ !!new) { |
| if (new) { |
| /* disable ce features */ |
| mce_timer_delete_all(); |
| on_each_cpu(mce_disable_cmci, NULL, 1); |
| mca_cfg.ignore_ce = true; |
| } else { |
| /* enable ce features */ |
| mca_cfg.ignore_ce = false; |
| on_each_cpu(mce_enable_ce, (void *)1, 1); |
| } |
| } |
| return size; |
| } |
| |
| static ssize_t set_cmci_disabled(struct device *s, |
| struct device_attribute *attr, |
| const char *buf, size_t size) |
| { |
| u64 new; |
| |
| if (strict_strtoull(buf, 0, &new) < 0) |
| return -EINVAL; |
| |
| if (mca_cfg.cmci_disabled ^ !!new) { |
| if (new) { |
| /* disable cmci */ |
| on_each_cpu(mce_disable_cmci, NULL, 1); |
| mca_cfg.cmci_disabled = true; |
| } else { |
| /* enable cmci */ |
| mca_cfg.cmci_disabled = false; |
| on_each_cpu(mce_enable_ce, NULL, 1); |
| } |
| } |
| return size; |
| } |
| |
| static ssize_t store_int_with_restart(struct device *s, |
| struct device_attribute *attr, |
| const char *buf, size_t size) |
| { |
| ssize_t ret = device_store_int(s, attr, buf, size); |
| mce_restart(); |
| return ret; |
| } |
| |
| static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger); |
| static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant); |
| static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout); |
| static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce); |
| |
| static struct dev_ext_attribute dev_attr_check_interval = { |
| __ATTR(check_interval, 0644, device_show_int, store_int_with_restart), |
| &check_interval |
| }; |
| |
| static struct dev_ext_attribute dev_attr_ignore_ce = { |
| __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce), |
| &mca_cfg.ignore_ce |
| }; |
| |
| static struct dev_ext_attribute dev_attr_cmci_disabled = { |
| __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled), |
| &mca_cfg.cmci_disabled |
| }; |
| |
| static struct device_attribute *mce_device_attrs[] = { |
| &dev_attr_tolerant.attr, |
| &dev_attr_check_interval.attr, |
| &dev_attr_trigger, |
| &dev_attr_monarch_timeout.attr, |
| &dev_attr_dont_log_ce.attr, |
| &dev_attr_ignore_ce.attr, |
| &dev_attr_cmci_disabled.attr, |
| NULL |
| }; |
| |
| static cpumask_var_t mce_device_initialized; |
| |
| static void mce_device_release(struct device *dev) |
| { |
| kfree(dev); |
| } |
| |
| /* Per cpu device init. All of the cpus still share the same ctrl bank: */ |
| static __cpuinit int mce_device_create(unsigned int cpu) |
| { |
| struct device *dev; |
| int err; |
| int i, j; |
| |
| if (!mce_available(&boot_cpu_data)) |
| return -EIO; |
| |
| dev = kzalloc(sizeof *dev, GFP_KERNEL); |
| if (!dev) |
| return -ENOMEM; |
| dev->id = cpu; |
| dev->bus = &mce_subsys; |
| dev->release = &mce_device_release; |
| |
| err = device_register(dev); |
| if (err) |
| return err; |
| |
| for (i = 0; mce_device_attrs[i]; i++) { |
| err = device_create_file(dev, mce_device_attrs[i]); |
| if (err) |
| goto error; |
| } |
| for (j = 0; j < mca_cfg.banks; j++) { |
| err = device_create_file(dev, &mce_banks[j].attr); |
| if (err) |
| goto error2; |
| } |
| cpumask_set_cpu(cpu, mce_device_initialized); |
| per_cpu(mce_device, cpu) = dev; |
| |
| return 0; |
| error2: |
| while (--j >= 0) |
| device_remove_file(dev, &mce_banks[j].attr); |
| error: |
| while (--i >= 0) |
| device_remove_file(dev, mce_device_attrs[i]); |
| |
| device_unregister(dev); |
| |
| return err; |
| } |
| |
| static __cpuinit void mce_device_remove(unsigned int cpu) |
| { |
| struct device *dev = per_cpu(mce_device, cpu); |
| int i; |
| |
| if (!cpumask_test_cpu(cpu, mce_device_initialized)) |
| return; |
| |
| for (i = 0; mce_device_attrs[i]; i++) |
| device_remove_file(dev, mce_device_attrs[i]); |
| |
| for (i = 0; i < mca_cfg.banks; i++) |
| device_remove_file(dev, &mce_banks[i].attr); |
| |
| device_unregister(dev); |
| cpumask_clear_cpu(cpu, mce_device_initialized); |
| per_cpu(mce_device, cpu) = NULL; |
| } |
| |
| /* Make sure there are no machine checks on offlined CPUs. */ |
| static void __cpuinit mce_disable_cpu(void *h) |
| { |
| unsigned long action = *(unsigned long *)h; |
| int i; |
| |
| if (!mce_available(__this_cpu_ptr(&cpu_info))) |
| return; |
| |
| if (!(action & CPU_TASKS_FROZEN)) |
| cmci_clear(); |
| for (i = 0; i < mca_cfg.banks; i++) { |
| struct mce_bank *b = &mce_banks[i]; |
| |
| if (b->init) |
| wrmsrl(MSR_IA32_MCx_CTL(i), 0); |
| } |
| } |
| |
| static void __cpuinit mce_reenable_cpu(void *h) |
| { |
| unsigned long action = *(unsigned long *)h; |
| int i; |
| |
| if (!mce_available(__this_cpu_ptr(&cpu_info))) |
| return; |
| |
| if (!(action & CPU_TASKS_FROZEN)) |
| cmci_reenable(); |
| for (i = 0; i < mca_cfg.banks; i++) { |
| struct mce_bank *b = &mce_banks[i]; |
| |
| if (b->init) |
| wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl); |
| } |
| } |
| |
| /* Get notified when a cpu comes on/off. Be hotplug friendly. */ |
| static int __cpuinit |
| mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) |
| { |
| unsigned int cpu = (unsigned long)hcpu; |
| struct timer_list *t = &per_cpu(mce_timer, cpu); |
| |
| switch (action & ~CPU_TASKS_FROZEN) { |
| case CPU_ONLINE: |
| mce_device_create(cpu); |
| if (threshold_cpu_callback) |
| threshold_cpu_callback(action, cpu); |
| break; |
| case CPU_DEAD: |
| if (threshold_cpu_callback) |
| threshold_cpu_callback(action, cpu); |
| mce_device_remove(cpu); |
| mce_intel_hcpu_update(cpu); |
| break; |
| case CPU_DOWN_PREPARE: |
| smp_call_function_single(cpu, mce_disable_cpu, &action, 1); |
| del_timer_sync(t); |
| break; |
| case CPU_DOWN_FAILED: |
| smp_call_function_single(cpu, mce_reenable_cpu, &action, 1); |
| mce_start_timer(cpu, t); |
| break; |
| } |
| |
| if (action == CPU_POST_DEAD) { |
| /* intentionally ignoring frozen here */ |
| cmci_rediscover(cpu); |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block mce_cpu_notifier __cpuinitdata = { |
| .notifier_call = mce_cpu_callback, |
| }; |
| |
| static __init void mce_init_banks(void) |
| { |
| int i; |
| |
| for (i = 0; i < mca_cfg.banks; i++) { |
| struct mce_bank *b = &mce_banks[i]; |
| struct device_attribute *a = &b->attr; |
| |
| sysfs_attr_init(&a->attr); |
| a->attr.name = b->attrname; |
| snprintf(b->attrname, ATTR_LEN, "bank%d", i); |
| |
| a->attr.mode = 0644; |
| a->show = show_bank; |
| a->store = set_bank; |
| } |
| } |
| |
| static __init int mcheck_init_device(void) |
| { |
| int err; |
| int i = 0; |
| |
| if (!mce_available(&boot_cpu_data)) |
| return -EIO; |
| |
| zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL); |
| |
| mce_init_banks(); |
| |
| err = subsys_system_register(&mce_subsys, NULL); |
| if (err) |
| return err; |
| |
| for_each_online_cpu(i) { |
| err = mce_device_create(i); |
| if (err) |
| return err; |
| } |
| |
| register_syscore_ops(&mce_syscore_ops); |
| register_hotcpu_notifier(&mce_cpu_notifier); |
| |
| /* register character device /dev/mcelog */ |
| misc_register(&mce_chrdev_device); |
| |
| return err; |
| } |
| device_initcall_sync(mcheck_init_device); |
| |
| /* |
| * Old style boot options parsing. Only for compatibility. |
| */ |
| static int __init mcheck_disable(char *str) |
| { |
| mca_cfg.disabled = true; |
| return 1; |
| } |
| __setup("nomce", mcheck_disable); |
| |
| #ifdef CONFIG_DEBUG_FS |
| struct dentry *mce_get_debugfs_dir(void) |
| { |
| static struct dentry *dmce; |
| |
| if (!dmce) |
| dmce = debugfs_create_dir("mce", NULL); |
| |
| return dmce; |
| } |
| |
| static void mce_reset(void) |
| { |
| cpu_missing = 0; |
| atomic_set(&mce_fake_paniced, 0); |
| atomic_set(&mce_executing, 0); |
| atomic_set(&mce_callin, 0); |
| atomic_set(&global_nwo, 0); |
| } |
| |
| static int fake_panic_get(void *data, u64 *val) |
| { |
| *val = fake_panic; |
| return 0; |
| } |
| |
| static int fake_panic_set(void *data, u64 val) |
| { |
| mce_reset(); |
| fake_panic = val; |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get, |
| fake_panic_set, "%llu\n"); |
| |
| static int __init mcheck_debugfs_init(void) |
| { |
| struct dentry *dmce, *ffake_panic; |
| |
| dmce = mce_get_debugfs_dir(); |
| if (!dmce) |
| return -ENOMEM; |
| ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL, |
| &fake_panic_fops); |
| if (!ffake_panic) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| late_initcall(mcheck_debugfs_init); |
| #endif |